[1]
|
王璐, 林清, 陆春花, 等. EGFR在三阴性乳腺癌中的表达及放疗后表达变化的意义[J]. 医学研究杂志, 2017, 46(3): 120-123.
|
[2]
|
Wolff, A.C., Hammond, M.E.H., Hicks, D.G., Dowsett, M., McShane, L.M., Allison, K.H., et al. (2013) Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/college of American Pathologists Clinical Practice Guideline Update. Journal of Clinical Oncology, 31, 3997-4013. https://doi.org/10.1200/jco.2013.50.9984
|
[3]
|
Morris, G.J., Naidu, S., Topham, A.K., Guiles, F., Xu, Y., McCue, P., et al. (2007) Differences in Breast Carcinoma Characteristics in Newly Diagnosed African-American and Caucasian Patients. Cancer, 110, 876-884. https://doi.org/10.1002/cncr.22836
|
[4]
|
Lin, N.U., Claus, E., Sohl, J., Razzak, A.R., Arnaout, A. and Winer, E.P. (2008) Sites of Distant Recurrence and Clinical Outcomes in Patients with Metastatic Triple-Negative Breast Cancer. Cancer, 113, 2638-2645. https://doi.org/10.1002/cncr.23930
|
[5]
|
Steward, L., Conant, L., Gao, F., et al. (2014) Predictive Factors and Patterns of Recurrence in Patients with Triple Negative Breast Cancer. Annals of Surgical Oncology, 21, 2165-2171. https://doi.org/10.1245/s10434-014-3546-4
|
[6]
|
赵雪春, 黄海波. 卵巢癌的免疫学病因研究进展[J]. 中国免疫学杂志, 2014, 30(6): 862-865.
|
[7]
|
Salemme, V., Centonze, G., Cavallo, F., Defilippi, P. and Conti, L. (2021) The Crosstalk between Tumor Cells and the Immune Microenvironment in Breast Cancer: Implications for Immunotherapy. Frontiers in Oncology, 11, Article 610303. https://doi.org/10.3389/fonc.2021.610303
|
[8]
|
Kotsifaki, A., Alevizopoulos, N., Dimopoulou, V. and Armakolas, A. (2023) Unveiling the Immune Microenvironment’s Role in Breast Cancer: A Glimpse into Promising Frontiers. International Journal of Molecular Sciences, 24, Article 15332. https://doi.org/10.3390/ijms242015332
|
[9]
|
Oliver, A.J., Davey, A.S., Keam, S.P., Mardiana, S., Chan, J.D., von Scheidt, B., et al. (2019) Tissue-Specific Tumor Microenvironments Influence Responses to Immunotherapies. Clinical & Translational Immunology, 8, e1094. https://doi.org/10.1002/cti2.1094
|
[10]
|
Stanton, S.E., Adams, S. and Disis, M.L. (2016) Variation in the Incidence and Magnitude of Tumor-Infiltrating Lymphocytes in Breast Cancer Subtypes. JAMA Oncology, 2, 1354-1360. https://doi.org/10.1001/jamaoncol.2016.1061
|
[11]
|
Han, E., Choi, H.Y., Kwon, H.J., et al. (2024) Characterization of Tumor-Infiltrating Lymphocytes and Their Spatial Distribution in Triple-Negative Breast Cancer. Breast Cancer Research: BCR, 26, 180. https://doi.org/10.1186/s13058-024-01932-4
|
[12]
|
Valenza, C., Salimbeni, B.T., Santoro, C., et al. (2024) Tumor Infiltrating Lymphocytes across Breast Cancer Subtypes: Current Issues for Biomarker Assessment. https://pubmed.ncbi.nlm.nih.gov/36765724/
|
[13]
|
Loi, S., Sirtaine, N., Piette, F., Salgado, R., Viale, G., Van Eenoo, F., et al. (2013) Prognostic and Predictive Value of Tumor-Infiltrating Lymphocytes in a Phase III Randomized Adjuvant Breast Cancer Trial in Node-Positive Breast Cancer Comparing the Addition of Docetaxel to Doxorubicin with Doxorubicin-Based Chemotherapy: BIG 02-98. Journal of Clinical Oncology, 31, 860-867. https://doi.org/10.1200/jco.2011.41.0902
|
[14]
|
Lin, B., Du, L., Li, H., Zhu, X., Cui, L. and Li, X. (2020) Tumor-Infiltrating Lymphocytes: Warriors Fight against Tumors Powerfully. Biomedicine & Pharmacotherapy, 132, Article 110873. https://doi.org/10.1016/j.biopha.2020.110873
|
[15]
|
McRitchie, B.R. and Akkaya, B. (2022) Exhaust the Exhausters: Targeting Regulatory T Cells in the Tumor Microenvironment. Frontiers in Immunology, 13, Article 940052. https://doi.org/10.3389/fimmu.2022.940052
|
[16]
|
Denkert, C., von Minckwitz, G., Darb-Esfahani, S., Lederer, B., Heppner, B.I., Weber, K.E., et al. (2018) Tumour-Infiltrating Lymphocytes and Prognosis in Different Subtypes of Breast Cancer: A Pooled Analysis of 3771 Patients Treated with Neoadjuvant Therapy. The Lancet Oncology, 19, 40-50. https://doi.org/10.1016/s1470-2045(17)30904-x
|
[17]
|
Simon, R.M., Paik, S. and Hayes, D.F. (2009) Use of Archived Specimens in Evaluation of Prognostic and Predictive Biomarkers. JNCI Journal of the National Cancer Institute, 101, 1446-1452. https://doi.org/10.1093/jnci/djp335
|
[18]
|
刘泽涵, 刘双晴, 武雪亮, 等. 胆管癌免疫微环境特征与免疫治疗: 机制、挑战与前景[J]. 中国比较医学杂志, 2024, 34(7): 168-174.
|
[19]
|
Geissmann, F., Manz, M.G., Jung, S., Sieweke, M.H., Merad, M. and Ley, K. (2010) Development of Monocytes, Macrophages, and Dendritic Cells. Science, 327, 656-661. https://doi.org/10.1126/science.1178331
|
[20]
|
Boutilier, A.J. and Elsawa, S.F. (2021) Macrophage Polarization States in the Tumor Microenvironment. International Journal of Molecular Sciences, 22, Article 6995. https://doi.org/10.3390/ijms22136995
|
[21]
|
Genard, G., Lucas, S. and Michiels, C. (2017) Reprogramming of Tumor-Associated Macrophages with Anticancer Therapies: Radiotherapy versus Chemo and Immunotherapies. Frontiers in Immunology, 8, Article 828. https://doi.org/10.3389/fimmu.2017.00828
|
[22]
|
König, L., Mairinger, F.D., Hoffmann, O., Bittner, A., Schmid, K.W., Kimmig, R., et al. (2019) Dissimilar Patterns of Tumor-Infiltrating Immune Cells at the Invasive Tumor Front and Tumor Center Are Associated with Response to Neoadjuvant Chemotherapy in Primary Breast Cancer. BMC Cancer, 19, Article No. 120. https://doi.org/10.1186/s12885-019-5320-2
|
[23]
|
Allavena, P., Sica, A., Solinas, G., Porta, C. and Mantovani, A. (2008) The Inflammatory Micro-Environment in Tumor Progression: The Role of Tumor-Associated Macrophages. Critical Reviews in Oncology/Hematology, 66, 1-9. https://doi.org/10.1016/j.critrevonc.2007.07.004
|
[24]
|
Nandi, B., Shapiro, M., Samur, M.K., Pai, C., Frank, N.Y., Yoon, C., et al. (2016) Stromal CCR6 Drives Tumor Growth in a Murine Transplantable Colon Cancer through Recruitment of Tumor-Promoting Macrophages. OncoImmunology, 5, e1189052. https://doi.org/10.1080/2162402x.2016.1189052
|
[25]
|
Su, S., Liu, Q., Chen, J., Chen, J., Chen, F., He, C., et al. (2014) A Positive Feedback Loop between Mesenchymal-Like Cancer Cells and Macrophages Is Essential to Breast Cancer Metastasis. Cancer Cell, 25, 605-620. https://doi.org/10.1016/j.ccr.2014.03.021
|
[26]
|
O'Sullivan, C., Lewis, C.E., McGee, J.O. and Harris, A.L. (1993) Secretion of Epidermal Growth Factor by Macrophages Associated with Breast Carcinoma. The Lancet, 342, 148-149. https://doi.org/10.1016/0140-6736(93)91348-p
|
[27]
|
Mason, S.D. and Joyce, J.A. (2011) Proteolytic Networks in Cancer. Trends in Cell Biology, 21, 228-237. https://doi.org/10.1016/j.tcb.2010.12.002
|
[28]
|
Zabuawala, T., Taffany, D.A., Sharma, S.M., Merchant, A., Adair, B., Srinivasan, R., et al. (2010) An Ets2-Driven Transcriptional Program in Tumor-Associated Macrophages Promotes Tumor Metastasis. Cancer Research, 70, 1323-1333. https://doi.org/10.1158/0008-5472.can-09-1474
|
[29]
|
Chen, Y., Song, Y., Du, W., Gong, L., Chang, H. and Zou, Z. (2019) Tumor-Associated Macrophages: An Accomplice in Solid Tumor Progression. Journal of Biomedical Science, 26, Article No. 78. https://doi.org/10.1186/s12929-019-0568-z
|
[30]
|
Kryczek, I., Zou, L., Rodriguez, P., Zhu, G., Wei, S., Mottram, P., et al. (2006) B7-H4 Expression Identifies a Novel Suppressive Macrophage Population in Human Ovarian Carcinoma. The Journal of Experimental Medicine, 203, 871-881. https://doi.org/10.1084/jem.20050930
|
[31]
|
Chen, L. and Flies, D.B. (2013) Molecular Mechanisms of T Cell Co-Stimulation and Co-Inhibition. Nature Reviews Immunology, 13, 227-242. https://doi.org/10.1038/nri3405
|
[32]
|
Habanjar, O., Bingula, R., Decombat, C., Diab-Assaf, M., Caldefie-Chezet, F. and Delort, L. (2023) Crosstalk of Inflammatory Cytokines within the Breast Tumor Microenvironment. International Journal of Molecular Sciences, 24, Article 4002. https://doi.org/10.3390/ijms24044002
|
[33]
|
Meng, J., Yang, Y., Lv, J., Lv, H., Zhao, X., Zhang, L., et al. (2024) CXCR6 Expression Correlates with Radiotherapy Response and Immune Context in Triple-Negative Breast Cancer (Experimental Studies). International Journal of Surgery, 110, 4695-4707. https://doi.org/10.1097/js9.0000000000001546
|
[34]
|
Liu, H., Yang, Z., Lu, W., Chen, Z., Chen, L., Han, S., et al. (2020) Chemokines and Chemokine Receptors: A New Strategy for Breast Cancer Therapy. Cancer Medicine, 9, 3786-3799. https://doi.org/10.1002/cam4.3014
|
[35]
|
Kim, B., Malek, E., Choi, S.H., Ignatz-Hoover, J.J. and Driscoll, J.J. (2021) Novel Therapies Emerging in Oncology to Target the TGF-Β Pathway. Journal of Hematology & Oncology, 14, Article No. 55. https://doi.org/10.1186/s13045-021-01053-x
|
[36]
|
Seoane, J. and Gomis, R.R. (2017) TGF-β Family Signaling in Tumor Suppression and Cancer Progression. Cold Spring Harbor Perspectives in Biology, 9, a022277. https://doi.org/10.1101/cshperspect.a022277
|
[37]
|
Derynck, R., Turley, S.J. and Akhurst, R.J. (2020) TGFβ Biology in Cancer Progression and Immunotherapy. Nature Reviews Clinical Oncology, 18, 9-34. https://doi.org/10.1038/s41571-020-0403-1
|
[38]
|
Tzang, B., Chen, V.C., Hsieh, C., Wang, W., Weng, Y., Ho, H., et al. (2020) Differential Associations of Proinflammatory and Anti-Inflammatory Cytokines with Depression Severity from Noncancer Status to Breast Cancer Course and Subsequent Chemotherapy. BMC Cancer, 20, Article No. 686. https://doi.org/10.1186/s12885-020-07181-w
|
[39]
|
Qin, S., Xu, L., Yi, M., Yu, S., Wu, K. and Luo, S. (2019) Novel Immune Checkpoint Targets: Moving Beyond PD-1 and CTLA-4. Molecular Cancer, 18, Article No. 155. https://doi.org/10.1186/s12943-019-1091-2
|
[40]
|
Ren, Y., Song, J., Li, X. and Luo, N. (2022) Rationale and Clinical Research Progress on Pd-1/Pd-L1-Based Immunotherapy for Metastatic Triple-Negative Breast Cancer. International Journal of Molecular Sciences, 23, Article 8878. https://doi.org/10.3390/ijms23168878
|
[41]
|
Kwa, M.J. and Adams, S. (2018) Checkpoint Inhibitors in Triple-Negative Breast Cancer (TNBC): Where to Go from Here. Cancer, 124, 2086-2103. https://doi.org/10.1002/cncr.31272
|
[42]
|
Gonzalez-Ericsson, P.I., Stovgaard, E.S., Sua, L.F., Reisenbichler, E., Kos, Z., Carter, J.M., et al. (2020) The Path to a Better Biomarker: Application of a Risk Management Framework for the Implementation of PD-L1 and Tils as Immuno-Oncology Biomarkers in Breast Cancer Clinical Trials and Daily Practice. The Journal of Pathology, 250, 667-684. https://doi.org/10.1002/path.5406
|
[43]
|
Wimberly, H., Brown, J.R., Schalper, K., Haack, H., Silver, M.R., Nixon, C., et al. (2015) PD-L1 Expression Correlates with Tumor-Infiltrating Lymphocytes and Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancer Immunology Research, 3, 326-332. https://doi.org/10.1158/2326-6066.cir-14-0133
|
[44]
|
Xiao, B., Lin, G., Zhao, Y. and Wang, B. (2020) The Efficacy and Safety of PD-1/PD-L1 Inhibitors in Breast Cancer: A Systematic Review and Meta-Analysis. Translational Cancer Research, 9, 3804-3818. https://doi.org/10.21037/tcr-19-3020
|
[45]
|
Cortes, J., Cescon, D.W., Rugo, H.S., Nowecki, Z., Im, S., Yusof, M.M., et al. (2020) Pembrolizumab Plus Chemotherapy versus Placebo Plus Chemotherapy for Previously Untreated Locally Recurrent Inoperable or Metastatic Triple-Negative Breast Cancer (KEYNOTE-355): A Randomized, Placebo-Controlled, Double-Blind, Phase 3 Clinical Trial. The Lancet, 396, 1817-1828. https://doi.org/10.1016/s0140-6736(20)32531-9
|
[46]
|
Rudd, C.E., Taylor, A. and Schneider, H. (2009) CD28 and CTLA-4 Coreceptor Expression and Signal Transduction. Immunological Reviews, 229, 12-26. https://doi.org/10.1111/j.1600-065x.2009.00770.x
|
[47]
|
Rowshanravan, B., Halliday, N. and Sansom, D.M. (2018) CTLA-4: A Moving Target in Immunotherapy. Blood, 131, 58-67. https://doi.org/10.1182/blood-2017-06-741033
|
[48]
|
Peggs, K.S., Quezada, S.A., Chambers, C.A., Korman, A.J. and Allison, J.P. (2009) Blockade of CTLA-4 on Both Effector and Regulatory T Cell Compartments Contributes to the Antitumor Activity of Anti-CTLA-4 Antibodies. Journal of Experimental Medicine, 206, 1717-1725. https://doi.org/10.1084/jem.20082492
|
[49]
|
Ager, C.R., Obradovic, A., Mccann, P., et al. (2024) Neoadjuvant Androgen Deprivation Therapy with or without FC-Enhanced Non-Fucosylated Anti-CTLA-4 (BMS-986218) in High Risk Localized Prostate Cancer: A Randomized Phase 1 Trial. https://doi.org/10.1101/2024.09.09.24313308
|
[50]
|
Rozenblit, M., Huang, R., Danziger, N., Hegde, P., Alexander, B., Ramkissoon, S., et al. (2020) Comparison of PD-L1 Protein Expression between Primary Tumors and Metastatic Lesions in Triple Negative Breast Cancers. Journal for Immuno-Therapy of Cancer, 8, e001558. https://doi.org/10.1136/jitc-2020-001558
|
[51]
|
Tolaney, S.M., Kalinsky, K., Kaklamani, V.G., D’Adamo, D.R., Aktan, G., Tsai, M.L., et al. (2021) Eribulin Plus Pembrolizumab in Patients with Metastatic Triple-Negative Breast Cancer (ENHANCE 1): A Phase IB/II Study. Clinical Cancer Research, 27, 3061-3068. https://doi.org/10.1158/1078-0432.ccr-20-4726
|
[52]
|
Gandhi, M.K., Lambley, E., Duraiswamy, J., Dua, U., Smith, C., Elliott, S., et al. (2006) Expression of LAG-3 by Tumor-Infiltrating Lymphocytes Is Coincident with the Suppression of Latent Membrane Antigen-Specific CD8+ T-Cell Function in Hodgkin Lymphoma Patients. Blood, 108, 2280-2289. https://doi.org/10.1182/blood-2006-04-015164
|
[53]
|
Andrews, L.P., Butler, S.C., Cui, J., Cillo, A.R., Cardello, C., Liu, C., et al. (2024) LAG-3 and PD-1 Synergize on CD8+ T Cells to Drive T Cell Exhaustion and Hinder Autocrine IFN-Γ-Dependent Anti-Tumor Immunity. Cell, 187, 4355-4372.e22. https://doi.org/10.1016/j.cell.2024.07.016
|
[54]
|
Qin, S., Xu, L., Yi, M., Yu, S., Wu, K. and Luo, S. (2019) Novel Immune Checkpoint Targets: Moving beyond PD-1 and CTLA-4. Molecular Cancer, 18, Article No. 155. https://doi.org/10.1186/s12943-019-1091-2
|
[55]
|
Sordo-Bahamonde, C., Lorenzo-Herrero, S., González-Rodríguez, A.P., Payer, Á.R., González-García, E., López-Soto, A., et al. (2021) LAG-3 Blockade with Relatlimab (BMS-986016) Restores Anti-Leukemic Responses in Chronic Lymphocytic Leukemia. Cancers, 13, Article 2112. https://doi.org/10.3390/cancers13092112
|
[56]
|
Kraman, M., Faroudi, M., Allen, N.L., Kmiecik, K., Gliddon, D., Seal, C., et al. (2020) FS118, a Bispecific Antibody Targeting LAG-3 and PD-L1, Enhances T-Cell Activation Resulting in Potent Antitumor Activity. Clinical Cancer Research, 26, 3333-3344. https://doi.org/10.1158/1078-0432.ccr-19-3548
|
[57]
|
Kristeleit, R., Leary, A., Oaknin, A., Redondo, A., George, A., Chui, S., et al. (2024) PARP Inhibition with Rucaparib Alone Followed by Combination with Atezolizumab: Phase IB COUPLET Clinical Study in Advanced Gynaecological and Triple-Negative Breast Cancers. British Journal of Cancer, 131, 820-831. https://doi.org/10.1038/s41416-024-02776-7
|
[58]
|
Marin-Acevedo, J.A., Kimbrough, E.O. and Lou, Y. (2021) Next Generation of Immune Checkpoint Inhibitors and Beyond. Journal of Hematology & Oncology, 14, Article No. 45. https://doi.org/10.1186/s13045-021-01056-8
|
[59]
|
Sommaggio, R., Cappuzzello, E., Dalla Pietà, A., Tosi, A., Palmerini, P., Carpanese, D., et al. (2020) Adoptive Cell Therapy of Triple Negative Breast Cancer with Redirected Cytokine-Induced Killer Cells. Onco-Immunology, 9, Article 1777046. https://doi.org/10.1080/2162402x.2020.1777046
|
[60]
|
Nimmerjahn, F. and Ravetch, J.V. (2008) FCγ Receptors as Regulators of Immune Responses. Nature Reviews Immunology, 8, 34-47. https://doi.org/10.1038/nri2206
|
[61]
|
Schmidt, P., Raftery, M.J. and Pecher, G. (2020) Engineering NK Cells for CAR Therapy-Recent Advances in Gene Transfer Methodology. Frontiers in Immunology, 11, 611163. https://doi.org/10.3389/fimmu.2020.611163
|
[62]
|
贾宇, 陈彦, 刘建生. 肝癌的NK细胞免疫治疗研究[J]. 胃肠病学和肝病学杂志, 2021, 30(11): 1219-1223.
|
[63]
|
Untch, M., Konecny, G.E., Paepke, S. and von Minckwitz, G. (2014) Current and Future Role of Neoadjuvant Therapy for Breast Cancer. The Breast, 23, 526-537. https://doi.org/10.1016/j.breast.2014.06.004
|
[64]
|
Albu, D.I., Wolf, B.J., Qin, Y., Wang, X., Daniel Ulumben, A., Su, M., et al. (2024) A Bispecific Anti-Pd-1 and PD-L1 Antibody Induces PD-1 Cleavage and Provides Enhanced Anti-Tumor Activity. Onco-Immunology, 13, Article 2316945. https://doi.org/10.1080/2162402x.2024.2316945
|
[65]
|
Jabbour, E., Düll, J., Yilmaz, M., Khoury, J.D., Ravandi, F., Jain, N., et al. (2017) Outcome of Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia after Blinatumomab Failure: No Change in the Level of CD19 Expression. American Journal of Hematology, 93, 371-374. https://doi.org/10.1002/ajh.24987
|
[66]
|
Chames, P., Van Regenmortel, M., Weiss, E. and Baty, D. (2009) Therapeutic Antibodies: Successes, Limitations and Hopes for the Future. British Journal of Pharmacology, 157, 220-233. https://doi.org/10.1111/j.1476-5381.2009.00190.x
|
[67]
|
Heiss, M.M., Murawa, P., Koralewski, P., Kutarska, E., Kolesnik, O.O., Ivanchenko, V.V., et al. (2010) The Trifunctional Antibody Catumaxomab for the Treatment of Malignant Ascites Due to Epithelial Cancer: Results of a Prospective Randomized Phase II/III Trial. International Journal of Cancer, 127, 2209-2221. https://doi.org/10.1002/ijc.25423
|
[68]
|
Liu, Y., Zhou, Y., Huang, K., Li, Y., Fang, X., An, L., et al. (2019) EGFR-Specific CAR-T Cells Trigger Cell Lysis in EGFR-Positive TNBC. Aging, 11, 11054-11072. https://doi.org/10.18632/aging.102510
|
[69]
|
Cha, J., Chan, L., Wang, Y., Chu, Y., Wang, C., Lee, H., et al. (2022) Ephrin Receptor A10 Monoclonal Antibodies and the Derived Chimeric Antigen Receptor T Cells Exert an Antitumor Response in Mouse Models of Triple-Negative Breast Cancer. Journal of Biological Chemistry, 298, Article 101817. https://doi.org/10.1016/j.jbc.2022.101817
|
[70]
|
Song, W. and Zhang, M. (2020) Use of CAR-T Cell Therapy, PD-1 Blockade, and Their Combination for the Treatment of Hematological Malignancies. Clinical Immunology, 214, Article 108382. https://doi.org/10.1016/j.clim.2020.108382
|
[71]
|
Adusumilli, P.S., Zauderer, M.G., Rivière, I., Solomon, S.B., Rusch, V.W., O’Cearbhaill, R.E., et al. (2021) A Phase I Trial of Regional Mesothelin-Targeted CAR T-Cell Therapy in Patients with Malignant Pleural Disease, in Combination with the Anti-Pd-1 Agent Pembrolizumab. Cancer Discovery, 11, 2748-2763. https://doi.org/10.1158/2159-8290.cd-21-0407
|
[72]
|
Sang, W., Wang, X., Geng, H., Li, T., Li, D., Zhang, B., et al. (2022) Anti-Pd-1 Therapy Enhances the Efficacy of Cd30-Directed Chimeric Antigen Receptor T Cell Therapy in Patients with Relapsed/refractory CD30+ Lymphoma. Frontiers in Immunology, 13, Article 858021. https://doi.org/10.3389/fimmu.2022.858021
|
[73]
|
邵笛, 余天剑, 邵志敏. 三阴性乳腺癌精准治疗研究进展[J]. 中国普通外科杂志, 2023, 32(11): 1629-1638.
|
[74]
|
Igarashi, Y. and Sasada, T. (2020) Cancer Vaccines: Toward the Next Breakthrough in Cancer Immunotherapy. Journal of Immunology Research, 2020, 1-13. https://doi.org/10.1155/2020/5825401
|
[75]
|
Zhu, Y., Zhu, X., Tang, C., Guan, X. and Zhang, W. (2021) Progress and Challenges of Immunotherapy in Triple-Negative Breast Cancer. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1876, Article 188593. https://doi.org/10.1016/j.bbcan.2021.188593
|
[76]
|
Ge, Y., Xi, H., Ju, S. and Zhang, X. (2013) Blockade of Pd-1/Pd-L1 Immune Checkpoint during DC Vaccination Induces Potent Protective Immunity against Breast Cancer in Hu-SCID Mice. Cancer Letters, 336, 253-259. https://doi.org/10.1016/j.canlet.2013.03.010
|
[77]
|
Pruitt, S.K., Boczkowski, D., de Rosa, N., Haley, N.R., Morse, M.A., Tyler, D.S., et al. (2011) Enhancement of Anti-Tumor Immunity through Local Modulation of CTLA-4 and GITR by Dendritic Cells. European Journal of Immunology, 41, 3553-3563. https://doi.org/10.1002/eji.201141383
|
[78]
|
Cassetta, L. and Pollard, J.W. (2018) Targeting Macrophages: Therapeutic Approaches in Cancer. Nature Reviews Drug Discovery, 17, 887-904. https://doi.org/10.1038/nrd.2018.169
|
[79]
|
郭刚, 张帆, 杜青山, 等. 舒尼替尼在晚期肾细胞癌二线序贯治疗中的临床应用研究[J]. 临床泌尿外科杂志, 2014, 29(1): 61-64.
|
[80]
|
Chellappan, D.K., Chellian, J., Ng, Z.Y., Sim, Y.J., Theng, C.W., Ling, J., et al. (2017) The Role of Pazopanib on Tumour Angiogenesis and in the Management of Cancers: A Review. Biomedicine & Pharmacotherapy, 96, 768-781. https://doi.org/10.1016/j.biopha.2017.10.058
|
[81]
|
Shen, H., Peng, J., Wang, R., Wang, P., Zhang, J., Sun, H., et al. (2024) IL-12-Overexpressed Nanoparticles Suppress the Proliferation of Melanoma through Inducing ICD and Activating DC, CD8+ T, and CD4+ T Cells. International Journal of Nanomedicine, 19, 2755-2772. https://doi.org/10.2147/ijn.s442446
|
[82]
|
Frankish, J., Mukherjee, D., Romano, E., Billian-Frey, K., Schröder, M., Heinonen, K., et al. (2023) The CD40 Agonist HERA-CD40L Results in Enhanced Activation of Antigen Presenting Cells, Promoting an Anti-Tumor Effect Alone and in Combination with Radiotherapy. Frontiers in Immunology, 14, Article 1160116. https://doi.org/10.3389/fimmu.2023.1160116
|
[83]
|
Luheshi, N.M., Coates-Ulrichsen, J., Harper, J., Mullins, S., Sulikowski, M.G., Martin, P., et al. (2016) Transformation of the Tumour Microenvironment by a CD40 Agonist Antibody Correlates with Improved Responses to PD-L1 Blockade in a Mouse Orthotopic Pancreatic Tumour Model. Oncotarget, 7, 18508-18520. https://doi.org/10.18632/oncotarget.7610
|
[84]
|
Conlon, K.C., Miljkovic, M.D. and Waldmann, T.A. (2019) Cytokines in the Treatment of Cancer. Journal of Interferon & Cytokine Research, 39, 6-21. https://doi.org/10.1089/jir.2018.0019
|
[85]
|
Heo, T., Wahler, J. and Suh, N. (2016) Potential Therapeutic Implications of IL-6/IL-6R/gp130-Targeting Agents in Breast Cancer. Oncotarget, 7, 15460-15473. https://doi.org/10.18632/oncotarget.7102
|
[86]
|
Guney Eskiler, G. and Bilir, C. (2021) The Efficacy of Indoximod Upon Stimulation with Pro-Inflammatory Cytokines in Triple-Negative Breast Cancer Cells. Immunopharmacology and Immunotoxicology, 43, 554-561. https://doi.org/10.1080/08923973.2021.1953064
|
[87]
|
Zhou, F. (2009) Molecular Mechanisms of IFN-Gamma to Up-Regulate MHC Class I Antigen Processing and Presentation. International Reviews of Immunology, 28, 239-260. https://doi.org/10.1080/08830180902978120
|
[88]
|
Tarantino, P., Corti, C., Schmid, P., Cortes, J., Mittendorf, E.A., Rugo, H., et al. (2022) Immunotherapy for Early Triple Negative Breast Cancer: Research Agenda for the Next Decade. npj Breast Cancer, 8, Article No. 23. https://doi.org/10.1038/s41523-022-00386-1
|
[89]
|
Jiang, Z., Ouyang, Q., Sun, T., Zhang, Q., Teng, Y., Cui, J., et al. (2024) Toripalimab Plus Nab-Paclitaxel in Metastatic or Recurrent Triple-Negative Breast Cancer: A Randomized Phase 3 Trial. Nature Medicine, 30, 249-256. https://doi.org/10.1038/s41591-023-02677-x
|
[90]
|
Agostinetto, E., Losurdo, A., Nader-Marta, G., Santoro, A., Punie, K., Barroso, R., et al. (2022) Progress and Pitfalls in the Use of Immunotherapy for Patients with Triple Negative Breast Cancer. Expert Opinion on Investigational Drugs, 31, 567-591. https://doi.org/10.1080/13543784.2022.2049232
|