[1]
|
Chen, H. and Yao, Y. (2021) Progress of Biomaterials for Bone Tumor Therapy. Journal of Biomaterials Applications, 36, 945-955. https://doi.org/10.1177/08853282211035236
|
[2]
|
Miwa, S., Yamamoto, N. and Tsuchiya, H. (2021) Bone and Soft Tissue Tumors: New Treatment Approaches. Cancers, 13, Article 1832. https://doi.org/10.3390/cancers13081832
|
[3]
|
丹尼尔·赛德尔丁, 黄晓夏, 陈江涛, 等. 3D打印假体重建骨肿瘤术后大段骨缺损[J]. 中国组织工程研究, 2023, 27(29): 4628-4634.
|
[4]
|
Sugano, N. (2018) Computer Assisted Orthopaedic Surgery for Hip and Knee. Springer.
|
[5]
|
Papagelopoulos, P.J., Megaloikonomos, P.D., Korkolopoulou, P., Vottis, C.T., Kontogeorgakos, V.A. and Savvidou, O.D. (2019) Total Calcaneus Resection and Reconstruction Using a 3-Dimensional Printed Implant. Orthopedics, 42, e282-e287. https://doi.org/10.3928/01477447-20190125-07
|
[6]
|
Berish, R.B., Ali, A.N., Telmer, P.G., Ronald, J.A. and Leong, H.S. (2018) Translational Models of Prostate Cancer Bone Metastasis. Nature Reviews Urology, 15, 403-421. https://doi.org/10.1038/s41585-018-0020-2
|
[7]
|
Datta, P., Dey, M., Ataie, Z., Unutmaz, D. and Ozbolat, I.T. (2020) 3D Bioprinting for Reconstituting the Cancer Microenvironment. npj Precision Oncology, 4, Article No. 18. https://doi.org/10.1038/s41698-020-0121-2
|
[8]
|
Parrish, J., Lim, K., Zhang, B., Radisic, M. and Woodfield, T.B.F. (2019) New Frontiers for Biofabrication and Bioreactor Design in Microphysiological System Development. Trends in Biotechnology, 37, 1327-1343. https://doi.org/10.1016/j.tibtech.2019.04.009
|
[9]
|
Cheng, F., Cao, X., Li, H., Liu, T., Xie, X., Huang, D., et al. (2019) Generation of Cost-Effective Paper-Based Tissue Models through Matrix-Assisted Sacrificial 3D Printing. Nano Letters, 19, 3603-3611. https://doi.org/10.1021/acs.nanolett.9b00583
|
[10]
|
Meng, F., Meyer, C.M., Joung, D., Vallera, D.A., McAlpine, M.C. and Panoskaltsis-Mortari, A. (2019) 3D Bioprinted in Vitro Metastatic Models via Reconstruction of Tumor Microenvironments. Advanced Materials, 31, Article 1806899. https://doi.org/10.1002/adma.201806899
|
[11]
|
Vanderburgh, J., Sterling, J.A. and Guelcher, S.A. (2016) 3D Printing of Tissue Engineered Constructs for in Vitro Modeling of Disease Progression and Drug Screening. Annals of Biomedical Engineering, 45, 164-179. https://doi.org/10.1007/s10439-016-1640-4
|
[12]
|
Holmes, B., Zhu, W. and Zhang, L.G. (2014) Development of a Novel 3D Bioprinted in Vitro Nano Bone Model for Breast Cancer Bone Metastasis Study. MRS Proceedings, 1724, 1-6. https://doi.org/10.1557/opl.2014.941
|
[13]
|
Almela, T., Al-Sahaf, S., Brook, I.M., Khoshroo, K., Rasoulianboroujeni, M., Fahimipour, F., et al. (2018) 3D Printed Tissue Engineered Model for Bone Invasion of Oral Cancer. Tissue and Cell, 52, 71-77. https://doi.org/10.1016/j.tice.2018.03.009
|
[14]
|
Park, S., Lee, H., Kim, K., Lee, S., Lee, J., Kim, S., et al. (2018) In Vivo Evaluation of 3D-Printed Polycaprolactone Scaffold Implantation Combined with Β-TCP Powder for Alveolar Bone Augmentation in a Beagle Defect Model. Materials, 11, Article 238. https://doi.org/10.3390/ma11020238
|
[15]
|
Cui, H., Esworthy, T., Zhou, X., Hann, S.Y., Glazer, R.I., Li, R., et al. (2019) Engineering a Novel 3D Printed Vascularized Tissue Model for Investigating Breast Cancer Metastasis to Bone. Advanced Healthcare Materials, 9, Article 1900924. https://doi.org/10.1002/adhm.201900924
|
[16]
|
Chen, Y., Shen, Y., Ho, C., Yu, J., Wu, Y.A., Wang, K., et al. (2018) Osteogenic and Angiogenic Potentials of the Cell-Laden Hydrogel/Mussel-Inspired Calcium Silicate Complex Hierarchical Porous Scaffold Fabricated by 3D Bioprinting. Materials Science and Engineering: C, 91, 679-687. https://doi.org/10.1016/j.msec.2018.06.005
|
[17]
|
Theus, A.S., Ning, L., Hwang, B., Gil, C., Chen, S., Wombwell, A., et al. (2020) Bioprintability: Physiomechanical and Biological Requirements of Materials for 3D Bioprinting Processes. Polymers, 12, Article 2262. https://doi.org/10.3390/polym12102262
|
[18]
|
Mehrotra, S., Moses, J.C., Bandyopadhyay, A. and Mandal, B.B. (2019) 3D Printing/Bioprinting Based Tailoring of in Vitro Tissue Models: Recent Advances and Challenges. ACS Applied Bio Materials, 2, 1385-1405. https://doi.org/10.1021/acsabm.9b00073
|
[19]
|
Paxton, N., Smolan, W., Böck, T., Melchels, F., Groll, J. and Jungst, T. (2017) Proposal to Assess Printability of Bioinks for Extrusion-Based Bioprinting and Evaluation of Rheological Properties Governing Bioprintability. Biofabrication, 9, Article 044107. https://doi.org/10.1088/1758-5090/aa8dd8
|
[20]
|
Ma, Y., Zhang, B., Sun, H., Liu, D., Zhu, Y., Zhu, Q., et al. (2023) The Dual Effect of 3d-Printed Biological Scaffolds Composed of Diverse Biomaterials in the Treatment of Bone Tumors. International Journal of Nanomedicine, 18, 293-305. https://doi.org/10.2147/ijn.s390500
|
[21]
|
Neufurth, M., Wang, X., Schröder, H.C., Feng, Q., Diehl-Seifert, B., Ziebart, T., et al. (2014) Engineering a Morphogenetically Active Hydrogel for Bioprinting of Bioartificial Tissue Derived from Human Osteoblast-Like Saos-2 Cells. Biomaterials, 35, 8810-8819. https://doi.org/10.1016/j.biomaterials.2014.07.002
|
[22]
|
Ling, K., Huang, G., Liu, J., Zhang, X., Ma, Y., Lu, T., et al. (2015) Bioprinting-Based High-Throughput Fabrication of Three-Dimensional MCF-7 Human Breast Cancer Cellular Spheroids. Engineering, 1, 269-274. https://doi.org/10.15302/j-eng-2015062
|
[23]
|
Malda, J., Visser, J., Melchels, F.P., Jüngst, T., Hennink, W.E., Dhert, W.J.A., et al. (2013) 25th Anniversary Article: Engineering Hydrogels for Biofabrication. Advanced Materials, 25, 5011-5028. https://doi.org/10.1002/adma.201302042
|
[24]
|
Gholamalizadeh, A., Nazifkerdar, S., Safdarian, N., Ziaee, A.E., Mobedi, H., Rahbarghazi, R., et al. (2023) Critical Elements in Tissue Engineering of Craniofacial Malformations. Regenerative Medicine, 18, 487-504. https://doi.org/10.2217/rme-2022-0128
|
[25]
|
Rengier, F., Mehndiratta, A., von Tengg-Kobligk, H., Zechmann, C.M., Unterhinninghofen, R., et al. (2010) 3D Printing Based on Imaging Data: Review of Medical Applications. International Journal of Computer Assisted Radiology and Surgery, 5, 335-341. https://doi.org/10.1007/s11548-010-0476-x
|
[26]
|
孔金海, 钱明, 钟南哲, 等. 3D打印模型辅助骶骨脊索瘤整块切除[J]. 中华骨科杂志, 2017, 37(10): 620-628.
|
[27]
|
陈雍君, 钟华, 华强, 等. 3D打印技术辅助上颈椎肿瘤模型的术前规划及手术模拟[J]. 中国组织工程研究, 2018, 22(35): 5614-5619.
|
[28]
|
张亚, 孙允龙, 冉君, 等. 基于3DMRI与CT建模的3D打印模型在骶骨肿瘤术前规划中的应用[J]. 生物骨科材料与临床研究, 2021, 18(2): 12-16.
|
[29]
|
Esposito Corcione, C., Gervaso, F., Scalera, F., Montagna, F., Sannino, A. and Maffezzoli, A. (2016) The Feasibility of Printing Polylactic Acid-Nanohydroxyapatite Composites Using a Low-Cost Fused Deposition Modeling 3D Printer. Journal of Applied Polymer Science, 134, Article 44656. https://doi.org/10.1002/app.44656
|
[30]
|
Budharaju, H., Suresh, S., Sekar, M.P., De Vega, B., Sethuraman, S., Sundaramurthi, D., et al. (2023) Ceramic Materials for 3D Printing of Biomimetic Bone Scaffolds—Current State-of-the-Art & Future Perspectives. Materials & Design, 231, Article 112064. https://doi.org/10.1016/j.matdes.2023.112064
|
[31]
|
Woodard, J.R., Hilldore, A.J., Lan, S.K., Park, C.J., Morgan, A.W., Eurell, J.A.C., et al. (2007) The Mechanical Properties and Osteoconductivity of Hydroxyapatite Bone Scaffolds with Multi-Scale Porosity. Biomaterials, 28, 45-54. https://doi.org/10.1016/j.biomaterials.2006.08.021
|
[32]
|
Reid, J.A., Palmer, X., Mollica, P.A., Northam, N., Sachs, P.C. and Bruno, R.D. (2019) A 3D Bioprinter Platform for Mechanistic Analysis of Tumoroids and Chimeric Mammary Organoids. Scientific Reports, 9, Article No. 7466. https://doi.org/10.1038/s41598-019-43922-z
|
[33]
|
Wang, X., Tolba, E., Schröder, H.C., Neufurth, M., Feng, Q., Diehl-Seifert, B., et al. (2014) Effect of Bioglass on Growth and Biomineralization of Saos-2 Cells in Hydrogel after 3D Cell Bioprinting. PLOS ONE, 9, e112497. https://doi.org/10.1371/journal.pone.0112497
|
[34]
|
Zhou, X., Zhu, W., Nowicki, M., Miao, S., Cui, H., Holmes, B., et al. (2016) 3D Bioprinting a Cell-Laden Bone Matrix for Breast Cancer Metastasis Study. ACS Applied Materials & Interfaces, 8, 30017-30026. https://doi.org/10.1021/acsami.6b10673
|
[35]
|
Wang, Y., Shi, W., Kuss, M., Mirza, S., Qi, D., Krasnoslobodtsev, A., et al. (2018) 3D Bioprinting of Breast Cancer Models for Drug Resistance Study. ACS Biomaterials Science & Engineering, 4, 4401-4411. https://doi.org/10.1021/acsbiomaterials.8b01277
|
[36]
|
Kwakwa, K.A., Vanderburgh, J.P., Guelcher, S.A. and Sterling, J.A. (2017) Engineering 3D Models of Tumors and Bone to Understand Tumor-Induced Bone Disease and Improve Treatments. Current Osteoporosis Reports, 15, 247-254. https://doi.org/10.1007/s11914-017-0385-9
|
[37]
|
Farokhi, M., Mottaghitalab, F., Samani, S., Shokrgozar, M.A., Kundu, S.C., Reis, R.L., et al. (2018) Silk Fibroin/Hydroxyapatite Composites for Bone Tissue Engineering. Biotechnology Advances, 36, 68-91. https://doi.org/10.1016/j.biotechadv.2017.10.001
|
[38]
|
Dadwal, U., Falank, C., Fairfield, H., Linehan, S., Rosen, C.J., Kaplan, D.L., et al. (2016) Tissue-Engineered 3D Cancer-In-Bone Modeling: Silk and PUR Protocols. Bone Key Reports. https://doi.org/10.1038/bonekey.2016.75
|
[39]
|
Demirtaş, T.T., Irmak, G. and Gümüşderelioğlu, M. (2017) A Bioprintable Form of Chitosan Hydrogel for Bone Tissue Engineering. Biofabrication, 9, Article 035003. https://doi.org/10.1088/1758-5090/aa7b1d
|
[40]
|
Murugan, S.S., Anil, S., Sivakumar, P., Shim, M.S. and Venkatesan, J. (2021) 3d-Printed Chitosan Composites for Biomedical Applications. In: Advances in Polymer Science, Springer, 87-116. https://doi.org/10.1007/12_2021_101
|
[41]
|
Swaminathan, S., Hamid, Q., Sun, W. and Clyne, A.M. (2019) Bioprinting of 3D Breast Epithelial Spheroids for Human Cancer Models. Biofabrication, 11, Article 025003. https://doi.org/10.1088/1758-5090/aafc49
|
[42]
|
Nashchekina, Y.A., Yudintceva, N.M., Nikonov, P.O., Ivanova, E.A., Smagina, L.V. and Voronkina, I.V. (2017). Effect of Concentration of Collagen Gel on Functional Activity of Bone Marrow Mesenchymal Stromal Cells. Bulletin of Experimental Biology and Medicine, 163, 123-128. https://doi.org/10.1007/s10517-017-3751-9
|
[43]
|
Li, Q., Lei, X., Wang, X., Cai, Z., Lyu, P. and Zhang, G. (2019) Hydroxyapatite/Collagen Three-Dimensional Printed Scaffolds and Their Osteogenic Effects on Human Bone Marrow-Derived Mesenchymal Stem Cells. Tissue Engineering Part A, 25, 1261-1271. https://doi.org/10.1089/ten.tea.2018.0201
|
[44]
|
Cidonio, G., Alcala-Orozco, C.R., Lim, K.S., Glinka, M., Mutreja, I., Kim, Y., et al. (2019) Osteogenic and Angiogenic Tissue Formation in High Fidelity Nanocomposite Laponite-Gelatin Bioinks. Biofabrication, 11, Article 035027. https://doi.org/10.1088/1758-5090/ab19fd
|
[45]
|
Morgan, C., Khatri, C., Hanna, S.A., Ashrafian, H. and Sarraf, K.M. (2019) Use of Three-Dimensional Printing in Preoperative Planning in Orthopaedic Trauma Surgery: A Systematic Review and Meta-Analysis. World Journal of Orthopedics, 11, 57-67. https://doi.org/10.5312/wjo.v11.i1.57
|
[46]
|
孙涛, 崔林江, 窦超超. 3D打印技术在骨肿瘤手术术前规划中的初步应用[J]. 中国数字医学, 2016, 11(9): 74-76.
|
[47]
|
Youman, S., Dang, E., Jones, M., Duran, D. and Brenseke, B. (2021) The Use of 3D Printers in Medical Education with a Focus on Bone Pathology. Medical Science Educator, 31, 581-588. https://doi.org/10.1007/s40670-021-01222-0
|
[48]
|
谭海涛, 黄文华, 钟世镇, 等. 医学3D打印技术在骨科修复重建的应用[Z]. 贵港市人民医院, 2017.
|
[49]
|
Gao, G., Ahn, M., Cho, W., Kim, B. and Cho, D. (2021) 3D Printing of Pharmaceutical Application: Drug Screening and Drug Delivery. Pharmaceutics, 13, Article 1373. https://doi.org/10.3390/pharmaceutics13091373
|
[50]
|
谭海涛, 陈国平, 张其标. 3D打印技术在骨肿瘤手术应用中的研究进展[J]. 中国癌症防治杂志, 2020, 12(3): 356-360.
|