基于生物信息学探讨杜仲叶治疗癫痫的作用机制和物质基础
To Explore the Mechanism of Action and Material Basis of Eucommiae folium in the Treatment of Epilepsy Based on Bioinformatics
DOI: 10.12677/hjbm.2025.151006, PDF, HTML, XML,    国家自然科学基金支持
作者: 魏明星, 唐文雅, 张帅男, 李煦照*:贵州中医药大学药学院,贵州 贵阳
关键词: 杜仲叶癫痫生物信息学分子对接作用机制物质基础Eucommiae folium Epilepsy Bioinformatics Molecular Docking Mechanism of Action Material Basis
摘要: 目的:基于生物信息学技术研究杜仲叶治疗癫痫的作用机制和物质基础。方法:运用LC-MS技术获得杜仲叶成分,并通过SuperPred数据库和GeneCards等数据库获得成分和疾病靶点,运用Cytoscape软件建立网络图;使用Metascape数据库进行富集分析;使用CB-dock软件进行分子对接。结果:共筛选出杜仲叶113个活性成分及531个靶点,29,880个癫痫疾病靶点,57个交集靶点,9个核心靶点;主要涉及的信号通路包括癌症通路、5-羟色胺突触等通路。结论:杜仲叶治疗癫痫的作用机制可能与炎症反应相关,为进一步药理学实验提供了科学的理论依据。
Abstract: Objective: Research the mechanism of action and material basis of Eucommia folium treating epilepsy based on bioinformatics technology. Method: Employ LC-MS technology to obtain components from Eucommia folium leaves, and utilize databases such as SuperPred and GeneCards to identify the components and disease targets. Construct a network diagram using Cytoscape software; perform enrichment analysis with the Metascape database; and conduct molecular docking with the CB-dock software. Results: A total of 113 active ingredients and 531 target points were screened from the Eucommia folium, with 29,880 epilepsy disease target points, 57 intersection target points and nine core target points. The main related signaling pathways include cancer pathways, serotonin synapses, etc. Conclusions: The mechanism of Eucommia folium in treating epilepsy may be related to inflammation response, providing a scientific theoretical basis for further pharmacological experiments.
文章引用:魏明星, 唐文雅, 张帅男, 李煦照. 基于生物信息学探讨杜仲叶治疗癫痫的作用机制和物质基础[J]. 生物医学, 2025, 15(1): 48-57. https://doi.org/10.12677/hjbm.2025.151006

1. 引言

癫痫是一种由于中枢神经元非正常放电引发的慢性神经系统疾病,已成为中国第二大常见神经系统疾病,略次于头痛[1],全球约有7000万例病例,患病率约为5%,与一般人群相比,癫痫患者的死亡率显著高出2至3倍[2] [3]。我国平均每年约有40万新发病例[4]。癫痫发作存在不可预测和反复发作的特质[5] [6]。由于癫痫病因病机复杂,尚缺乏确切的治愈方法。目前主要通过口服抗癫痫药物来控制临床发作,但仍有一部分患者病情难以得到控制,从而导致高死亡率的发生。近年来大量临床报道证实了中医药治疗癫痫对控制癫痫发作及改善癫痫伴发症状有良好的疗效[7]。中医由病因病机认识并论治痫病,经验丰富,传统经方和现代组方均疗效显著[8] [9],具有副作用小、多靶点和减少癫痫并发症发作的优势[10]。癫痫在中医属于痫病范畴,最早可追溯至《黄帝内经》,中医学认为癫痫是一种以神志异常为主的发作性疾病,主要表现为突发昏扑、强直痉挛、移时苏醒等症状[11]。施茜馨[12]等认为,在中医理论体系中,癫痫的病机核心在于痰气逆乱,肝气疏泄调畅是保障脾胃和神志功能正常的前提。

杜仲叶(Eucommiae folium, EF)于2005年首次被收入《中国药典》一部[13]。根据2020版中国药典记载,杜仲叶为杜仲科植物杜仲Eucommia ulmoides Oliv.的干燥叶。具有补肝肾,强筋骨,用于肝肾不足,头昏目眩,腰膝酸痛,筋骨萎软等功效[13]。现代药理研究表明,杜仲叶具有抗炎,抗氧化、神经保护[14]-[16]等作用。杜仲叶提取物具有良好的神经保护活性,并具有治疗神经退行性疾病的潜力[17]。研究发现,杜仲叶中含有杜仲同种成分,只是含量的不同[18],如酚类物质主要存在于叶中,杜仲的酚类成分起着重要作用,它解释了杜仲的抗氧化能力[19]。从杜仲叶中提取出的化合物具有抑制炎症因子产生的作用,可以发挥抗神经炎症的作用[20]

网络药理学和分子对接是以生物信息学为基础的新兴学科,运用整合数据、差异分析和多路径多靶标从分子层面探究药物的作用机制,为新药研发以及药物安全使用提供理论参考[21]。因为目前针对癫痫的发病机制尚不清楚,因此本研究借助网络药理学、生物信息学、分子对接方法从分子蛋白水平探究杜仲叶治疗癫痫的作用机制,为后续实验研究提供思路及理论基础。

2. 资料与方法

2.1. 杜仲叶成分的筛选和预测靶点的获取

通过LC-MS技术获得化合物的成分,得到化学成分之后,运用Pubchem数据库 (https://pubchem.ncbi.nlm.nih.gov)获得每个成分的smiles号,将smiles号输入到superprediction数据库(https://www.rcsb.org/)当中进行预测化学成分靶点,选取成分98%的预测uniprotID和已知的成分ID进行合并去重,最后通过Uniprot数据库(https://www.uniprot.org/)将数据合并获得靶蛋白规范名称。

2.2. 获取癫痫相关疾病靶点

采用GeneCards数据库(https://www.genecards.org)、OMIM数据库(https://omim.org)、CTD数据库(http://ctdbase.org/)、TTD数据(http://db.idrblab.net/ttd/),并以“epilepsy”为关键词检索其在数据库中的相关疾病靶点,将数据导入Excel表格当中,取去交集删除重复靶点,得到癫痫的疾病靶点。以“human”为主要筛选条件,通过Uniprot数据库将所得癫痫的疾病靶点的蛋白名转化为基因名。

2.3. 构建核心基因的蛋白质互作网络(PPI)

将疾病相关靶点、药物对应的共有基因导入Venny 2.1在线工具,绘制韦恩图,得到共同靶点基因。将其名称输入String数据库(https://string-db.org/cgi/input.put.l),按“multiple proteins”及“Homo sapiens”检索,最低相互作用阈值设置为“中等置信度 > 0.4”并隐藏游离节点,其他设置被设置为默认即可得到PPI。下载STRING数据库中蛋白质–蛋白质互作的tsv格式文件。

2.4. 构建疾病–药物–中药活性成分–交集靶点网络模型

将交集靶点导入STRING数据库构建蛋白相互作用网络,并将PPI网络导入Cytoscape软件筛选核心靶点,同时构建“药物–有效成分–靶点–疾病”相互作用网络,并运用CytoNCA插件分析拓扑参数以筛选主要活性成分。

2.5. 基因本体(GO)富集分析及京都基因与基因组百科全书(KEGG)通路富集分析

运用Metascape平台(http://metascape.prg/gp/index.html)具有全面的注释功能,基因注释数据每月更新。将交集靶点输入到该数据库,进行GO和KEGG分析,获得杜仲叶治疗癫痫的生物学过程、细胞组分、分子功能和相关信号通路关系。将数据文件下载,并在微生信网站(http://www.bioinformatics.com.cn/)进行可视化处理。

2.6. 分子对接

通过Pubchem网站检索获取化合物的SDF结构文件,通过Uniprot数据库获得受体的PDB结构文件,然后运用CB-dock网站设置空腔数为5,并进行分子对接。

3. 结果

3.1. 杜仲叶化学成分筛选

通过LC-MS技术共获得113个成分,基于SuperPred数据库收集113个活性成分的作用靶点,选取98%和已知的ID经过去重之后,共获得60个成分靶点。

3.2. 癫痫疾病相关靶点

从数据库GeneCards中获取778条关于癫痫靶点信息、CTD中获取29,880条关于癫痫靶点信息,OMIM中获取645条关于癫痫靶点信息,TTD中获取34条,合并4个数据库,以CTD数据库为准,运用Excel剔除重合基因后,共检索出29,880个相关基因信息。利用韦恩图获得成分与疾病的交集靶点,如图1所示。

Figure 1. Drug disease Wayne analysis chart

1. 药物–疾病韦恩分析图

3.3. 杜仲叶活性成分–靶点–药物–疾病网络构建与PPI分析

运用“CytoNCA”插件筛选出杜仲叶治疗癫痫5个主要活性成分槲皮素(quercetin)、杨梅素(Myricetin)、山奈酚(Kaempferol)、异槲皮素(Isoquercitin)、金丝桃苷(Hyperoside)。网络图共由122个节点和310条边组成,如图2所示。根据平均自由度与最大自由度之间筛选核心网络,如图3所示。筛选的核心基因以

Figure 2. Network diagram of “disease target component drug” in the treatment of epilepsy with Eucommiae folium

2. 杜仲叶治疗癫痫的“疾病–靶点–成分–药物”网络图

Figure 3. Protein protein interaction network diagram (plotted based on degree values, with larger degree values indicating larger target area)

3. 蛋白质与蛋白质相互作用网络图(依据度值进行作图,度值越大,靶点的面积越大)

自由度大小排序:肿瘤坏死因子(24)、原癌基因酪氨酸–蛋白激酶Src (21)、缺氧诱导因子(21)、前列腺素合酶2 (21)、基质金属蛋白酶9 (17)、丝氨酸/苏氨酸蛋白激酶(17)、血管内皮生长因子(16)、丝裂原活化蛋白激酶1 (16)、肝细胞生长因子受体(13)。

3.4. 富集分析结果

运用Metascape数据库进行GO和KEGG分析,并根据P-value < 0.01作为筛选条件,一共得到了597个BP条目,43个CC条目,44个MF条目,根据FDR值筛选前十进行分析,如图4所示。KEGG分析,共得到了91条通路,取前十进行分析,如图5所示。

3.5. 分子对接结果

活性成分与靶点的分子对接,见表1。在45对分子对接关系中,呈现了重要靶点和有效成分间对接后的结合能,其中结合能均小于等于−5 kJ/mol,揭示了靶点与成分间多为稳定。本研究选取了槲皮素、杨梅素、山奈酚、异槲皮素、金丝桃苷五个成分分别与TNF、HIF1A、PTGS2、MMP9、SRC、MTOR、KDR、MAPK1、MET九个基因相互结合的程度。

4. 讨论

生物信息学的兴起源于对生物信息进行全面概要分析的最新进展,为创新的治疗选择提供了潜力[22]。本研究旨在确定杜仲叶治疗癫痫疾病中的关键基因和成分,并使用生物信息学分析解释潜在机制。

本次研究共筛选出杜仲叶的核心成分5个、核心靶点9个,共涉及91条主要的通路以及684个生物过程。“疾病–靶点–成分–药物”网络显示杜仲叶的主要成分等有效成分槲皮素、杨梅素、山奈酚、

Figure 4. GO enrichment analysis

4. GO富集分析

Figure 5. KEGG pathway enrichment analysis bubble plot (x-axis represents FDR, y-axis represents Term, color P value, point size is represented by count)

5. KEGG通路富集分析气泡图(x轴代表FDR,y轴代表Term,颜色Pvalue,点大小用count表示)

Table 1. Molecular docking results

1. 分子对接结果

名称

TNF

SRC

HIF1A

PTGS2

MMP9

MTOR

KDR

MAPK1

MET

槲皮素

−7.1

−8.9

−7.2

−9

−8.4

−8.1

−8.7

−8.4

−8

杨梅素

−7

−8.4

−7.2

−8.1

−8.3

−8.3

−8.7

−8

−7.9

山奈酚

−6.8

−8.5

−7.3

−8.4

−8

−7.8

−8.7

−8.2

−7.5

异槲皮素

−7.2

−8.3

−7.6

−8.5

−8.6

−8.8

−9.1

−8.3

−9

金丝桃苷

−6.7

−8.1

−7.3

−8.3

−9.2

−9.2

−9.6

−8.6

−8.8

异槲皮素、金丝桃苷能协同作用于多个靶点。槲皮素是一种植物衍生的黄酮类化合物,具有多种药理活性。新出现的证据证明了槲皮素的抗癫痫作用[23]。研究表明,槲皮素具有抗炎、抗感染、神经保护等药理作用[24]。在之前的研究发现,槲皮素显示出对癫痫具有治疗作用,槲皮素主要通过改善氧化损伤和下调炎症反应[25] [26]。在红藻氨酸(KA) (10 mg/kg)诱导的模型中在BALB/c小鼠癫痫发作中,槲皮素治疗显著降低了KA诱导的癫痫发作活性,与KA治疗组相比,槲皮素治疗组癫痫发作评分降低。杨梅素在结构上类似于槲皮素,据报道,它与黄烷醇类黄酮类的其他成员具有许多相似的功能[27],具有多种生物活性,包括抗氧化[28]、防止神经系统疾病损伤[29]、抗癫痫[30]和抗炎作用[31]。山奈酚是一种多酚,广泛存在于水果、蔬菜和草药中。研究表明山奈酚具有抗炎作用[32]。异槲皮素具有抗氧化、抗炎的活性,被认为神经保护剂[33] [34]。金丝桃苷通过增强抗氧化剂水平和减少自噬作用来保护海马CA3区免受癫痫引起的神经元损害[35]

此外,我们分析了作用于机体的9个核心靶点,分别是TNF、SRC、MTOR、KDR、HIF1A、MET、MMP9、PTGS2、MAPK1。TNF是一种炎症因子,癫痫发作伴随着肿瘤坏死因子α(TNFα)的增加[36]。炎性因子过度表达可增加谷氨酸的释放,导致海马硬化,从而诱导癫痫。SRC家族激酶的失调会导致癫痫发生。SRC在癫痫中的激活可能由炎症反应引起,并参与癫痫的发生[37] [38]。MTOR信号的激活与癫痫状态下的炎症反应有关,当癫痫发作时,MTOR会上调,从而引发癫痫[39]。KDR也称VEGFR-2,在癫痫发作时VEGFR-2会被激活,血管生成通过血管内皮生长因子诱导的炎症与血脑屏障通透性增加相关,影响局部血管网络,从而触发神经炎症因子,并促进萎缩和癫痫发作的进展[40]。研究表明,HIF-1α会导致TNF-α上调,抑制HIF-1α显著减弱了这些脑区放大的TNF-α,在癫痫发生过程中,HIF-1α在这些特定脑区活性的增强通过TNF-α机制促进了神经元损伤[41]。Met的小分子抑制剂(Inh)能够阻止炎症信号转导,限制小胶质细胞聚集。Met的激活可能导致反应性表型的诱导,并导致炎症细胞因子的诱导[42]。MMP-9通过改变血脑屏障和细胞死亡,参与癫痫灶的形成、癫痫发作后炎症过程的激活[43]。PTGS2是一种重要的促炎介质,在炎症中会被强烈激活,促炎介质(TNF-α、PTGS2)水平的升高被认为是癫痫中涉及激活NF-kB影响神经炎症的中枢传播的细胞外扩散通路引起的[44]。MAPK1也称P38或ERK,ERK是一种炎症介质,在癫痫发作时,ERK上调导致癫痫发作[45]。用ERK抑制剂降低了癫痫发作引起的ERK和p38激活,并显着降低了初发癫痫发作对CA3神经元的保护作用[46]

综上所述,生物信息学可以用于杜仲叶治疗癫痫的作用机制和物质基础的分析。杜仲叶当中的多个化学成分主要影响了癫痫的炎症过程而发挥治疗癫痫的作用。

基金项目

国家自然科学基金项目(82060725)。

NOTES

*通讯作者。

参考文献

[1] Zhang, S., Li, H., Liu, Q., Li, X., Yang, W. and Zhou, Y. (2023) Eucommiae Folium and Active Compounds Protect against Mitochondrial Dysfunction-Calcium Overload in Epileptic Hippocampal Neurons through the Hypertrophic Cardiomyopathy Pathway. Neurochemical Research, 48, 2674-2686.
https://doi.org/10.1007/s11064-023-03937-5
[2] Pong, A.W., Xu, K.J. and Klein, P. (2023) Recent Advances in Pharmacotherapy for Epilepsy. Current Opinion in Neurology, 36, 77-85.
https://doi.org/10.1097/wco.0000000000001144
[3] 张孟周, 孙英富, 侯伟良, 等. 癫痫发作伴发急性心肌梗死死亡法医学鉴定1例[J]. 中国法医学杂志, 2023, 38(1): 95-96.
[4] 屈若为, 王召楠, 王石峰, 等. 基于真实头模型与多偶极子算法的癫痫致痫灶脑电溯源方法研究[J]. 生物医学工程学杂志, 2023, 40(2): 272-279.
[5] 蒋梦蝶, 王梦莹, 张俊梅, 等. 癫痫患者疾病恐惧感的研究进展[J]. 中华护理教育, 2023, 20(3): 377-380.
[6] Kanner, A.M. and Bicchi, M.M. (2022) Antiseizure Medications for Adults with Epilepsy. Journal of the American Medical Association, 327, 1269-1281.
https://doi.org/10.1001/jama.2022.3880
[7] 袁斯远, 刘金民. 基于数据挖掘研究现代中医治疗癫痫的辨证用药规律[J]. 中西医结合心脑血管病杂志, 2021, 19(23): 4044-4049.
[8] Yuan, X., Li, Z., Wang, X.T., et al. (2019) Roles and Mechanisms of Traditional Chinese Medicine and Its Active Ingredients in Treating Epilepsy. China Journal of Chinese Materia Medica, 44, 9-18.
[9] 张媛, 聂莉媛, 张青, 等. 中医药治疗癫痫的系统评价[J]. 中华中医药杂志, 2016, 31(12): 5266-5270.
[10] 孙宇丹, 刘毅. 癫痫中医辨证论治及针药治疗研究[J]. 中西医结合心脑血管病杂志, 2016, 14(17): 2007-2010.
[11] 陈汉江, 张喜莲, 刘璇, 等. 浅析调肝八法在儿童癫痫治疗中的应用[J]. 中华中医药杂志, 2014, 29(1): 155-158.
[12] 施茜馨, 马融, 张喜莲, 等. 基于脑肠轴理论探讨中医从肝脾论治癫痫研究进展[J]. 中华中医药杂志, 2019, 34(10): 4761-4764.
[13] 国家药典委员会. 中华人民共和国药典[M]. 北京: 中国医药科技出版社, 2020: 173.
[14] Yuan, T.Y., Fang, L.H., Lv, Y., et al. (2013) Advance in Study on Pharmacological Effect of Eucommiae Folium. China Journal of Chinese Materia Medica, 38, 781-785.
[15] Luo, D., Or, T.C.T., Yang, C.L.H. and Lau, A.S.Y. (2014) Anti-Inflammatory Activity of Iridoid and Catechol Derivatives from Eucommia ulmoides Oliver. ACS Chemical Neuroscience, 5, 855-866.
https://doi.org/10.1021/cn5001205
[16] Zhao, Y., Tan, D., Peng, B., Yang, L., Zhang, S., Shi, R., et al. (2022) Neuroendocrine-Immune Regulatory Network of Eucommia ulmoides Oliver. Molecules, 27, Article 3697.
https://doi.org/10.3390/molecules27123697
[17] Han, R., Yu, Y., Zhao, K., Wei, J., Hui, Y. and Gao, J. (2022) Lignans from Eucommia ulmoides Oliver Leaves Exhibit Neuroprotective Effects via Activation of the PI3K/Akt/GSK-3β/Nrf2 Signaling Pathways in H2O2-Treated PC-12 Cells. Phytomedicine, 101, Article 154124.
https://doi.org/10.1016/j.phymed.2022.154124
[18] Fu, H., Bai, X., Le, L., Tian, D., Gao, H., Qi, L., et al. (2019) Eucommia ulmoides Oliv. Leaf Extract Improves Erectile Dysfunction in Streptozotocin-Induced Diabetic Rats by Protecting Endothelial Function and Ameliorating Hypothalamic-Pituitary-Gonadal Axis Function. Evidence-Based Complementary and Alternative Medicine, 2019, 1-12.
https://doi.org/10.1155/2019/1782953
[19] He, X., Wang, J., Li, M., Hao, D., Yang, Y., Zhang, C., et al. (2014) Eucommia ulmoides Oliv.: Ethnopharmacology, Phytochemistry and Pharmacology of an Important Traditional Chinese Medicine. Journal of Ethnopharmacology, 151, 78-92.
https://doi.org/10.1016/j.jep.2013.11.023
[20] Han, R., Yuan, T., Yang, Z., Zhang, Q., Wang, W., Lin, L., et al. (2021) Ulmoidol, an Unusual Nortriterpenoid from Eucommia ulmoides Oliv. Leaves Prevents Neuroinflammation by Targeting the PU.1 Transcriptional Signaling Pathway. Bioorganic Chemistry, 116, Article 105345.
https://doi.org/10.1016/j.bioorg.2021.105345
[21] 邹傲霜, 刘建仁. 基于网络药理学联合生物信息学与WGCNA分析探讨半夏白术天麻汤治疗急性脑梗死的分子机制[J]. 特产研究, 2022, 44(6): 57-68+76.
[22] Djulbegovic, M.B. and Uversky, V.N. (2020) Expanding the Understanding of the Heterogeneous Nature of Melanoma with Bioinformatics and Disorder-Based Proteomics. International Journal of Biological Macromolecules, 150, 1281-1293.
https://doi.org/10.1016/j.ijbiomac.2019.10.139
[23] Khan, H., Ullah, H., Aschner, M., Cheang, W.S. and Akkol, E.K. (2019) Neuroprotective Effects of Quercetin in Alzheimer’s Disease. Biomolecules, 10, Article 59.
https://doi.org/10.3390/biom10010059
[24] Zhao, Q., Wei, J. and Zhang, H. (2018) Effects of Quercetin on the Pharmacokinetics of Losartan and Its Metabolite EXP3174 in Rats. Xenobiotica, 49, 563-568.
https://doi.org/10.1080/00498254.2018.1478168
[25] Wu, D., Zheng, Z., Fan, S., Wen, X., Han, X., Wang, S., et al. (2020) Ameliorating Effect of Quercetin on Epilepsy by Inhibition of Inflammation in Glial Cells. Experimental and Therapeutic Medicine, 20, 854-859.
https://doi.org/10.3892/etm.2020.8742
[26] Rishitha, N. and Muthuraman, A. (2018) Therapeutic Evaluation of Solid Lipid Nanoparticle of Quercetin in Pentylenetetrazole Induced Cognitive Impairment of Zebrafish. Life Sciences, 199, 80-87.
https://doi.org/10.1016/j.lfs.2018.03.010
[27] Jang, J., Lee, S.H., Jung, K., Yoo, H. and Park, G. (2020) Inhibitory Effects of Myricetin on Lipopolysaccharide-Induced Neuroinflammation. Brain Sciences, 10, Article 32.
https://doi.org/10.3390/brainsci10010032
[28] Hassan, S.M., Khalaf, M.M., Sadek, S.A. and Abo-Youssef, A.M. (2017) Protective Effects of Apigenin and Myricetin against Cisplatin-Induced Nephrotoxicity in Mice. Pharmaceutical Biology, 55, 766-774.
https://doi.org/10.1080/13880209.2016.1275704
[29] Ahmed, S., Khan, H., Aschner, M., Hasan, M.M. and Hassan, S.T.S. (2019) Therapeutic Potential of Naringin in Neurological Disorders. Food and Chemical Toxicology, 132, Article 110646.
https://doi.org/10.1016/j.fct.2019.110646
[30] Gupta, G., Siddiqui, M.A., Khan, M.M., Ajmal, M., Ahsan, R., Rahaman, M.A., et al. (2020) Current Pharmacological Trends on Myricetin. Drug Research, 70, 448-454.
https://doi.org/10.1055/a-1224-3625
[31] Hou, W., Hu, S., Su, Z., Wang, Q., Meng, G., Guo, T., et al. (2018) Myricetin Attenuates LPS-Induced Inflammation in RAW 264.7 Macrophages and Mouse Models. Future Medicinal Chemistry, 10, 2253-2264.
https://doi.org/10.4155/fmc-2018-0172
[32] Alam, W., Khan, H., Shah, M.A., Cauli, O. and Saso, L. (2020) Kaempferol as a Dietary Anti-Inflammatory Agent: Current Therapeutic Standing. Molecules, 25, Article 4073.
https://doi.org/10.3390/molecules25184073
[33] Mbikay, M. and Chrétien, M. (2022) Isoquercetin as an Anti-Covid-19 Medication: A Potential to Realize. Frontiers in Pharmacology, 13, Article 830205.
https://doi.org/10.3389/fphar.2022.830205
[34] Shi, Y., Chen, X., Liu, J., Fan, X., Jin, Y., Gu, J., et al. (2021) Isoquercetin Improves Inflammatory Response in Rats Following Ischemic Stroke. Frontiers in Neuroscience, 15, Article 555543.
https://doi.org/10.3389/fnins.2021.555543
[35] Cao, J., Tang, C., Gao, M., Rui, Y., Zhang, J., Wang, L., et al. (2020) Hyperoside Alleviates Epilepsy-Induced Neuronal Damage by Enhancing Antioxidant Levels and Reducing Autophagy. Journal of Ethnopharmacology, 257, Article 112884.
https://doi.org/10.1016/j.jep.2020.112884
[36] Nikolic, L., Shen, W., Nobili, P., Virenque, A., Ulmann, L. and Audinat, E. (2018) Blocking TNFα-Driven Astrocyte Purinergic Signaling Restores Normal Synaptic Activity during Epileptogenesis. Glia, 66, 2673-2683.
https://doi.org/10.1002/glia.23519
[37] Kitaura, J., Kawakami, Y., Maeda-Yamamoto, M., Horejsi, V. and Kawakami, T. (2007) Dysregulation of SRC Family Kinases in Mast Cells from Epilepsy-Resistant ASK versus Epilepsy-Prone EL Mice. The Journal of Immunology, 178, 455-462.
https://doi.org/10.4049/jimmunol.178.1.455
[38] Sharma, S., Carlson, S., Puttachary, S., Sarkar, S., Showman, L., Putra, M., et al. (2018) Role of the Fyn-Pkcδ Signaling in Se-Induced Neuroinflammation and Epileptogenesis in Experimental Models of Temporal Lobe Epilepsy. Neurobiology of Disease, 110, 102-121.
https://doi.org/10.1016/j.nbd.2017.11.008
[39] Holley, A.J., Hodges, S.L., Nolan, S.O., Binder, M., Okoh, J.T., Ackerman, K., et al. (2018) A Single Seizure Selectively Impairs Hippocampal-Dependent Memory and Is Associated with Alterations in PI3K/Akt/mTOR and FMRP Signaling. Epilepsia Open, 3, 511-523.
https://doi.org/10.1002/epi4.12273
[40] Williams, S., Hossain, M., Mishra, S., Gonzalez-Martinez, J., Najm, I. and Ghosh, C. (2018) Expression and Functional Relevance of Death-Associated Protein Kinase in Human Drug-Resistant Epileptic Brain: Focusing on the Neurovascular Interface. Molecular Neurobiology, 56, 4904-4915.
https://doi.org/10.1007/s12035-018-1415-z
[41] Yang, J., He, F., Meng, Q., Sun, Y., Wang, W. and Wang, C. (2016) Inhibiting Hif-1α Decreases Expression of TNF-α and Caspase-3 in Specific Brain Regions Exposed Kainic Acid-Induced Status Epilepticus. Cellular Physiology and Biochemistry, 38, 75-82.
https://doi.org/10.1159/000438610
[42] Rehman, R., Miller, M., Krishnamurthy, S.S., Kjell, J., Elsayed, L., Hauck, S.M., et al. (2022) Met/HGFR Triggers Detrimental Reactive Microglia in TBI. Cell Reports, 41, Article 111867.
https://doi.org/10.1016/j.celrep.2022.111867
[43] Bronisz, E. and Kurkowska-Jastrzębska, I. (2016) Matrix Metalloproteinase 9 in Epilepsy: The Role of Neuroinflammation in Seizure Development. Mediators of Inflammation, 2016, 1-14.
https://doi.org/10.1155/2016/7369020
[44] Cho, Y., Kim, H., Kim, W., Chung, S., Kim, Y., Cho, I., et al. (2017) Trafficking Patterns of NMDA and GABA a Receptors in a Mg2+-Free Cultured Hippocampal Neuron Model of Status Epilepticus. Epilepsy Research, 136, 143-148.
https://doi.org/10.1016/j.eplepsyres.2017.08.003
[45] Patel, R.K., Prasad, N., Kuwar, R., Haldar, D. and Abdul-Muneer, P.M. (2017) Transforming Growth Factor-Beta 1 Signaling Regulates Neuroinflammation and Apoptosis in Mild Traumatic Brain Injury. Brain, Behavior, and Immunity, 64, 244-258.
https://doi.org/10.1016/j.bbi.2017.04.012
[46] Jiang, W., Van Cleemput, J., Sheerin, A.H., Ji, S., Zhang, Y., Saucier, D.M., et al. (2005) Involvement of Extracellular Regulated Kinase and P38 Kinase in Hippocampal Seizure Tolerance. Journal of Neuroscience Research, 81, 581-588.
https://doi.org/10.1002/jnr.20566