[1]
|
The, W. (2023) Report on Cardiovascular Health and Diseases in China 2022: An Updated Summary. Biomedical and Environmental Sciences, 36, 669-701.
|
[2]
|
Cai, X., Tintut, Y. and Demer, L.L. (2023) A Potential New Link between Inflammation and Vascular Calcification. Journal of the American Heart Association, 12, e028358. https://doi.org/10.1161/jaha.122.028358
|
[3]
|
Rodríguez-Vera, D., Vergara-Castañeda, A., Lazcano-Orozco, D.K., Ramírez-Vélez, G., Vivar-Sierra, A., Araiza-Macías, M.J., et al. (2021) Inflammation Parameters Associated with Metabolic Disorders: Relationship between Diet and Microbiota. Metabolic Syndrome and Related Disorders, 19, 469-482. https://doi.org/10.1089/met.2021.0022
|
[4]
|
Rodríguez-Cruz, M., del Rocío Cruz-Guzmán, O., Almeida-Becerril, T., Solís-Serna, A.D., Atilano-Miguel, S., Sánchez-González, J.R., et al. (2018) Potential Therapeutic Impact of Omega-3 Long Chain-Polyunsaturated Fatty Acids on Inflammation Markers in Duchenne Muscular Dystrophy: A Double-Blind, Controlled Randomized Trial. Clinical Nutrition, 37, 1840-1851. https://doi.org/10.1016/j.clnu.2017.09.011
|
[5]
|
Wu, Q., Gao, Z., Yu, X. and Wang, P. (2022) Dietary Regulation in Health and Disease. Signal Transduction and Targeted Therapy, 7, Article No. 252. https://doi.org/10.1038/s41392-022-01104-w
|
[6]
|
Smidowicz, A. and Regula, J. (2015) Effect of Nutritional Status and Dietary Patterns on Human Serum C-Reactive Protein and Interleukin-6 Concentrations. Advances in Nutrition, 6, 738-747. https://doi.org/10.3945/an.115.009415
|
[7]
|
Marshall, S., Petocz, P., Duve, E., Abbott, K., Cassettari, T., Blumfield, M., et al. (2020) The Effect of Replacing Refined Grains with Whole Grains on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials with GRADE Clinical Recommendation. Journal of the Academy of Nutrition and Dietetics, 120, 1859-1883.E31. https://doi.org/10.1016/j.jand.2020.06.021
|
[8]
|
Zawada, A., Machowiak, A., Rychter, A.M., Ratajczak, A.E., Szymczak-Tomczak, A., Dobrowolska, A., et al. (2022) Accumulation of Advanced Glycation End-Products in the Body and Dietary Habits. Nutrients, 14, Article 3982. https://doi.org/10.3390/nu14193982
|
[9]
|
Boyer, A.L., Arikawa, A.Y., Schmitz, K.H. and Sturgeon, K.M. (2021) Association of Inflammatory Diets with Inflammatory Biomarkers in Women at High Genetic Risk for Breast Cancer. Nutrition and Cancer, 74, 816-819. https://doi.org/10.1080/01635581.2021.1986554
|
[10]
|
Alves, B., Silva, T. and Spritzer, P. (2016) Sedentary Lifestyle and High-Carbohydrate Intake Are Associated with Low-Grade Chronic Inflammation in Post-Menopause: A Cross-Sectional Study. Revista Brasileira de Ginecologia e Obstetrícia/RBGO Gynecology and Obstetrics, 38, 317-324. https://doi.org/10.1055/s-0036-1584582
|
[11]
|
Poetsch, F., Henze, L.A., Estepa, M., Moser, B., Pieske, B., Lang, F., et al. (2020) Role of SGK1 in the Osteogenic Transdifferentiation and Calcification of Vascular Smooth Muscle Cells Promoted by Hyperglycemic Conditions. International Journal of Molecular Sciences, 21, Article 7207. https://doi.org/10.3390/ijms21197207
|
[12]
|
Helgadottir, H., Thorisdottir, B., Gunnarsdottir, I., Halldorsson, T.I., Palsson, G. and Thorsdottir, I. (2022) Lower Intake of Saturated Fatty Acids Is Associated with Improved Lipid Profile in a 6-Year-Old Nationally Representative Population. Nutrients, 14, Article 671. https://doi.org/10.3390/nu14030671
|
[13]
|
Ference, B.A., Ginsberg, H.N., Graham, I., et al. (2017) Low-Density Lipoproteins Cause Atherosclerotic Cardiovascular Disease. 1. Evidence from Genetic, Epidemiologic, and Clinical Studies. A Consensus Statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 38, 2459-2472.
|
[14]
|
Maki, K.C., Dicklin, M.R. and Kirkpatrick, C.F. (2021) Saturated Fats and Cardiovascular Health: Current Evidence and Controversies. Journal of Clinical Lipidology, 15, 765-772. https://doi.org/10.1016/j.jacl.2021.09.049
|
[15]
|
Durham, A.L., Speer, M.Y., Scatena, M., Giachelli, C.M. and Shanahan, C.M. (2018) Role of Smooth Muscle Cells in Vascular Calcification: Implications in Atherosclerosis and Arterial Stiffness. Cardiovascular Research, 114, 590-600. https://doi.org/10.1093/cvr/cvy010
|
[16]
|
Folwaczny, A., Waldmann, E., Altenhofer, J., Henze, K. and Parhofer, K.G. (2021) Postprandial Lipid Metabolism in Normolipidemic Subjects and Patients with Mild to Moderate Hypertriglyceridemia: Effects of Test Meals Containing Saturated Fatty Acids, Mono-Unsaturated Fatty Acids, or Medium-Chain Fatty Acids. Nutrients, 13, Article 1737. https://doi.org/10.3390/nu13051737
|
[17]
|
Mensink, R.P. and Katan, M.B. (1990) Effect of Dietary Trans Fatty Acids on High-Density and Low-Density Lipoprotein Cholesterol Levels in Healthy Subjects. New England Journal of Medicine, 323, 439-445. https://doi.org/10.1056/nejm199008163230703
|
[18]
|
Valenzuela, C.A., Baker, E.J., Miles, E.A. and Calder, P.C. (2019) Eighteen-Carbon Trans Fatty Acids and Inflammation in the Context of Atherosclerosis. Progress in Lipid Research, 76, Article 101009. https://doi.org/10.1016/j.plipres.2019.101009
|
[19]
|
Guggisberg, D., Burton-Pimentel, K.J., Walther, B., Badertscher, R., Blaser, C., Portmann, R., et al. (2022) Molecular Effects of the Consumption of Margarine and Butter Varying in Trans Fat Composition: A Parallel Human Intervention Study. Lipids in Health and Disease, 21, Article No. 74. https://doi.org/10.1186/s12944-022-01675-1
|
[20]
|
Baer, D.J., Judd, J.T., Clevidence, B.A. and Tracy, R.P. (2004) Dietary Fatty Acids Affect Plasma Markers of Inflammation in Healthy Men Fed Controlled Diets: A Randomized Crossover Study. The American Journal of Clinical Nutrition, 79, 969-973. https://doi.org/10.1093/ajcn/79.6.969
|
[21]
|
Mozaffarian, D., Rimm, E.B., King, I.B., Lawler, R.L., McDonald, G.B. and Levy, W.C. (2004) Trans Fatty Acids and Systemic Inflammation in Heart Failure. The American Journal of Clinical Nutrition, 80, 1521-1525. https://doi.org/10.1093/ajcn/80.6.1521
|
[22]
|
Saito, Y., Nakamura, K., Miura, D., Yunoki, K., Miyoshi, T., Yoshida, M., et al. (2017) Suppression of Wnt Signaling and Osteogenic Changes in Vascular Smooth Muscle Cells by Eicosapentaenoic Acid. Nutrients, 9, Article 858. https://doi.org/10.3390/nu9080858
|
[23]
|
Voelkl, J., Egli-Spichtig, D., Alesutan, I. and Wagner, C.A. (2021) Inflammation: A Putative Link between Phosphate Metabolism and Cardiovascular Disease. Clinical Science, 135, 201-227. https://doi.org/10.1042/cs20190895
|
[24]
|
Lin, X., Shan, S., Xu, F., Zhong, J., Wu, F., Duan, J., et al. (2022) The Crosstalk between Endothelial Cells and Vascular Smooth Muscle Cells Aggravates High Phosphorus-Induced Arterial Calcification. Cell Death & Disease, 13, Article No. 650. https://doi.org/10.1038/s41419-022-05064-5
|
[25]
|
Sage, A.P., Lu, J., Tintut, Y. and Demer, L.L. (2011) Hyperphosphatemia-Induced Nanocrystals Upregulate the Expression of Bone Morphogenetic Protein-2 and Osteopontin Genes in Mouse Smooth Muscle Cells in vitro. Kidney International, 79, 414-422. https://doi.org/10.1038/ki.2010.390
|
[26]
|
Cao, J., Zu, X. and Liu, J. (2021) The Roles of Immune Cells in Atherosclerotic Calcification. Vascular, 30, 902-913. https://doi.org/10.1177/17085381211032756
|
[27]
|
Li, C., Xu, M.M., Wang, K., Adler, A.J., Vella, A.T. and Zhou, B. (2018) Macrophage Polarization and Meta-Inflammation. Translational Research, 191, 29-44. https://doi.org/10.1016/j.trsl.2017.10.004
|
[28]
|
Ménégaut, L., Jalil, A., Thomas, C. and Masson, D. (2019) Macrophage Fatty Acid Metabolism and Atherosclerosis: The Rise of PUFAs. Atherosclerosis, 291, 52-61. https://doi.org/10.1016/j.atherosclerosis.2019.10.002
|
[29]
|
Vogel, A., Brunner, J.S., Hajto, A., Sharif, O. and Schabbauer, G. (2022) Lipid Scavenging Macrophages and Inflammation. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1867, Article 159066. https://doi.org/10.1016/j.bbalip.2021.159066
|
[30]
|
Zhang, G., Qin, Q., Zhang, C., Sun, X., Kazama, K., Yi, B., et al. (2023) NDRG1 Signaling Is Essential for Endothelial Inflammation and Vascular Remodeling. Circulation Research, 132, 306-319. https://doi.org/10.1161/circresaha.122.321837
|
[31]
|
García-Hernández, A., Arzate, H., Gil-Chavarría, I., Rojo, R. and Moreno-Fierros, L. (2012) High Glucose Concentrations Alter the Biomineralization Process in Human Osteoblastic Cells. Bone, 50, 276-288. https://doi.org/10.1016/j.bone.2011.10.032
|
[32]
|
Agrafioti, P., Morin‐Baxter, J., Tanagala, K.K.K., Dubey, S., Sims, P., Lalla, E., et al. (2022) Decoding the Role of Macrophages in Periodontitis and Type 2 Diabetes Using Single‐Cell RNA‐Sequencing. The FASEB Journal, 36, e22136. https://doi.org/10.1096/fj.202101198r
|
[33]
|
Zhong, S., Li, L., Shen, X., Li, Q., Xu, W., Wang, X., et al. (2019) An Update on Lipid Oxidation and Inflammation in Cardiovascular Diseases. Free Radical Biology and Medicine, 144, 266-278. https://doi.org/10.1016/j.freeradbiomed.2019.03.036
|
[34]
|
Kay, A.M., Simpson, C.L. and Stewart, J.A. (2016) The Role of AGE/RAGE Signaling in Diabetes-Mediated Vascular Calcification. Journal of Diabetes Research, 2016, Article 6809703. https://doi.org/10.1155/2016/6809703
|