[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[2]
|
Zheng, R.S., Chen, R., Han, B.F., et al. (2024) Cancer Incidence and Mortality in China, 2022. Chinese Journal of Oncology, 46, 221-231.
|
[3]
|
Boon, W.C., Chow, J.D.Y. and Simpson, E.R. (2010) The Multiple Roles of Estrogens and the Enzyme Aromatase. In: Progress in Brain Research, Elsevier, 209-232. https://doi.org/10.1016/s0079-6123(08)81012-6
|
[4]
|
Bulun, S.E., Takayama, K., Suzuki, T., et al. (2004) Organization of the Human Aromatase p450 (CYP19) Gene. Seminars in Reproductive Medicine, 22, 5-9.
|
[5]
|
Santen, R.J., Brodie, H., Simpson, E.R., Siiteri, P.K. and Brodie, A. (2009) History of Aromatase: Saga of an Important Biological Mediator and Therapeutic Target. Endocrine Reviews, 30, 343-375. https://doi.org/10.1210/er.2008-0016
|
[6]
|
Simpson, E.R., Zhao, Y., Agarwal, V.R., et al. (1997) Aromatase Expression in Health and Disease. In: Recent Progress in Hormone Research, Oxford Academic, 185-213.
|
[7]
|
Chen, X., Li, H., Xu, C., et al. (2023) CYP19A1 Is Downregulated by BRD4 and Suppresses Castration-Resistant Prostate Cancer Cell Invasion and Proliferation by Decreasing AR Expression. American Journal of Cancer Research, 13, 4003-4020.
|
[8]
|
Miftakhova, R., Hedblom, A., Semenas, J., Robinson, B., Simoulis, A., Malm, J., et al. (2016) Cyclin A1 and P450 Aromatase Promote Metastatic Homing and Growth of Stem-Like Prostate Cancer Cells in the Bone Marrow. Cancer Research, 76, 2453-2464. https://doi.org/10.1158/0008-5472.can-15-2340
|
[9]
|
Nelles, J.L., Hu, W. and Prins, G.S. (2011) Estrogen Action and Prostate Cancer. Expert Review of Endocrinology & Metabolism, 6, 437-451. https://doi.org/10.1586/eem.11.20
|
[10]
|
Massillo, C., Dalton, G.N., Porretti, J., Scalise, G.D., Farré, P.L., Piccioni, F., et al. (2018) CTBP1/CYP19A1/Estradiol Axis Together with Adipose Tissue Impacts over Prostate Cancer Growth Associated to Metabolic Syndrome. International Journal of Cancer, 144, 1115-1127. https://doi.org/10.1002/ijc.31773
|
[11]
|
Murphy, N., Strickler, H.D., Stanczyk, F.Z., Xue, X., Wassertheil-Smoller, S., Rohan, T.E., et al. (2015) A Prospective Evaluation of Endogenous Sex Hormone Levels and Colorectal Cancer Risk in Postmenopausal Women. Journal of the National Cancer Institute, 107, djv210. https://doi.org/10.1093/jnci/djv210
|
[12]
|
Armstrong, C.M., Allred, K.F., Weeks, B.R., Chapkin, R.S. and Allred, C.D. (2017) Estradiol Has Differential Effects on Acute Colonic Inflammation in the Presence and Absence of Estrogen Receptor Β Expression. Digestive Diseases and Sciences, 62, 1977-1984. https://doi.org/10.1007/s10620-017-4631-x
|
[13]
|
Su, G., Wang, M., Qian, J., Wang, Y., Zhu, Y., Wang, N., et al. (2024) Comprehensive Analysis of a Platelet and Coagulation-Related Prognostic Gene Signature Identifies CYP19A1 as a Key Tumorigenic Driver of Colorectal Cancer. Biomedicines, 12, Article 2225. https://doi.org/10.3390/biomedicines12102225
|
[14]
|
Liu, L., Mo, M., Chen, X., Chao, D., Zhang, Y., Chen, X., et al. (2023) Targeting Inhibition of Prognosis-Related Lipid Metabolism Genes Including CYP19A1 Enhances Immunotherapeutic Response in Colon Cancer. Journal of Experimental & Clinical Cancer Research, 42, Article No. 85. https://doi.org/10.1186/s13046-023-02647-8
|
[15]
|
Kadlubar, S., Penney, R., Lundgreen, A., Yao-Borengasser, A., Edavana, V., Williams, S., et al. (2014) CYP19A1 Single Nucleotide Polymorphism Associations with CYP19A1, NF-κB1, and IL6 Gene Expression in Human Normal Colon and Normal Liver Samples. Pharmacogenomics and Personalized Medicine, 7, 163-171. https://doi.org/10.2147/pgpm.s62238
|
[16]
|
Frycz, B.A., Murawa, D., Borejsza-Wysocki, M., Wichtowski, M., Spychała, A., Marciniak, R., et al. (2017) mRNA Expression of Steroidogenic Enzymes, Steroid Hormone Receptors and Their Coregulators in Gastric Cancer. Oncology Letters, 13, 3369-3378. https://doi.org/10.3892/ol.2017.5881
|
[17]
|
Wang, N., Huang, X. and Long, Q. (2022) Lipid Metabolic-Related Signature CYP19A1 Is a Potential Biomarker for Prognosis and Immune Cell Infiltration in Gastric Cancer. Journal of Inflammation Research, 15, 5075-5088. https://doi.org/10.2147/jir.s378212
|
[18]
|
Cho, L.Y., Yang, J.J., Ko, K., Ma, S.H., Shin, A., Choi, B.Y., et al. (2012) Genetic Susceptibility Factors on Genes Involved in the Steroid Hormone Biosynthesis Pathway and Progesterone Receptor for Gastric Cancer Risk. PLOS ONE, 7, e47603. https://doi.org/10.1371/journal.pone.0047603
|
[19]
|
Zhou, X., Meng, F., Xiao, L. and Shen, H. (2023) CYP19A1 Promotes Gastric Cancer as Part of a Lipid Metabolism-Related Gene Signature Related to the Response of Immunotherapy and Prognosis. BMC Medical Genomics, 16, Article No. 228. https://doi.org/10.1186/s12920-023-01664-y
|
[20]
|
Kobayashi, H., Yoshida, S., Shirasawa, N., Maeda, K. and Naito, A. (2018) Expression and Localization of Aromatase in Human Gastric Mucosa. Histochemistry and Cell Biology, 151, 21-28. https://doi.org/10.1007/s00418-018-1708-3
|
[21]
|
Shah, R., Sharma, V., Bhat, A., Singh, H., Sharma, I., Verma, S., et al. (2020) MassARRAY Analysis of Twelve Cancer Related SNPS in Esophageal Squamous Cell Carcinoma in J&K, India. BMC Cancer, 20, Article No. 497. https://doi.org/10.1186/s12885-020-06991-2
|
[22]
|
Wu, I., Zhao, Y., Zhai, R., Liu, G., Ter-Minassian, M., Asomaning, K., et al. (2011) Association between Polymorphisms in Cancer-Related Genes and Early Onset of Esophageal Adenocarcinoma. Neoplasia, 13, 386-IN26. https://doi.org/10.1593/neo.101722
|