[1]
|
Nosé, V. (2011) Familial Thyroid Cancer: A Review. Modern Pathology, 24, S19-S33. https://doi.org/10.1038/modpathol.2010.147
|
[2]
|
Chen, Z., Xu, W., Huang, Y., Jin, X., Deng, J., Zhu, S., et al. (2013) Associations of Noniodized Salt and Thyroid Nodule among the Chinese Population: A Large Cross-Sectional Study. The American Journal of Clinical Nutrition, 98, 684-692. https://doi.org/10.3945/ajcn.112.054353
|
[3]
|
Refetoff, S., Harrison, J., Karanfilski, B.T., Kaplan, E.L., De Groot, L.J. and Bekerman, C. (1975) Continuing Occurrence of Thyroid Carcinoma after Irradiation to the Neck in Infancy and Childhood. New England Journal of Medicine, 292, 171-175. https://doi.org/10.1056/nejm197501232920402
|
[4]
|
Engeland, A., Tretli, S., Akslen, L.A. and Bjørge, T. (2006) Body Size and Thyroid Cancer in Two Million Norwegian Men and Women. British Journal of Cancer, 95, 366-370. https://doi.org/10.1038/sj.bjc.6603249
|
[5]
|
Barko, P.C., McMichael, M.A., Swanson, K.S. and Williams, D.A. (2017) The Gastrointestinal Microbiome: A Review. Journal of Veterinary Internal Medicine, 32, 9-25. https://doi.org/10.1111/jvim.14875
|
[6]
|
Eckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, M., et al. (2005) Diversity of the Human Intestinal Microbial Flora. Science, 308, 1635-1638. https://doi.org/10.1126/science.1110591
|
[7]
|
Adak, A. and Khan, M.R. (2018) An Insight into Gut Microbiota and Its Functionalities. Cellular and Molecular Life Sciences, 76, 473-493. https://doi.org/10.1007/s00018-018-2943-4
|
[8]
|
Kazemian, N., Mahmoudi, M., Halperin, F., Wu, J.C. and Pakpour, S. (2020) Gut Microbiota and Cardiovascular Disease: Opportunities and Challenges. Microbiome, 8, Article No. 36. https://doi.org/10.1186/s40168-020-00821-0
|
[9]
|
Jandhyala, S.M. (2015) Role of the Normal Gut Microbiota. World Journal of Gastroenterology, 21, 8787-8803. https://doi.org/10.3748/wjg.v21.i29.8787
|
[10]
|
de Martel, C., Georges, D., Bray, F., Ferlay, J. and Clifford, G.M. (2020) Global Burden of Cancer Attributable to Infections in 2018: A Worldwide Incidence Analysis. The Lancet Global Health, 8, e180-e190. https://doi.org/10.1016/s2214-109x(19)30488-7
|
[11]
|
Sugizaki, K., Tari, A., Kitadai, Y., Oda, I., Nakamura, S., Yoshino, T., et al. (2018) Anti‐Helicobacter pylori Therapy in Localized Gastric Mucosa‐Associated Lymphoid Tissue Lymphoma: A Prospective, Nationwide, Multicenter Study in Japan. Helicobacter, 23, e12474. https://doi.org/10.1111/hel.12474
|
[12]
|
Bagheri, N., Salimzadeh, L. and Shirzad, H. (2018) The Role of T Helper 1-Cell Response in Helicobacter Pylori-Infection. Microbial Pathogenesis, 123, 1-8. https://doi.org/10.1016/j.micpath.2018.06.033
|
[13]
|
Odenbreit, S., Püls, J., Sedlmaier, B., Gerland, E., Fischer, W. and Haas, R. (2000) Translocation of Helicobacter pylori CagA into Gastric Epithelial Cells by Type IV Secretion. Science, 287, 1497-1500. https://doi.org/10.1126/science.287.5457.1497
|
[14]
|
Hatakeyama, M. (2017) Structure and Function of Helicobacter pylori CagA, the First-Identified Bacterial Protein Involved in Human Cancer. Proceedings of the Japan Academy, Series B, 93, 196-219. https://doi.org/10.2183/pjab.93.013
|
[15]
|
Ruby, T., McLaughlin, L., Gopinath, S. and Monack, D. (2012) Salmonella’s Long-Term Relationship with Its Host. FEMS Microbiology Reviews, 36, 600-615. https://doi.org/10.1111/j.1574-6976.2012.00332.x
|
[16]
|
Illman, S. (2001) Hilbert’s Fifth Problem: Review. Journal of Mathematical Sciences, 105, 1843-1847. https://doi.org/10.1023/a:1011323915468
|
[17]
|
Wu, S., Ye, Z., Liu, X., Zhao, Y., Xia, Y., Steiner, A., et al. (2010) Salmonella typhimurium Infection Increases P53 Acetylation in Intestinal Epithelial Cells. American Journal of Physiology-Gastrointestinal and Liver Physiology, 298, G784-G794. https://doi.org/10.1152/ajpgi.00526.2009
|
[18]
|
Dalmasso, G., Cougnoux, A., Delmas, J., Darfeuille-Michaud, A. and Bonnet, R. (2014) The Bacterial Genotoxin Colibactin Promotes Colon Tumor Growth by Modifying the Tumor Microenvironment. Gut Microbes, 5, 675-680. https://doi.org/10.4161/19490976.2014.969989
|
[19]
|
Nougayrède, J., Homburg, S., Taieb, F., Boury, M., Brzuszkiewicz, E., Gottschalk, G., et al. (2006) Escherichia coli Induces DNA Double-Strand Breaks in Eukaryotic Cells. Science, 313, 848-851. https://doi.org/10.1126/science.1127059
|
[20]
|
Iftekhar, A., Berger, H., Bouznad, N., Heuberger, J., Boccellato, F., Dobrindt, U., et al. (2021) Genomic Aberrations after Short-Term Exposure to Colibactin-Producing E. coli Transform Primary Colon Epithelial Cells. Nature Communications, 12, Article No. 1003. https://doi.org/10.1038/s41467-021-21162-y
|
[21]
|
Castellarin, M., Warren, R.L., Freeman, J.D., Dreolini, L., Krzywinski, M., Strauss, J., et al. (2011) Fusobacterium nucleatum Infection Is Prevalent in Human Colorectal Carcinoma. Genome Research, 22, 299-306. https://doi.org/10.1101/gr.126516.111
|
[22]
|
Kim, G.W., Kim, Y., Lee, S.H., Park, S.G., Kim, D.H., Cho, J.Y., et al. (2019) Periodontitis Is Associated with an Increased Risk for Proximal Colorectal Neoplasms. Scientific Reports, 9, Article No. 7528. https://doi.org/10.1038/s41598-019-44014-8
|
[23]
|
Bullman, S., Pedamallu, C.S., Sicinska, E., Clancy, T.E., Zhang, X., Cai, D., et al. (2017) Analysis of Fusobacterium Persistence and Antibiotic Response in Colorectal Cancer. Science, 358, 1443-1448. https://doi.org/10.1126/science.aal5240
|
[24]
|
Parhi, L., Alon-Maimon, T., Sol, A., Nejman, D., Shhadeh, A., Fainsod-Levi, T., et al. (2020) Breast Cancer Colonization by Fusobacterium nucleatum Accelerates Tumor Growth and Metastatic Progression. Nature Communications, 11, Article No. 3259. https://doi.org/10.1038/s41467-020-16967-2
|
[25]
|
Zhang, S., Li, C., Liu, J., Geng, F., Shi, X., Li, Q., et al. (2020) Fusobacterium nucleatum Promotes Epithelial‐Mesenchymal Transiton through Regulation of the LncRNA MIR4435‐2HG/miR‐296‐5p/Akt2/SNAI1 Signaling Pathway. The FEBS Journal, 287, 4032-4047. https://doi.org/10.1111/febs.15233
|
[26]
|
Haghi, F., Goli, E., Mirzaei, B. and Zeighami, H. (2019) The Association between Fecal Enterotoxigenic B. fragilis with Colorectal Cancer. BMC Cancer, 19, Article No. 879. https://doi.org/10.1186/s12885-019-6115-1
|
[27]
|
Cheng, W.T., Kantilal, H.K. and Davamani, F. (2020) The Mechanism of Bacteroides Fragilis Toxin Contributes to Colon Cancer Formation. Malaysian Journal of Medical Sciences, 27, 9-21. https://doi.org/10.21315/mjms2020.27.4.2
|
[28]
|
Liu, Q., Li, C., Fu, L., Wang, H., Tan, J., Wang, Y., et al. (2020) Enterotoxigenic Bacteroides fragilis Induces the Stemness in Colorectal Cancer via Upregulating Histone Demethylase JMJD2B. Gut Microbes, 12, Article 1788900. https://doi.org/10.1080/19490976.2020.1788900
|
[29]
|
Bischoff, S.C., Barbara, G., Buurman, W., Ockhuizen, T., Schulzke, J., Serino, M., et al. (2014) Intestinal Permeability—A New Target for Disease Prevention and Therapy. BMC Gastroenterology, 14, Article No. 189. https://doi.org/10.1186/s12876-014-0189-7
|
[30]
|
Camilleri, M. (2019) Leaky Gut: Mechanisms, Measurement and Clinical Implications in Humans. Gut, 68, 1516-1526. https://doi.org/10.1136/gutjnl-2019-318427
|
[31]
|
Luu, M., Schütz, B., Lauth, M. and Visekruna, A. (2023) The Impact of Gut Microbiota-Derived Metabolites on the Tumor Immune Microenvironment. Cancers, 15, Article 1588. https://doi.org/10.3390/cancers15051588
|
[32]
|
Fenneman, A.C., Bruinstroop, E., Nieuwdorp, M., van der Spek, A.H. and Boelen, A. (2023) A Comprehensive Review of Thyroid Hormone Metabolism in the Gut and Its Clinical Implications. Thyroid, 33, 32-44. https://doi.org/10.1089/thy.2022.0491
|
[33]
|
Zhang, J., Zhang, F., Zhao, C., Xu, Q., Liang, C., Yang, Y., et al. (2018) Dysbiosis of the Gut Microbiome Is Associated with Thyroid Cancer and Thyroid Nodules and Correlated with Clinical Index of Thyroid Function. Endocrine, 64, 564-574. https://doi.org/10.1007/s12020-018-1831-x
|
[34]
|
Feng, J., Zhao, F., Sun, J., Lin, B., Zhao, L., Liu, Y., et al. (2018) Alterations in the Gut Microbiota and Metabolite Profiles of Thyroid Carcinoma Patients. International Journal of Cancer, 144, 2728-2745. https://doi.org/10.1002/ijc.32007
|