[1]
|
Tiz, D.B. and Podlipnik, Č. (2023) A Review of FDA-Approved Antiparasitic Drugs in USA for Sheep and Goats: Their Synthesis and Pharmaceutical Use. Trends in Pharmaceutical Sciences, 9, 221-236.
|
[2]
|
Mahudeswaran, A., Vivekanandan, J. and Vijayanand, P.S. (2021) A Study on Silver Nanoparticles Embedded DBSA Doped Nanostructured Poly(Aniline-Co-2-Bromoaniline). Materials Today: Proceedings, 47, 2154-2158. https://doi.org/10.1016/j.matpr.2021.05.453
|
[3]
|
Obi, J.C., Emmanuel, I.V., Okoro, L.N., et al. (2022) Synthesis, Spectroscopic Studies and Fastness Properties of Monoazo Dyes Derived from Substituted Arylamines. Science World Journal, 17, 143-147.
|
[4]
|
Yamamoto, Y., Mita, S., Sato, Y., Yano, K. and Ogawa, A. (2023) Practical Synthesis of 1, 3-Benzoazaphosphole Analogues. Frontiers in Chemistry, 11, Article 1174895. https://doi.org/10.3389/fchem.2023.1174895
|
[5]
|
Serna, P. and Corma, A. (2015) Transforming Nano Metal Nonselective Particulates into Chemoselective Catalysts for Hydrogenation of Substituted Nitrobenzenes. ACS Catalysis, 5, 7114-7121. https://doi.org/10.1021/acscatal.5b01846
|
[6]
|
Pietrowski, M. (2012) Recent Developments in Heterogeneous Selective Hydrogenation of Halogenated Nitroaromatic Compounds to Halogenated Anilines. Current Organic Synthesis, 9, 470-487. https://doi.org/10.2174/157017912802651456
|
[7]
|
Bonku, E.M., Qin, H., Odilov, A., Abduahadi, S., Guma, S.D., Yang, F., et al. (2024) Improved and Ligand-Free Copper-Catalyzed Cyclization for an Efficient Synthesis of Benzimidazoles from o-Bromoarylamine and Nitriles. RSC Advances, 14, 6906-6916. https://doi.org/10.1039/d4ra00245h
|
[8]
|
杜春晖. 硝基类化合物的绿色还原工艺开发[D]: [硕士学位论文]. 青岛: 青岛科技大学, 2023.
|
[9]
|
樊金红, 徐文英, 高廷耀. 零价铁预处理硝基苯废水机理的研究[J]. 工业用水与废水, 2004, 35(6): 53-56.
|
[10]
|
Klausen, J., Ranke, J. and Schwarzenbach, R.P. (2001) Influence of Solution Composition and Column Aging on the Reduction of Nitroaromatic Compounds by Zero-Valent Iron. Chemosphere, 44, 511-517. https://doi.org/10.1016/s0045-6535(00)00385-4
|
[11]
|
Waldvogel, S.R. (2010) Comprehensive Organic Name Reactions and Reagents. Synthesis, 2010, 892-892. https://doi.org/10.1055/s-0029-1218680
|
[12]
|
史成玲, 刘秀杰, 孟杰. 邻碘和邻溴苯胺的合成[J]. 天津理工大学学报, 2010, 26(6): 60-62.
|
[13]
|
Li, J., Yan, Z., Bao, L., Sun, C. and Pang, S. (2021) Controllable Coordination of a Phosphotungstic Acid-Modified Carbon Matrix for Anchoring PT Species with Different Sizes: From Single Atoms and Subnanoclusters to Nanoparticles. Catalysis Science & Technology, 11, 1791-1800. https://doi.org/10.1039/d0cy01385d
|
[14]
|
Kantam, M.L., Chakravarti, R., Pal, U., Sreedhar, B. and Bhargava, S. (2008) Nanocrystalline Magnesium Oxide‐stabilized Palladium(0): An Efficient and Reusable Catalyst for Selective Reduction of Nitro Compounds. Advanced Synthesis & Catalysis, 350, 822-827. https://doi.org/10.1002/adsc.200800018
|
[15]
|
Serna, P., Boronat, M. and Corma, A. (2011) Tuning the Behavior of Au and Pt Catalysts for the Chemoselective Hydrogenation of Nitroaromatic Compounds. Topics in Catalysis, 54, 439-446. https://doi.org/10.1007/s11244-011-9668-z
|
[16]
|
Sorribes, I., Liu, L. and Corma, A. (2017) Nanolayered Co-Mo-S Catalysts for the Chemoselective Hydrogenation of Nitroarenes. ACS Catalysis, 7, 2698-2708. https://doi.org/10.1021/acscatal.7b00170
|
[17]
|
Vilé, G., Almora-Barrios, N., López, N. and Pérez-Ramírez, J. (2015) Structure and Reactivity of Supported Hybrid Platinum Nanoparticles for the Flow Hydrogenation of Functionalized Nitroaromatics. ACS Catalysis, 5, 3767-3778. https://doi.org/10.1021/acscatal.5b00885
|
[18]
|
Zhang, S., Chang, C., Huang, Z., Li, J., Wu, Z., Ma, Y., et al. (2016) High Catalytic Activity and Chemoselectivity of Sub-Nanometric Pd Clusters on Porous Nanorods of CeO2 for Hydrogenation of Nitroarenes. Journal of the American Chemical Society, 138, 2629-2637. https://doi.org/10.1021/jacs.5b11413
|
[19]
|
Leng, F., Gerber, I.C., Lecante, P., Moldovan, S., Girleanu, M., Axet, M.R., et al. (2016) Controlled and Chemoselective Hydrogenation of Nitrobenzene over Ru@C60 Catalysts. ACS Catalysis, 6, 6018-6024. https://doi.org/10.1021/acscatal.6b01429
|
[20]
|
Tomkins, P., Gebauer-Henke, E., Leitner, W. and Müller, T.E. (2014) Concurrent Hydrogenation of Aromatic and Nitro Groups over Carbon-Supported Ruthenium Catalysts. ACS Catalysis, 5, 203-209. https://doi.org/10.1021/cs501122h
|
[21]
|
Margalef, J., Pàmies, O. and Diéguez, M. (2020) Iridium-Catalyzed Asymmetric Hydrogenation. In: Oro, L.A. and Claver, C., Eds., Iridium Catalysts for Organic Reactions, Springer, 153-205. https://doi.org/10.1007/3418_2020_64
|
[22]
|
Sun, Y., Darling, A.J., Li, Y., Fujisawa, K., Holder, C.F., Liu, H., et al. (2019) Defect-Mediated Selective Hydrogenation of Nitroarenes on Nanostructured WS2. Chemical Science, 10, 10310-10317. https://doi.org/10.1039/c9sc03337h
|
[23]
|
Sharma, R.K., Yadav, S., Dutta, S., Kale, H.B., Warkad, I.R., Zbořil, R., et al. (2021) Silver Nanomaterials: Synthesis and (Electro/Photo) Catalytic Applications. Chemical Society Reviews, 50, 11293-11380. https://doi.org/10.1039/d0cs00912a
|
[24]
|
Shi, J., Wang, Y., Du, W. and Hou, Z. (2016) Synthesis of Graphene Encapsulated Fe3C in Carbon Nanotubes from Biomass and Its Catalysis Application. Carbon, 99, 330-337. https://doi.org/10.1016/j.carbon.2015.12.049
|
[25]
|
Westerhaus, F.A., Jagadeesh, R.V., Wienhöfer, G., Pohl, M., Radnik, J., Surkus, A., et al. (2013) Heterogenized Cobalt Oxide Catalysts for Nitroarene Reduction by Pyrolysis of Molecularly Defined Complexes. Nature Chemistry, 5, 537-543. https://doi.org/10.1038/nchem.1645
|
[26]
|
Xiao, M., Zhu, J., Feng, L., Liu, C. and Xing, W. (2015) Meso/Macroporous Nitrogen‐Doped Carbon Architectures with Iron Carbide Encapsulated in Graphitic Layers as an Efficient and Robust Catalyst for the Oxygen Reduction Reaction in Both Acidic and Alkaline Solutions. Advanced Materials, 27, 2521-2527. https://doi.org/10.1002/adma.201500262
|
[27]
|
Dai, Y., Li, X., Wang, L. and Xu, X. (2021) Highly Efficient Hydrogenation Reduction of Aromatic Nitro Compounds Using MOF Derivative Co-N/C Catalyst. New Journal of Chemistry, 45, 22908-22914. https://doi.org/10.1039/d1nj04139h
|
[28]
|
Das, V.K., Mazhar, S., Gregor, L., Stein, B.D., Morgan, D.G., Maciulis, N.A., et al. (2018) Graphene Derivative in Magnetically Recoverable Catalyst Determines Catalytic Properties in Transfer Hydrogenation of Nitroarenes to Anilines with 2-Propanol. ACS Applied Materials & Interfaces, 10, 21356-21364. https://doi.org/10.1021/acsami.8b06378
|
[29]
|
Fountoulaki, S., Daikopoulou, V., Gkizis, P.L., Tamiolakis, I., Armatas, G.S. and Lykakis, I.N. (2014) Mechanistic Studies of the Reduction of Nitroarenes by NaBH4 or Hydrosilanes Catalyzed by Supported Gold Nanoparticles. ACS Catalysis, 4, 3504-3511. https://doi.org/10.1021/cs500379u
|
[30]
|
Wang, D., Deraedt, C., Ruiz, J. and Astruc, D. (2015) Sodium Hydroxide-Catalyzed Transfer Hydrogenation of Carbonyl Compounds and Nitroarenes Using Ethanol or Isopropanol as Both Solvent and Hydrogen Donor. Journal of Molecular Catalysis A: Chemical, 400, 14-21. https://doi.org/10.1016/j.molcata.2015.01.024
|
[31]
|
Formenti, D., Ferretti, F., Topf, C., Surkus, A., Pohl, M., Radnik, J., et al. (2017) Co-Based Heterogeneous Catalysts from Well-Defined α-Diimine Complexes: Discussing the Role of Nitrogen. Journal of Catalysis, 351, 79-89. https://doi.org/10.1016/j.jcat.2017.04.014
|
[32]
|
Ai, Y., Liu, L., Zhang, C., Qi, L., He, M., Liang, Z., et al. (2018) Amorphous Flowerlike Goethite Feooh Hierarchical Supraparticles: Superior Capability for Catalytic Hydrogenation of Nitroaromatics in Water. ACS Applied Materials & Interfaces, 10, 32180-32191. https://doi.org/10.1021/acsami.8b10711
|
[33]
|
Chaubal, N.S. and Sawant, M.R. (2007) Nitro Compounds Reduction via Hydride Transfer Using Mesoporous Mixed Oxide Catalyst. Journal of Molecular Catalysis A: Chemical, 261, 232-241. https://doi.org/10.1016/j.molcata.2006.06.033
|
[34]
|
Aditya, T., Pal, A. and Pal, T. (2015) Nitroarene Reduction: A Trusted Model Reaction to Test Nanoparticle Catalysts. Chemical Communications, 51, 9410-9431. https://doi.org/10.1039/c5cc01131k
|
[35]
|
Hu, L., Zhang, R., Wei, L., Zhang, F. and Chen, Q. (2015) Synthesis of FeCo Nanocrystals Encapsulated in Nitrogen-Doped Graphene Layers for Use as Highly Efficient Catalysts for Reduction Reactions. Nanoscale, 7, 450-454. https://doi.org/10.1039/c4nr05570e
|
[36]
|
Cheong, W., Yang, W., Zhang, J., Li, Y., Zhao, D., Liu, S., et al. (2019) Isolated Iron Single-Atomic Site-Catalyzed Chemoselective Transfer Hydrogenation of Nitroarenes to Arylamines. ACS Applied Materials & Interfaces, 11, 33819-33824. https://doi.org/10.1021/acsami.9b09125
|
[37]
|
Hine, J., Hahn, S., Miles, D.E. and Ahn, K. (1985) The Synthesis and Ionization Constants of Some Derivatives of 1-biphenylenol. The Journal of Organic Chemistry, 50, 5092-5096. https://doi.org/10.1021/jo00225a020
|
[38]
|
Jang, Y., Kim, S., Jun, S.W., Kim, B.H., Hwang, S., Song, I.K., et al. (2011) Simple One-Pot Synthesis of Rh-Fe3O4 Heterodimer Nanocrystals and Their Applications to a Magnetically Recyclable Catalyst for Efficient and Selective Reduction of Nitroarenes and Alkenes. Chemical Communications, 47, 3601-3603. https://doi.org/10.1039/c0cc04816j
|
[39]
|
Lauwiner, M., Rys, P. and Wissmann, J. (1998) Reduction of Aromatic Nitro Compounds with Hydrazine Hydrate in the Presence of an Iron Oxide Hydroxide Catalyst. I. The Reduction of Monosubstituted Nitrobenzenes with Hydrazine Hydrate in the Presence of Ferrihydrite. Applied Catalysis A: General, 172, 141-148. https://doi.org/10.1016/s0926-860x(98)00110-0
|
[40]
|
Benz, M., van der Kraan, A.M. and Prins, R. (1998) Reduction of Aromatic Nitrocompounds with Hydrazine Hydrate in the Presence of an Iron Oxide Hydroxide Catalyst: II. Activity, X-Ray Diffraction and Mössbauer Study of the Iron Oxide Hydroxide Catalyst. Applied Catalysis A: General, 172, 149-157. https://doi.org/10.1016/s0926-860x(98)00111-2
|
[41]
|
Lauwiner, M., Roth, R. and Rys, P. (1999) Reduction of Aromatic Nitro Compounds with Hydrazine Hydrate in the Presence of an Iron Oxide/Hydroxide Catalyst. III. The Selective Reduction of Nitro Groups in Aromatic Azo Compounds. Applied Catalysis A: General, 177, 9-14. https://doi.org/10.1016/s0926-860x(98)00247-6
|
[42]
|
Benz, M. and Prins, R. (1999) Kinetics of the Reduction of Aromatic Nitro Compounds with Hydrazine Hydrate in the Presence of an Iron Oxide Hydroxide Catalyst. Applied Catalysis A: General, 183, 325-333. https://doi.org/10.1016/s0926-860x(99)00069-1
|
[43]
|
Cui, X., Zhou, X. and Dong, Z. (2018) Ultrathin γ-Fe2O3 Nanosheets as a Highly Efficient Catalyst for the Chemoselective Hydrogenation of Nitroaromatic Compounds. Catalysis Communications, 107, 57-61. https://doi.org/10.1016/j.catcom.2018.01.015
|
[44]
|
Yun, R., Hong, L., Ma, W., Jia, W., Liu, S. and Zheng, B. (2018) Fe/ Fe2O3@n‐Dopped Porous Carbon: A High‐Performance Catalyst for Selective Hydrogenation of Nitro Compounds. ChemCatChem, 11, 724-728. https://doi.org/10.1002/cctc.201801626
|
[45]
|
Wain, A.J. and Compton, R.G. (2006) Hydrodynamic Cryoelectrochemical ESR: The Reduction of Ortho-Bromonitrobenzene in Acetonitrile. Journal of Electroanalytical Chemistry, 587, 203-212. https://doi.org/10.1016/j.jelechem.2005.11.009
|
[46]
|
Neukermans, S., Vorobjov, F., Kenis, T., De Wolf, R., Hereijgers, J. and Breugelmans, T. (2020) Electrochemical Reduction of Halogenated Aromatic Compounds at Metal Cathodes in Acetonitrile. Electrochimica Acta, 332, Article ID: 135484. https://doi.org/10.1016/j.electacta.2019.135484
|
[47]
|
Srivastava, S.K., Yamada, R., Ogino, C. and Kondo, A. (2013) Biogenic Synthesis and Characterization of Gold Nanoparticles by Escherichia coli K12 and Its Heterogeneous Catalysis in Degradation of 4-Nitrophenol. Nanoscale Research Letters, 8, Article No. 70. https://doi.org/10.1186/1556-276x-8-70
|
[48]
|
Prabhu Charan, K.T., Pothanagandhi, N., Vijayakrishna, K., Sivaramakrishna, A., Mecerreyes, D. and Sreedhar, B. (2014) Poly(Ionic Liquids) as “Smart” Stabilizers for Metal Nanoparticles. European Polymer Journal, 60, 114-122. https://doi.org/10.1016/j.eurpolymj.2014.09.004
|
[49]
|
Layek, K., Kantam, M.L., Shirai, M., Nishio-Hamane, D., Sasaki, T. and Maheswaran, H. (2012) Gold Nanoparticles Stabilized on Nanocrystalline Magnesium Oxide as an Active Catalyst for Reduction of Nitroarenes in Aqueous Medium at Room Temperature. Green Chemistry, 14, 3164-3174. https://doi.org/10.1039/c2gc35917k
|
[50]
|
Luo, P., Xu, K., Zhang, R., Huang, L., Wang, J., Xing, W., et al. (2012) Highly Efficient and Selective Reduction of Nitroarenes with Hydrazine over Supported Rhodium Nanoparticles. Catalysis Science & Technology, 2, 301-304. https://doi.org/10.1039/c1cy00358e
|
[51]
|
Tian, H., Zhou, J., Li, Y., Wang, Y., Liu, L., Ai, Y., et al. (2019) Rh Catalyzed Selective Hydrogenation of Nitroarenes under Mild Conditions: Understanding the Functional Groups Attached to the Nanoparticles. ChemCatChem, 11, 5543-5552. https://doi.org/10.1002/cctc.201901491
|
[52]
|
云瑞瑞, 马婉娇. 铁基催化剂Fe2P/C的设计合成及其温和条件下对硝基化合物的选择性催化加氢性能研究[J]. 聊城大学学报(自然科学版), 2019, 32(3): 61-67.
|
[53]
|
Sun, X., Olivos-Suarez, A.I., Osadchii, D., Romero, M.J.V., Kapteijn, F. and Gascon, J. (2018) Single Cobalt Sites in Mesoporous N-Doped Carbon Matrix for Selective Catalytic Hydrogenation of Nitroarenes. Journal of Catalysis, 357, 20-28. https://doi.org/10.1016/j.jcat.2017.10.030
|
[54]
|
Xu, X., Li, Y., Gong, Y., Zhang, P., Li, H. and Wang, Y. (2012) Synthesis of Palladium Nanoparticles Supported on Mesoporous N-Doped Carbon and Their Catalytic Ability for Biofuel Upgrade. Journal of the American Chemical Society, 134, 16987-16990. https://doi.org/10.1021/ja308139s
|
[55]
|
Tian, M., Cui, X., Liang, K., Ma, J. and Dong, Z. (2016) Efficient and Chemoselective Hydrogenation of Nitroarenes by γ-Fe2O3 Modified Hollow Mesoporous Carbon Microspheres. Inorganic Chemistry Frontiers, 3, 1332-1340. https://doi.org/10.1039/c6qi00246c
|
[56]
|
曹鹏伟. 氮掺杂碳负载铁、钴催化剂的制备及其催化硝基还原反应[D]: [硕士学位论文]. 天津: 河北工业大学, 2021.
|
[57]
|
Sassykova, L.R., Aubakirov, Y.A., Sendilvelan, S., Tashmukhambetova, Z.K., Zhakirova, N.K., Faizullaeva, M.F., et al. (2019) Studying the Mechanisms of Nitro Compounds Reduction (A-Review). Oriental Journal of Chemistry, 35, 22-38. https://doi.org/10.13005/ojc/350103
|
[58]
|
Karwa, S.L. and Rajadhyaksha, R.A. (1988) Selective Catalytic Hydrogenation of Nitrobenzene to Hydrazobenzene. Industrial & Engineering Chemistry Research, 27, 21-24. https://doi.org/10.1021/ie00073a005
|
[59]
|
Ma, X., Zhou, Y., Liu, H., Li, Y. and Jiang, H. (2016) A MOF-Derived Co-CoO@n-Doped Porous Carbon for Efficient Tandem Catalysis: Dehydrogenation of Ammonia Borane and Hydrogenation of Nitro Compounds. Chemical Communications, 52, 7719-7722. https://doi.org/10.1039/c6cc03149h
|
[60]
|
盛瑶. 芳硝基化合物还原制芳胺催化剂的研究[D]: [博士学位论文]. 上海: 上海大学, 2021.
|
[61]
|
Liao, C., Liu, B., Chi, Q. and Zhang, Z. (2018) Nitrogen-Doped Carbon Materials for the Metal-Free Reduction of Nitro Compounds. ACS Applied Materials & Interfaces, 10, 44421-44429. https://doi.org/10.1021/acsami.8b15300
|
[62]
|
吕静. 铁、氮掺杂碳材料催化剂及其还原芳香族硝基化合物催化性能研究[D]: [硕士学位论文]. 兰州: 兰州大学, 2019.
|