[1]
|
熊启慧, 靳藏馥, 张露, 等. 两种源湿地松苗木生长特性和生理生态性状[J]. 江西农业大学学报, 2023, 45(2): 252-262.
|
[2]
|
冯玥, 胡如芳, 杨亮. 湿地松年产脂量与气候因子的相关性研究[J]. 特种经济动植物, 2023, 26(8): 66-69.
|
[3]
|
高宇琪, 夏梦洁, 刘军, 等. 引种湿地松生长不良原因及树势恢复措施[J]. 林业科技通讯, 2024(7): 54-56.
|
[4]
|
梁轩, 王耀力, 常青, 等. 基于时空重建的森林林木形态监测算法研究[J]. 电子设计工程, 2023, 31(22): 26-31.
|
[5]
|
石永磊, 周凯, 申鑫, 等. 基于无人机遥感的林木表型监测进展与展望[J]. 中南林业科技大学学报, 2023, 43(11): 13-27.
|
[6]
|
韩蕊. 基于无人机影像和激光雷达的测树因子提取方法研究[D]: [硕士学位论文]. 哈尔滨: 东北林业大学, 2022.
|
[7]
|
周梅, 李春干, 杨承伶, 等. 无人机激光雷达人工林参数估测试验[J]. 林业资源管理, 2023(3): 90-97.
|
[8]
|
Yao, Z., Chai, G., Lei, L., Jia, X. and Zhang, X. (2023) Individual Tree Species Identification and Crown Parameters Extraction Based on Mask R-CNN: Assessing the Applicability of Unmanned Aerial Vehicle Optical Images. Remote Sensing, 15, Article 5164. https://doi.org/10.3390/rs15215164
|
[9]
|
朱思名, 王振锡, 裴媛, 等. 基于无人机影像的天山云杉林冠幅提取及蓄积量反演[J]. 干旱区资源与环境, 2020, 34(10): 160-165.
|
[10]
|
Gao, T., Gao, Z., Sun, B., Qin, P., Li, Y. and Yan, Z. (2022) An Integrated Method for Estimating Forest-Canopy Closure Based on UAV Lidar Data. Remote Sensing, 14, Article 4317. https://doi.org/10.3390/rs14174317
|
[11]
|
王越, 何诚, 刘柏良, 等. 基于无人机倾斜摄影技术的单木参数提取及胸径模型构建[J]. 西南林业大学学报(自然科学), 2022, 42(1): 166-173.
|
[12]
|
Birdal, A.C., Avdan, U. and Türk, T. (2017) Estimating Tree Heights with Images from an Unmanned Aerial Vehicle. Geomatics, Natural Hazards and Risk, 8, 1144-1156. https://doi.org/10.1080/19475705.2017.1300608
|
[13]
|
张静, 郭思梦, 韩迎春, 等. 基于无人机RGB图像的棉花产量估算[J]. 中国农业科技导报, 2022, 24(11): 112-120.
|
[14]
|
李小伟. 无人机倾斜摄影测量技术在林区植被恢复治理中的应用[J]. 测绘与空间地理信息, 2024, 47(1): 222-224.
|
[15]
|
钟雷文. 倾斜摄影三维实景建模与修模效果分析——基于大疆智图与Context Capture、模方与Meshmixer[J]. 能源与环境, 2021(6): 85-87.
|
[16]
|
Gao, L., Zhao, Y., Han, J. and Liu, H. (2022) Research on Multi-View 3D Reconstruction Technology Based on SFM. Sensors, 22, Article 4366. https://doi.org/10.3390/s22124366
|
[17]
|
Chaudhry, M.H., Ahmad, A., Gulzar, Q., Farid, M.S., Shahabi, H. and Al-Ansari, N. (2021) Assessment of DSM Based on Radiometric Transformation of UAV Data. Sensors, 21, Article 1649. https://doi.org/10.3390/s21051649
|
[18]
|
吴天冬, 戚澍. 基于OpenCV的桉树人工林林木株数识别与统计研究[J]. 林业科技, 2020, 45(5): 37-38.
|
[19]
|
Moe, K.T., Owari, T., Furuya, N., Hiroshima, T. and Morimoto, J. (2020) Application of UAV Photogrammetry with Lidar Data to Facilitate the Estimation of Tree Locations and DBH Values for High-Value Timber Species in Northern Japanese Mixed-Wood Forests. Remote Sensing, 12, Article 2865. https://doi.org/10.3390/rs12172865
|
[20]
|
胡磊. 基于手持LiDAR的林木参数提取研究[D]: [硕士学位论文]. 武汉: 华中农业大学, 2023.
|
[21]
|
袁一钦, 李浪, 姚西文, 等. 光学遥感图像目标检测数据集综述[J]. 遥感学报, 2023, 27(12): 2671-2687.
|
[22]
|
罗壮, 李明, 张德朝. 结合边界约束网络和分水岭分割算法的建筑物提取[J]. 遥感学报, 2022, 26(7): 1459-1468.
|
[23]
|
徐华东, 陈文静, 刘华. 基于三维激光扫描的单木胸径和树高提取[J]. 森林与环境学报, 2019, 39(5): 524-529.
|
[24]
|
Iizuka, K., Kosugi, Y., Noguchi, S. and Iwagami, S. (2022) Toward a Comprehensive Model for Estimating Diameter at Breast Height of Japanese Cypress (Chamaecyparis obtusa) Using Crown Size Derived from Unmanned Aerial Systems. Computers and Electronics in Agriculture, 192, Article 106579. https://doi.org/10.1016/j.compag.2021.106579
|
[25]
|
陈浩, 罗扬. 马尾松树高-胸径非线性混合效应模型构建[J]. 森林与环境学报, 2021, 41(4): 439-448.
|
[26]
|
张玉薇, 张超, 王娟, 等. 基于UAV遥感的单木冠幅提取及胸径估算模型研究[J]. 林业资源管理, 2021(3): 67-75.
|
[27]
|
王小兰, 陈甲瑞, 邢震, 等. 藏东南高山松胸径与冠径的相关性分析及应用研究[J]. 林业资源管理, 2019(1): 63-69.
|
[28]
|
Song, Z., Tomasetto, F., Niu, X., Yan, W.Q., Jiang, J. and Li, Y. (2022) Enabling Breeding Selection for Biomass in Slash Pine Using UAV-Based Imaging. Plant Phenomics, 2022, Article ID: 9783785. https://doi.org/10.34133/2022/9783785
|
[29]
|
杨奇欣, 赖凤香, 何佳春, 等. 不同抗感水稻品种对褐飞虱胁迫的高光谱响应特征[J]. 中国水稻科学, 2024, 38(1): 81-90.
|
[30]
|
吴媚, 顾赛赛. 变异系数的统计推断及其应用[J]. 铜仁学院学报, 2010, 4(1): 139-141+144.
|
[31]
|
Yang, K., Mo, J., Luo, S., Peng, Y., Fang, S., Wu, X., et al. (2023) Estimation of Rice Aboveground Biomass by UAV Imagery with Photosynthetic Accumulation Models. Plant Phenomics, 5, Article 56. https://doi.org/10.34133/plantphenomics.0056
|
[32]
|
罗达, 林杭生, 金钊, 等. 无人机数字摄影测量与激光雷达在地形地貌与地表覆盖研究中的应用及比较[J]. 地球环境学报, 2019, 10(3): 213-226.
|
[33]
|
于海洋, 辛菁锴, 王晓梅, 等. 红松亲本无性系生长性状变异选择研究[J]. 防护林科技, 2023(4): 63-67.
|
[34]
|
曾世伟, 侯学会, 王宗良, 等. 基于无人机遥感的作物表型参数获取和应用研究进展[J]. 山东农业科学, 2024, 56(4): 172-180.
|
[35]
|
Gyawali, A., Aalto, M., Peuhkurinen, J., Villikka, M. and Ranta, T. (2022) Comparison of Individual Tree Height Estimated from Lidar and Digital Aerial Photogrammetry in Young Forests. Sustainability, 14, Article 3720. https://doi.org/10.3390/su14073720
|
[36]
|
Xu, Z., Shen, X. and Cao, L. (2023) Extraction of Forest Structural Parameters by the Comparison of Structure from Motion (SFM) and Backpack Laser Scanning (BLS) Point Clouds. Remote Sensing, 15, Article 2144. https://doi.org/10.3390/rs15082144
|
[37]
|
Zhang, X., Bao, Y., Wang, D., Xin, X., Ding, L., Xu, D., et al. (2021) Using UAV Lidar to Extract Vegetation Parameters of Inner Mongolian Grassland. Remote Sensing, 13, Article 656. https://doi.org/10.3390/rs13040656
|
[38]
|
Che, Y., Wang, Q., Xie, Z., Zhou, L., Li, S., Hui, F., et al. (2020) Estimation of Maize Plant Height and Leaf Area Index Dynamics Using an Unmanned Aerial Vehicle with Oblique and Nadir Photography. Annals of Botany, 126, 765-773. https://doi.org/10.1093/aob/mcaa097
|
[39]
|
卯光宪, 谭伟, 柴宗政, 等. 基于BP神经网络的马尾松人工林胸径-树高模型预测[J]. 浙江农林大学学报, 2020, 37(4): 752-760.
|
[40]
|
彭叶青, 洪大伟, 产启福, 等. 基于无人机多光谱的湿地松生长性状遗传评价[J]. 安徽农业大学学报, 2023, 50(5): 758-763.
|
[41]
|
杨贵军, 李长春, 于海洋, 等. 农用无人机多传感器遥感辅助小麦育种信息获取[J]. 农业工程学报, 2015, 31(21): 184-190.
|
[42]
|
Zhou, L., Meng, R., Tan, Y., Lv, Z., Zhao, Y., Xu, B., et al. (2022) Comparison of UAV-Based Lidar and Digital Aerial Photogrammetry for Measuring Crown-Level Canopy Height in the Urban Environment. Urban Forestry & Urban Greening, 69, Article 127489. https://doi.org/10.1016/j.ufug.2022.127489
|
[43]
|
Zhou, X. and Zhang, X. (2020) Individual Tree Parameters Estimation for Plantation Forests Based on UAV Oblique Photography. IEEE Access, 8, 96184-96198. https://doi.org/10.1109/access.2020.2994911
|
[44]
|
Yang, Z., Liu, Q., Luo, P., Ye, Q., Duan, G., Sharma, R.P., et al. (2020) Prediction of Individual Tree Diameter and Height to Crown Base Using Nonlinear Simultaneous Regression and Airborne Lidar Data. Remote Sensing, 12, Article 2238. https://doi.org/10.3390/rs12142238
|
[45]
|
Xiang, B., Li, B. and Isik, F. (2003) Time Trend of Genetic Parameters in Growth Traits of Pinus taeda L. Silvae genetica, 52, 114-120.
|
[46]
|
Xie, C. and Yang, C. (2020) A Review on Plant High-Throughput Phenotyping Traits Using UAV-Based Sensors. Computers and Electronics in Agriculture, 178, Article 105731. https://doi.org/10.1016/j.compag.2020.105731
|