磁约束作用对三电极ESP除尘性能的影响
Influence of Magnetic Confinement Effect on Dust-Removal Performance of Triple Electrodes ESP
摘要: 为了提高三电极静电除尘器(Electrostatic Precipitator, ESP)的除尘效率,本文在引入磁约束和建立多场耦合理论模型的基础上,采用FLUENT软件数值模拟磁约束作用下不同工作电压和烟气流速的PM2.5除尘效率,对比分析了不同磁场环境下三电极ESP对PM2.5的除尘效率。结果表明,随着磁场环境的增强,三电极ESP的除尘效率不断提高;引入磁约束作用后扩散荷电效应体现得相对较弱;磁约束作用在低工作电压和高烟气流速下对三电极ESP除尘性能的提升作用更大。研究结果可为新型线板式三电极ESP的性能提升和结构改造提供一定的参考价值。
Abstract: To improve the dust-removal efficiency of triple electrode electrostatic precipitator (ESP), based on the introduction of magnetic confinement effect and the establishment of multi-field coupling theoretical model, this paper uses FLUENT software to numerically simulate the dust-removal efficiency of PM2.5 under magnetic confinement effect with different working voltages and flue gas velocity. The results show that with the enhancement of the magnetic field environment, the dust-removal efficiency of the triple electrode ESP is continuously improved, and the diffusion charging effect is relatively weak after the introduction of magnetic confinement effect. The magnetic confinement effect has a greater effect on the dust-removal performance of triple electrode ESP at lower working voltage and higher flue gas velocity. The research results can provide some reference value for the performance improvement and structural modification of the new wire-plate triple electrode ESP.
文章引用:林海斌. 磁约束作用对三电极ESP除尘性能的影响[J]. 建模与仿真, 2025, 14(1): 240-250. https://doi.org/10.12677/mos.2025.141024

1. 引言

随着工业化和城市化的快速发展,全球空气污染问题日益严重,PM2.5空气污染对人类健康构成了重大威胁[1]-[3]。人类活动大多被认为是PM2.5污染的主要来源,包括工业生产[4]、汽车排放[5]和生物质燃烧[6]。静电除尘器(ESP)是控制含有PM2.5污染气体排放的主要设备之一[7]。在普通的静电除尘器中,粉尘颗粒受到静电场的作用会带有电荷,并且在空气中容易散开,造成部分粉尘无法被有效捕获[8]。因此,迫切需要对传统静电除尘的结构和性能进行分析和升级[9] [10]

电除尘器的除尘效率受到多个因素影响,包括电晕电压[11]、气流速度[12]以及颗粒物的属性[13]等。目前许多学者对于ESP除尘性能的研究主要集中在电极配置上。Shi等[14]开发了一个综合的数值模型对两种电除尘器的电场、流场和颗粒捕集特性的比较,并提出了一种带有辅助电极的优化ESP,用于改进高温颗粒捕获。He等[15]通过有限元法对静电除尘器中电晕放电、湍流、颗粒充电和跟踪的三维模型进行求解,同时也对不同电极间距下的电流密度和电势分布进行分析。Gao等[16]比较了不同配置的电晕电极和收集电极对颗粒运动及电荷的影响,观察到颗粒的电荷和运动轨迹对电极组合高度敏感。Song等[17]分析了电焊烟尘电除尘器中电晕极的电场强度、离子电荷密度分布以及收集效率,本文的侧重点主要放在偏转角和电极间距对电场分布和收集效率的影响。Lee等[18]测试发现针筒式静电除尘器采用新型级配方式,能够显著降低起晕电压并提高除尘效率,具有显著优势。Ekin等[19]通过模拟3D除尘器通道内的电场、空间电荷密度和流体流动来估计EHD的流动特性。Pan等[20]利用力学模型对细颗粒物的运动特性进行了模拟,得到了多场协同电除尘器内细颗粒的分布和空间电场特性。

在ESP中加入磁场可以使在磁场环境下产生的洛伦兹力直接作用于颗粒上,使得带电颗粒的运动方向偏转等变化。不少学者通过不同方法深入研究了磁场和磁性颗粒在环境治理中的应用。Du等[21]基于粒子群优化的BP算法对铬吸附过程进行建模的基础上,开发了一种在磁场作用下利用磁性纳米粒子去除废水中铬的简单而高效的方法。Lv等[22]深入研究磁种絮凝工艺,通过外加磁场加速了絮凝体的沉降过程,进而深入剖析了物质絮凝性能的动态变化及其内在互相作用的复杂机制。Suresh [23]通过Langevin动力学模型模拟并剖析体积分数与颗粒间复杂的流体动力学相互作用对颗粒凝聚速率的影响。Jia等[24]研究了预荷电纳米颗粒在均匀磁场中的团聚性能,发现磁场引入后,物料流速对团聚的影响最为显著,为后续的研究提供了重要依据。Chen等[25]分析了磁性纳米粒子负载及弱磁场作用下混凝–超滤饼层的重构与高效絮凝的影响,发现磁性种子加载有效增强了物质在饼层的聚集行为。有学者也研究了引入磁场ESP除尘技术。Zhang等[26]利用数值模拟方法研究了在磁场作用下线管式电除尘器在颗粒去除效率方面的性能,验证了磁场在提升电除尘器的捕集性能方面有积极作用。

综上所述,除尘器作为减少大气粉尘污染的关键设备,其除尘效率直接关系到环境质量的改善,对现有的研究现状来看,通过引入磁场的ESP除尘技术还比较少。鉴于此,本研究首先建立电场、流场和颗粒动力场等多场耦合模型,然后在ESP中添加辅助电极结构和外加磁场的基础上通过数值模拟方法研究了磁约束作用对颗粒扩散荷电的影响。同时,也研究了磁约束作用下三电极ESP在不同操作参数下的除尘效率。

2. 理论模型

2.1. 气体流场

在ESP内部,假设气体流动为粘性、稳态、且不可压缩的湍流。重构Navier-Stokes方程时,引入广义源项,综合了空气动力学拖曳力和电体积力[27],则动量和质量守恒方程可以表示为:

ρ g t + x i ( ρ g u i )=0 (1)

t ( ρ g u j )+ x i ( ρ g u j u i )= P x j + μ eff 2 u j x i 2 + S j (2)

式中, ρ g 是空气密度,kg∙m3P为气体平均静压,Pa; μ eff 为有效扩散系数; u i u j 为气体速度,m/s; S j 为广义源项;下注“i”和“j”分别代表xy方向。

2.2. 电磁场

在忽略磁效应的前提下,假设电晕放电过程保持稳定状态,那么三电极线板式静电除尘器内部的电场分布情况可以利用Poisson方程和电流连续性方程来描述[28]。如下公式所示:

( ε 0 E )=ρ (3)

Uρ= ρ 2 / ε 0 (4)

式中,E为荷电场强,V/m; ε 0 为真空介电常数,8.854 × 1012 F/m; U 为电势,V; ρ 为电荷密度,C/m3

除了电场,运动电荷的周围还存在磁场。研究中ESP内的磁场均匀稳定,无需通过麦克斯韦方程组的计算。当外加磁场作用于带电颗粒时,洛伦兹力将影响其运动,并纳入动力学控制方程中。

2.3. 颗粒动力场

忽略PM2.5颗粒的重力、Saff-man力、Basset力、附加质量力,压差力以及Magnus力等数量级较低的力,只需考虑电场力、洛伦兹力和拖曳力[29]

颗粒的动量方程在二维坐标下的形式可表示为:

m p d u j dt = Q P V P B+ Q P E+ 1 2 m p A p ρ g C D ( u g u p )| u g u p | (5)

式中, m p 为颗粒的质量,kg; V P 为粉尘颗粒作回旋运动速度的垂直于电场强度E的分量,m/s; Q p 为颗粒荷电量,C;B为施加磁感应强度,T; C D 是气流和尘粒间的阻力系数; A p 为颗粒的迎流面积,m2 u g u p 分别为烟气平均流速 u g ¯ 和尘粒平均速度 u p ¯ 的标量值,m/s。

2.4. 多场耦合分析

在磁约束下的三电极ESP内部包含了流场、电磁场和颗粒动力场。这三个场之间相互关联、相互耦合,形成了一个复杂的系统。电场不仅通过产生离子风来影响流场,还直接作用于颗粒的动力学行为。磁场则通过洛伦兹力对颗粒动力学产生影响。流场同样起着双重作用:离子对流调节电场,而空气动力学拖曳则影响颗粒的运动。此外,颗粒在空间中的移动会形成电荷分布,进而影响电场分布,同时颗粒与气流的相互作用也影响着流场的动态。这种多物理场相互作用使得三电极ESP内部的颗粒运动变得丰富而复杂。具体耦合关系见图1

Figure 1. Multi-field coupling diagram

1. 多场耦合示意图

3. 数值模型

3.1. 网格剖分及边界条件设置

本文利用GAMBIT对三电极ESP进行网格划分,如图2。在网格划分过程中,特别要关注电晕线附近电势变化较大的区域,为确保计算精度,对电晕线附近进行了精细的网格划分,以更好地捕捉电场变化。然而,由于辅助电极产生的电场为均匀电场,为了与实际电场特性相符,将辅助电极近似以直线的方式布置在网格模型中。这主要是考虑到辅助电极的电场强度在整个模型中变化较小,本文采用了一种更为简单且实用的网格布置方式,以降低计算复杂度并保持模型的准确性。这样的处理方式不仅提高了计算精度,也使得整个模型更具实际应用价值。

Figure 2. Mesh generation of three-electrode wire-plate ESP structure model

2. 三电极线板式ESP结构模型网格剖分

在处理尘粒离散相时,电晕线轴线通常被视为对称边界,因此不需要为离散相设置额外的边界条件。将边界条件设定为“捕集”模式,表明一旦粉尘颗粒触及尘极,它们将被捕集,不考虑颗粒弹跳或二次扬尘的可能性。这种设定有助于更精确地模拟颗粒的动态捕集过程,同时简化了模型中对二次扬尘效应的考量。具体的边界条件设置如表1所示。其中D是入口处当量直径, T i 是入口处湍流强度。

Table 1. Boundary conditions of wire-plate triple electrode ESP

1. 线板式三电极ESP边界条件

x-velocity

y-velocity

U

k

ε

Particle

Inlet

u= u 0

v=0

U=0

3 T i 2 u i 2 /2

0.05 k 1.5 D

Escape

Outlet

Pressure

Pressure

U=0

k/ x =0

ε/ x =0

Escape

Corona wire

No slip

No slip

U= U 0

Wall

function

Wall

function

Reflect

Auxiliary electrode

No slip

No slip

U=0

Wall

function

Wall

function

Reflect

Collection plate

No slip

No slip

U=0

Wall

function

Wall

function

Trap

3.2. 网格无关性验证

设定工作电压为50 kV、烟气流速为1 m/s,颗粒满足R-R分布,粒径范围为0.1~2.5 μm。由表2发现,当网格数为44,040时,除尘效率相对误差的绝对值大于1%,而当网格单元数达到51,520时,其相对误差的绝对值小于1%,此时,满足计算精度在1%内的最小网格数,网格数对除尘效率的影响可以忽略不计,所以我们在FLUENT中选择的网格单元数为51,520。

Table 2. Verification of grid independence of wire-plate electrostatic precipitator

2. 线板式静电除尘器网格无关性验证

Gird numbers

Classification efficiency (%)

Relative error (%)

Comprehensive efficiency (%)

Relative error (%)

39,360

84.92

83.10

44,040

83.67

−1.48

81.71

−1.67

51,520

83.30

−0.43

81.38

−0.40

Figure 3. Comparison of simulation results

3. 模拟结果的对比

3.3. 模拟可靠性验证

本文模拟了与文献[30]所研究相同条件下静电除尘器的除尘效率分级,将模拟结果与文献中数据及火电厂一般采用的Deutsch-Anderson公式进行了比对,这可以保证模拟结果与实际情况相符。设定参数为工作电压40 kV、入口含尘气流速度1 m/s、粒径范围1.6~15 μm,模拟结果如图3所示。分析可知,本实验的模拟结果与数据的误差更小,较Deutsch-Anderson公式的预测结果更加接近实际情况,说明本文的研究内容能够更加有效的模拟线板式三电极电除尘器的收集效率。

4. 结果与讨论

4.1. 磁约束作用对颗粒扩散荷电的影响

为了说明磁约束作用的引入对颗粒扩散荷电效应的影响,设定参数:工作电压35 kV,烟气流速为2.0 m/s,图4分别给出了有无磁约束作用下三电极ESP中是否考虑扩散荷电效应的分级除尘效率、平均分级除尘效率、扩散荷电效应贡献率及综合除尘效率。不难得出:

(1) 无论有无磁约束作用,三电极ESP的除尘效率都随着颗粒粒径的不断增大而非线性增大。

(2) 无论是否考虑扩散荷电效应的影响,随着磁约束作用的引入,三电极ESP的除尘效率显著提升,说明磁约束作用对除尘效率有明显效果。

(3) 考虑扩散荷电效应时,不论颗粒粒径大小,分级和综合除尘效率都有明显增大。

(4) 扩散荷电效应随颗粒粒径增大呈非线性下降的趋势,即小粒径颗粒除尘效率的提高幅度更大,磁场环境下扩散荷电效应对除尘效率的贡献相对较低,这是由于此时磁场对除尘效率有较大贡献的缘故。

(5) 根据图4(d)可知,磁约束作用下扩散荷电效应对三电极ESP综合除尘效率的提升幅度略高,但通过计算发现其对综合除尘效率的贡献率依然较低。

(a) 分级除尘效率 (b) 平均分级除尘效率

(c) 扩散荷电效应的贡献率 (d) 综合除尘效率

Figure 4. Diffusion charging effect with or without magnetic confinement

4. 有无磁约束作用下的扩散荷电效应

4.2. 工作电压对PM2.5除尘效率的影响

为了说明磁约束作用下工作电压对三电极ESP捕集性能的影响,设定烟气流速2.0 m/s,图5给出了不同磁场环境时三电极ESP在不同工作电压下的分级除尘效率,不难得知:

(1) 无论是否有磁约束作用和电压如何变化,三电极ESP分级除尘效率均随着颗粒粒径的不断增大而非线性变化,且增大的趋势逐渐趋于减缓。

(2) 随着电压的增大,相同粒径下分级效率的差异逐渐减小,与磁场强度无关,说明电压对分级效率的影响在高压下更为明显。

(3) 相同工作电压下,引入磁约束作用可以显著提高三电极ESP的分级除尘效率,且随着磁感应强度的增大,同一工作电压下的曲线变化幅度越来越小。

(a) 0.00 T (b) 0.50 T

(c) 1.00 T

Figure 5. Graded dust removal efficiency under different magnetic induction intensity and working voltage

5. 不同磁感应强度和工作电压下的分级除尘效率

图5数据为基础,图6给出了不同磁约束作用下三电极ESP综合除尘效率随工作电压的变化曲线,可以看出:

(1) 无论有无磁约束作用,随着工作电压的升高,ESP对颗粒的综合除尘效率不断上升,且上升幅度不断降低,说明通过提高一定工作电压对除尘效率产生的促进作用逐渐减弱;

(2) 同一工作电压下,引入磁约束作用可以提高三电极ESP的除尘效率,且随着磁约束作用的增强,颗粒的综合除尘效率不断升高;

(3) 随着工作电压的升高,磁场对除尘效率的提升幅度不断减小,说明磁约束作用在低工作电压下对三电极ESP捕集性能的提升效果更明显。

Figure 6. The change of comprehensive dust removal efficiency with working voltage under different magnetic induction intensity

6. 不同磁感应强度下综合除尘效率随工作电压的变化

4.3. 烟气流速对PM2.5除尘效率的影响

为了说明磁场环境下烟气流速对三电极ESP捕集性能的影响,设定工作电压为35 kV,图7给出了有无磁场环境时三电极ESP在不同烟气流速下的分级除尘效率,不难得出:

(1) 无论有无磁约束作用和烟气流速如何,三电极ESP分级效率随着颗粒粒径的不断增大而非线性增大,且同一磁场下曲线在低烟气流速下更快地趋于平缓;

(2) 同一烟气流速下,引入磁约束作用可以提高三电极ESP的分级除尘效率,且磁感应强度越大,分级除尘效率越高;

(3) 同一工作电压下细颗粒物的除尘效率随着烟气流速的增加而逐渐降低,说明在低烟气流速下分级除尘效率更高;

(4) 对比图7(a)图7(c)可知,在烟气流速为3.0 m/s时引入1.00 T的磁感应强度的分级除尘效率与无磁约束作用下烟气流速为2.5 m/s的分级除尘效率相当,说明磁约束作用的引入可以在保证三电极ESP除尘效率的同时提高其单位时间内处理的烟气量。

(a) 0.00 T (b) 0.50 T

(c) 1.00 T

Figure 7. Graded dust removal efficiency under different magnetic induction intensity and flue gas velocity

7. 不同磁感应强度和烟气流速下的分级除尘效率

为了进一步说明磁约束作用下烟气流速对三电极ESP捕集性能的影响,同样设定工作电压为35 kV,给出了不同磁感应强度下三电极ESP综合除尘效率随烟气流速的变化,如图8所示,可以发现:

(1) 无论有无磁约束作用,随着烟气流速的升高,三电极ESP的综合除尘效率不断降低,且降低幅度有减缓的趋势;

(2) 同一烟气流速下,相比于无磁场环境,磁约束作用下三电极ESP的综合除尘效率更高;

(3) 随着磁约束作用的增强,三电极ESP的综合除尘效率不断提高,且提高幅度随着烟气流速的升高不断增加,说明磁约束作用在高烟气流速下更明显。

Figure 8. The change of comprehensive dust removal efficiency with flue gas velocity under different magnetic induction intensity

8. 不同磁感应强度下综合除尘效率随烟气流速的变化

5. 结论

对于三电极ESP中引入磁约束作用,在不同工作电压和烟气流速下的除尘效率进行对比分析,得出如下结论:

(1) 考虑扩散荷电效应,三电极ESP对细颗粒物的除尘效率显著提高。而在磁约束条件下,扩散荷电效应的提升作用并不显著,表明磁约束对扩散荷电效具有潜在的抑制作用。

(2) 恒定工作电压下,烟气流速的增加会导致细颗粒物的除尘效率下降,表明气流动力学条件对ESP性能的显著影响。

(3) 三电极ESP的分级除尘效率随着工作电压的升高而增加,但逐渐趋于平缓,表明电压提升带来的效率增益以递减的速度增长,暗示了提高电压来优化ESP性能的能耗成本日益增加。此外,磁场的引入能够有效提升PM2.5颗粒物的除尘效率,特别是在工作电压适宜和烟气流速较低的情况下,磁约束作用对提高除尘效率具有显著贡献。

参考文献

[1] Hu, J., Zhou, R., Ding, R., Ye, D. and Su, Y. (2023) Effect of PM2.5 Air Pollution on the Global Burden of Lower Respiratory Infections, 1990-2019: A Systematic Analysis from the Global Burden of Disease Study 2019. Journal of Hazardous Materials, 459, Article ID: 132215.
https://doi.org/10.1016/j.jhazmat.2023.132215
[2] Wang, J., Yan, Y., Si, H., Li, J., Zhao, Y., Gao, T., et al. (2023) The Effect of Real-Ambient PM2.5 Exposure on the Lung and Gut Microbiomes and the Regulation of Nrf2. Ecotoxicology and Environmental Safety, 254, Article ID: 114702.
https://doi.org/10.1016/j.ecoenv.2023.114702
[3] Zhang, X., Ding, C. and Wang, G. (2024) An Autoregressive-Based Kalman Filter Approach for Daily PM2.5 Concentration Forecasting in Beijing, China. Big Data, 12, 19-29.
https://doi.org/10.1089/big.2022.0082
[4] Wang, J., Zhang, H., Liu, Y., Li, Z. and Liu, Z. (2024) Unexpected PM2.5-Related Emissions and Accompanying Environmental-Economic Inequalities Driven by “Clean” Tertiary Industry in China. Science of the Total Environment, 919, Article ID: 170823.
https://doi.org/10.1016/j.scitotenv.2024.170823
[5] Shakya, D., Deshpande, V., Goyal, M.K. and Agarwal, M. (2023) PM2.5 Air Pollution Prediction through Deep Learning Using Meteorological, Vehicular, and Emission Data: A Case Study of New Delhi, India. Journal of Cleaner Production, 427, Article ID: 139278.
https://doi.org/10.1016/j.jclepro.2023.139278
[6] Luo, Y., Wei, H. and Yang, K. (2024) The Impact of Biomass Burning Occurred in the Indo-China Peninsula on PM2.5 and Its Spatiotemporal Characteristics over Yunnan Province. Science of the Total Environment, 908, Article ID: 168185.
https://doi.org/10.1016/j.scitotenv.2023.168185
[7] Ning, Z., Hao, T., Zhang, Z., Huang, R., Wang, Z., Jiang, L., et al. (2021) Electrohydrodynamic Flow and Its Impact on Particle Trajectories Inside Wet Electrostatic Precipitator: Experimental and Numerical Analysis. Environmental Engineering Science, 38, 513-525.
https://doi.org/10.1089/ees.2020.0151
[8] Cid, N., Chapela, S., Gómez, M.Á. and Patiño, D. (2024) Growth Analysis of the Particle Layer in a Small-Scale ESP with Biomass Combustion. Journal of Electrostatics, 127, Article ID: 103881.
https://doi.org/10.1016/j.elstat.2023.103881
[9] Sayed, A.M., Ahmad, A.M., Ward, S.A., Shaalan, E.M., Darwish, M.M.F., Lehtonen, M., et al. (2024) A New Approach for Accurate Prediction of Optimal Ion Mobility in Dust Loaded Electrostatic Precipitator Using FDM-FMG. Electric Power Systems Research, 229, Article ID: 110200.
https://doi.org/10.1016/j.epsr.2024.110200
[10] Li, J., Duan, L., Chen, J., Li, D., Bao, S., Wang, Z., et al. (2023) Research of the Effect of Different Corrugated Dust Collection Plates on Particle Removal in Electrostatic Precipitators. Chemical Engineering Research and Design, 197, 323-333.
https://doi.org/10.1016/j.cherd.2023.07.006
[11] Wen, T. and Su, J. (2020) Corona Discharge Characteristics of Cylindrical Electrodes in a Two-Stage Electrostatic Precipitator. Heliyon, 6, e03334.
https://doi.org/10.1016/j.heliyon.2020.e03334
[12] Islamov, R.S. (2020) Analysis of the Dynamics of Dust Reentrainment with Simultaneous Electrostatic Deposition and without Any Deposition after a Jump of Airflow Velocity. Journal of Aerosol Science, 144, Article ID: 105533.
https://doi.org/10.1016/j.jaerosci.2020.105533
[13] Cornette, J.F.P., Dyakov, I.V., Plissart, P., Bram, S. and Blondeau, J. (2024) In-Situ Evaluation of a Commercial Electrostatic Precipitator Integrated in a Small-Scale Wood Chip Boiler. Journal of Electrostatics, 128, Article ID: 103897.
https://doi.org/10.1016/j.elstat.2024.103897
[14] Shi, Y., Fang, M., Wang, Q., Yan, K., Cen, J. and Luo, Z. (2023) Enhanced High-Temperature Particle Capture through an Electrostatic Precipitator with Assistant Electrodes. Separation and Purification Technology, 324, Article ID: 124550.
https://doi.org/10.1016/j.seppur.2023.124550
[15] He, Z. and Dass, E.T.M. (2018) Correlation of Design Parameters with Performance for Electrostatic Precipitator. Part I. 3D Model Development and Validation. Applied Mathematical Modelling, 57, 633-655.
https://doi.org/10.1016/j.apm.2017.05.042
[16] Gao, W., Wang, Y., Zhang, H., Guo, B., Zheng, C., Guo, J., et al. (2020) Numerical Simulation of Particle Migration in Electrostatic Precipitator with Different Electrode Configurations. Powder Technology, 361, 238-247.
https://doi.org/10.1016/j.powtec.2019.08.046
[17] Song, Y., Zhang, Y., Zhu, W., Liu, Y., Long, W. and Vafai, K. (2023) Study on the Influence of Electrodes on the Collection Efficiency during the Treatment of Welding Fume in Electrostatic Precipitators. Journal of Electrostatics, 123, Article ID: 103808.
https://doi.org/10.1016/j.elstat.2023.103808
[18] Lee, M., Kim, J., Biswas, P., Kim, S., Suh, Y.J., et al. (2016) Enhanced Collection Efficiency of Nanoparticles by Electrostatic Precipitator with Needle-Cylinder Configuration. Journal of Nanoscience and Nanotechnology, 16, 6884-6888.
https://doi.org/10.1166/jnn.2016.11322
[19] Ekin, O. and Adamiak, K. (2023) Electric Field and EHD Flow in Longitudinal Wire-to-Plate DC and DBD Electrostatic Precipitators: A Numerical Study. Journal of Electrostatics, 124, Article ID: 103826.
https://doi.org/10.1016/j.elstat.2023.103826
[20] Pan, X., Zhang, Z., Cui, L. and Ma, C. (2022) The Distribution and Movement Characteristics of Fine Particles in an Electrostatic Precipitator with Multi-Field Synergy. Powder Technology, 410, Article ID: 117893.
https://doi.org/10.1016/j.powtec.2022.117893
[21] Du, J., Shang, X., Shi, J. and Guan, Y. (2022) Removal of Chromium from Industrial Wastewater by Magnetic Flocculation Treatment: Experimental Studies and PSO-BP Modelling. Journal of Water Process Engineering, 47, Article ID: 102822.
https://doi.org/10.1016/j.jwpe.2022.102822
[22] Lv, M., Li, D., Zhang, Z., Logan, B.E., Peter van der Hoek, J., Sun, M., et al. (2021) Magnetic Seeding Coagulation: Effect of Al Species and Magnetic Particles on Coagulation Efficiency, Residual Al, and Floc Properties. Chemosphere, 268, Article ID: 129363.
https://doi.org/10.1016/j.chemosphere.2020.129363
[23] Suresh, V., Liu, Z., Perry, Z. and Gopalakrishnan, R. (2022) Modeling Particle-Particle Binary Coagulation Rate Constants for Spherical Aerosol Particles at High Volume Fractions Using Langevin Dynamics Simulations. Journal of Aerosol Science, 164, Article ID: 106001.
https://doi.org/10.1016/j.jaerosci.2022.106001
[24] Jia, Y., Yang, Z., Bu, S. and Xu, W. (2024) Experimental Investigation on the Agglomeration Performance of Pre-Charged Micro-Nano Particles in Uniform Magnetic Field. Chemical Engineering Research and Design, 201, 523-533.
https://doi.org/10.1016/j.cherd.2023.12.009
[25] Chen, Y. and Nan, J. (2024) Magnetic Nanoparticle Loading and Application of Weak Magnetic Field to Reconstruct the Cake Layer of Coagulation-Ultrafiltration Process to Achieve Efficient Antifouling: Performance and Mechanism Analysis. Water Research, 254, Article ID: 121435.
https://doi.org/10.1016/j.watres.2024.121435
[26] Zhang, J., Gong, Z., Wu, J., Wu, H. and Pan, W. (2018) An Improved Modeling for Prediction of PM2.5 Collection Efficiency in Electrostatic Precipitators. Environmental Engineering and Management Journal, 17, 631-640.
https://doi.org/10.30638/eemj.2018.064
[27] Zhang, J., Chen, D. and Zha, Z. (2020) Theoretical and Experimental Study of Trapping PM2.5 Particles via Magnetic Confinement Effect in a Multi-Electric Field Esp. Powder Technology, 368, 70-79.
https://doi.org/10.1016/j.powtec.2020.04.025
[28] Arif, S., Branken, D.J., Everson, R.C., Neomagus, H.W.J.P. and Arif, A. (2018) The Influence of Design Parameters on the Occurrence of Shielding in Multi-Electrode Esps and Its Effect on Performance. Journal of Electrostatics, 93, 17-30.
https://doi.org/10.1016/j.elstat.2018.03.001
[29] Moayedi, H., Amanifard, N., Deylami, H.M. and Dolati, F. (2017) Numerical Investigation of Using Micropolar Fluid Model for EHD Flow through a Smooth Channel. Journal of Electrostatics, 87, 51-63.
https://doi.org/10.1016/j.elstat.2017.03.006
[30] 郝文阁, 裴莹莹, 侯亚平, 等. ESP电场粉尘非稳态收集过程数值仿真[J]. 东北大学学报(自然科学版), 2008, 29(8): 1179-1182.