[1]
|
Zhang, S., Li, H., Liu, Q., Li, X., Yang, W. and Zhou, Y. (2023) Eucommiae Folium and Active Compounds Protect against Mitochondrial Dysfunction-Calcium Overload in Epileptic Hippocampal Neurons through the Hypertrophic Cardiomyopathy Pathway. Neurochemical Research, 48, 2674-2686. https://doi.org/10.1007/s11064-023-03937-5
|
[2]
|
Pong, A.W., Xu, K.J. and Klein, P. (2023) Recent Advances in Pharmacotherapy for Epilepsy. Current Opinion in Neurology, 36, 77-85. https://doi.org/10.1097/wco.0000000000001144
|
[3]
|
张孟周, 孙英富, 侯伟良, 等. 癫痫发作伴发急性心肌梗死死亡法医学鉴定1例[J]. 中国法医学杂志, 2023, 38(1): 95-96.
|
[4]
|
屈若为, 王召楠, 王石峰, 等. 基于真实头模型与多偶极子算法的癫痫致痫灶脑电溯源方法研究[J]. 生物医学工程学杂志, 2023, 40(2): 272-279.
|
[5]
|
蒋梦蝶, 王梦莹, 张俊梅, 等. 癫痫患者疾病恐惧感的研究进展[J]. 中华护理教育, 2023, 20(3): 377-380.
|
[6]
|
Kanner, A.M. and Bicchi, M.M. (2022) Antiseizure Medications for Adults with Epilepsy. Journal of the American Medical Association, 327, 1269-1281. https://doi.org/10.1001/jama.2022.3880
|
[7]
|
袁斯远, 刘金民. 基于数据挖掘研究现代中医治疗癫痫的辨证用药规律[J]. 中西医结合心脑血管病杂志, 2021, 19(23): 4044-4049.
|
[8]
|
Yuan, X., Li, Z., Wang, X.T., et al. (2019) Roles and Mechanisms of Traditional Chinese Medicine and Its Active Ingredients in Treating Epilepsy. China Journal of Chinese Materia Medica, 44, 9-18.
|
[9]
|
张媛, 聂莉媛, 张青, 等. 中医药治疗癫痫的系统评价[J]. 中华中医药杂志, 2016, 31(12): 5266-5270.
|
[10]
|
孙宇丹, 刘毅. 癫痫中医辨证论治及针药治疗研究[J]. 中西医结合心脑血管病杂志, 2016, 14(17): 2007-2010.
|
[11]
|
陈汉江, 张喜莲, 刘璇, 等. 浅析调肝八法在儿童癫痫治疗中的应用[J]. 中华中医药杂志, 2014, 29(1): 155-158.
|
[12]
|
施茜馨, 马融, 张喜莲, 等. 基于脑肠轴理论探讨中医从肝脾论治癫痫研究进展[J]. 中华中医药杂志, 2019, 34(10): 4761-4764.
|
[13]
|
国家药典委员会. 中华人民共和国药典[M]. 北京: 中国医药科技出版社, 2020: 173.
|
[14]
|
Yuan, T.Y., Fang, L.H., Lv, Y., et al. (2013) Advance in Study on Pharmacological Effect of Eucommiae Folium. China Journal of Chinese Materia Medica, 38, 781-785.
|
[15]
|
Luo, D., Or, T.C.T., Yang, C.L.H. and Lau, A.S.Y. (2014) Anti-Inflammatory Activity of Iridoid and Catechol Derivatives from Eucommia ulmoides Oliver. ACS Chemical Neuroscience, 5, 855-866. https://doi.org/10.1021/cn5001205
|
[16]
|
Zhao, Y., Tan, D., Peng, B., Yang, L., Zhang, S., Shi, R., et al. (2022) Neuroendocrine-Immune Regulatory Network of Eucommia ulmoides Oliver. Molecules, 27, Article 3697. https://doi.org/10.3390/molecules27123697
|
[17]
|
Han, R., Yu, Y., Zhao, K., Wei, J., Hui, Y. and Gao, J. (2022) Lignans from Eucommia ulmoides Oliver Leaves Exhibit Neuroprotective Effects via Activation of the PI3K/Akt/GSK-3β/Nrf2 Signaling Pathways in H2O2-Treated PC-12 Cells. Phytomedicine, 101, Article 154124. https://doi.org/10.1016/j.phymed.2022.154124
|
[18]
|
Fu, H., Bai, X., Le, L., Tian, D., Gao, H., Qi, L., et al. (2019) Eucommia ulmoides Oliv. Leaf Extract Improves Erectile Dysfunction in Streptozotocin-Induced Diabetic Rats by Protecting Endothelial Function and Ameliorating Hypothalamic-Pituitary-Gonadal Axis Function. Evidence-Based Complementary and Alternative Medicine, 2019, 1-12. https://doi.org/10.1155/2019/1782953
|
[19]
|
He, X., Wang, J., Li, M., Hao, D., Yang, Y., Zhang, C., et al. (2014) Eucommia ulmoides Oliv.: Ethnopharmacology, Phytochemistry and Pharmacology of an Important Traditional Chinese Medicine. Journal of Ethnopharmacology, 151, 78-92. https://doi.org/10.1016/j.jep.2013.11.023
|
[20]
|
Han, R., Yuan, T., Yang, Z., Zhang, Q., Wang, W., Lin, L., et al. (2021) Ulmoidol, an Unusual Nortriterpenoid from Eucommia ulmoides Oliv. Leaves Prevents Neuroinflammation by Targeting the PU.1 Transcriptional Signaling Pathway. Bioorganic Chemistry, 116, Article 105345. https://doi.org/10.1016/j.bioorg.2021.105345
|
[21]
|
邹傲霜, 刘建仁. 基于网络药理学联合生物信息学与WGCNA分析探讨半夏白术天麻汤治疗急性脑梗死的分子机制[J]. 特产研究, 2022, 44(6): 57-68+76.
|
[22]
|
Djulbegovic, M.B. and Uversky, V.N. (2020) Expanding the Understanding of the Heterogeneous Nature of Melanoma with Bioinformatics and Disorder-Based Proteomics. International Journal of Biological Macromolecules, 150, 1281-1293. https://doi.org/10.1016/j.ijbiomac.2019.10.139
|
[23]
|
Khan, H., Ullah, H., Aschner, M., Cheang, W.S. and Akkol, E.K. (2019) Neuroprotective Effects of Quercetin in Alzheimer’s Disease. Biomolecules, 10, Article 59. https://doi.org/10.3390/biom10010059
|
[24]
|
Zhao, Q., Wei, J. and Zhang, H. (2018) Effects of Quercetin on the Pharmacokinetics of Losartan and Its Metabolite EXP3174 in Rats. Xenobiotica, 49, 563-568. https://doi.org/10.1080/00498254.2018.1478168
|
[25]
|
Wu, D., Zheng, Z., Fan, S., Wen, X., Han, X., Wang, S., et al. (2020) Ameliorating Effect of Quercetin on Epilepsy by Inhibition of Inflammation in Glial Cells. Experimental and Therapeutic Medicine, 20, 854-859. https://doi.org/10.3892/etm.2020.8742
|
[26]
|
Rishitha, N. and Muthuraman, A. (2018) Therapeutic Evaluation of Solid Lipid Nanoparticle of Quercetin in Pentylenetetrazole Induced Cognitive Impairment of Zebrafish. Life Sciences, 199, 80-87. https://doi.org/10.1016/j.lfs.2018.03.010
|
[27]
|
Jang, J., Lee, S.H., Jung, K., Yoo, H. and Park, G. (2020) Inhibitory Effects of Myricetin on Lipopolysaccharide-Induced Neuroinflammation. Brain Sciences, 10, Article 32. https://doi.org/10.3390/brainsci10010032
|
[28]
|
Hassan, S.M., Khalaf, M.M., Sadek, S.A. and Abo-Youssef, A.M. (2017) Protective Effects of Apigenin and Myricetin against Cisplatin-Induced Nephrotoxicity in Mice. Pharmaceutical Biology, 55, 766-774. https://doi.org/10.1080/13880209.2016.1275704
|
[29]
|
Ahmed, S., Khan, H., Aschner, M., Hasan, M.M. and Hassan, S.T.S. (2019) Therapeutic Potential of Naringin in Neurological Disorders. Food and Chemical Toxicology, 132, Article 110646. https://doi.org/10.1016/j.fct.2019.110646
|
[30]
|
Gupta, G., Siddiqui, M.A., Khan, M.M., Ajmal, M., Ahsan, R., Rahaman, M.A., et al. (2020) Current Pharmacological Trends on Myricetin. Drug Research, 70, 448-454. https://doi.org/10.1055/a-1224-3625
|
[31]
|
Hou, W., Hu, S., Su, Z., Wang, Q., Meng, G., Guo, T., et al. (2018) Myricetin Attenuates LPS-Induced Inflammation in RAW 264.7 Macrophages and Mouse Models. Future Medicinal Chemistry, 10, 2253-2264. https://doi.org/10.4155/fmc-2018-0172
|
[32]
|
Alam, W., Khan, H., Shah, M.A., Cauli, O. and Saso, L. (2020) Kaempferol as a Dietary Anti-Inflammatory Agent: Current Therapeutic Standing. Molecules, 25, Article 4073. https://doi.org/10.3390/molecules25184073
|
[33]
|
Mbikay, M. and Chrétien, M. (2022) Isoquercetin as an Anti-Covid-19 Medication: A Potential to Realize. Frontiers in Pharmacology, 13, Article 830205. https://doi.org/10.3389/fphar.2022.830205
|
[34]
|
Shi, Y., Chen, X., Liu, J., Fan, X., Jin, Y., Gu, J., et al. (2021) Isoquercetin Improves Inflammatory Response in Rats Following Ischemic Stroke. Frontiers in Neuroscience, 15, Article 555543. https://doi.org/10.3389/fnins.2021.555543
|
[35]
|
Cao, J., Tang, C., Gao, M., Rui, Y., Zhang, J., Wang, L., et al. (2020) Hyperoside Alleviates Epilepsy-Induced Neuronal Damage by Enhancing Antioxidant Levels and Reducing Autophagy. Journal of Ethnopharmacology, 257, Article 112884. https://doi.org/10.1016/j.jep.2020.112884
|
[36]
|
Nikolic, L., Shen, W., Nobili, P., Virenque, A., Ulmann, L. and Audinat, E. (2018) Blocking TNFα-Driven Astrocyte Purinergic Signaling Restores Normal Synaptic Activity during Epileptogenesis. Glia, 66, 2673-2683. https://doi.org/10.1002/glia.23519
|
[37]
|
Kitaura, J., Kawakami, Y., Maeda-Yamamoto, M., Horejsi, V. and Kawakami, T. (2007) Dysregulation of SRC Family Kinases in Mast Cells from Epilepsy-Resistant ASK versus Epilepsy-Prone EL Mice. The Journal of Immunology, 178, 455-462. https://doi.org/10.4049/jimmunol.178.1.455
|
[38]
|
Sharma, S., Carlson, S., Puttachary, S., Sarkar, S., Showman, L., Putra, M., et al. (2018) Role of the Fyn-Pkcδ Signaling in Se-Induced Neuroinflammation and Epileptogenesis in Experimental Models of Temporal Lobe Epilepsy. Neurobiology of Disease, 110, 102-121. https://doi.org/10.1016/j.nbd.2017.11.008
|
[39]
|
Holley, A.J., Hodges, S.L., Nolan, S.O., Binder, M., Okoh, J.T., Ackerman, K., et al. (2018) A Single Seizure Selectively Impairs Hippocampal-Dependent Memory and Is Associated with Alterations in PI3K/Akt/mTOR and FMRP Signaling. Epilepsia Open, 3, 511-523. https://doi.org/10.1002/epi4.12273
|
[40]
|
Williams, S., Hossain, M., Mishra, S., Gonzalez-Martinez, J., Najm, I. and Ghosh, C. (2018) Expression and Functional Relevance of Death-Associated Protein Kinase in Human Drug-Resistant Epileptic Brain: Focusing on the Neurovascular Interface. Molecular Neurobiology, 56, 4904-4915. https://doi.org/10.1007/s12035-018-1415-z
|
[41]
|
Yang, J., He, F., Meng, Q., Sun, Y., Wang, W. and Wang, C. (2016) Inhibiting Hif-1α Decreases Expression of TNF-α and Caspase-3 in Specific Brain Regions Exposed Kainic Acid-Induced Status Epilepticus. Cellular Physiology and Biochemistry, 38, 75-82. https://doi.org/10.1159/000438610
|
[42]
|
Rehman, R., Miller, M., Krishnamurthy, S.S., Kjell, J., Elsayed, L., Hauck, S.M., et al. (2022) Met/HGFR Triggers Detrimental Reactive Microglia in TBI. Cell Reports, 41, Article 111867. https://doi.org/10.1016/j.celrep.2022.111867
|
[43]
|
Bronisz, E. and Kurkowska-Jastrzębska, I. (2016) Matrix Metalloproteinase 9 in Epilepsy: The Role of Neuroinflammation in Seizure Development. Mediators of Inflammation, 2016, 1-14. https://doi.org/10.1155/2016/7369020
|
[44]
|
Cho, Y., Kim, H., Kim, W., Chung, S., Kim, Y., Cho, I., et al. (2017) Trafficking Patterns of NMDA and GABA a Receptors in a Mg2+-Free Cultured Hippocampal Neuron Model of Status Epilepticus. Epilepsy Research, 136, 143-148. https://doi.org/10.1016/j.eplepsyres.2017.08.003
|
[45]
|
Patel, R.K., Prasad, N., Kuwar, R., Haldar, D. and Abdul-Muneer, P.M. (2017) Transforming Growth Factor-Beta 1 Signaling Regulates Neuroinflammation and Apoptosis in Mild Traumatic Brain Injury. Brain, Behavior, and Immunity, 64, 244-258. https://doi.org/10.1016/j.bbi.2017.04.012
|
[46]
|
Jiang, W., Van Cleemput, J., Sheerin, A.H., Ji, S., Zhang, Y., Saucier, D.M., et al. (2005) Involvement of Extracellular Regulated Kinase and P38 Kinase in Hippocampal Seizure Tolerance. Journal of Neuroscience Research, 81, 581-588. https://doi.org/10.1002/jnr.20566
|