[1]
|
丰桂珍, 杨银, 江立文. 天然有机物引起的超滤膜污染研究进展[J]. 长江科学院院报, 2020, 37(3): 26-31, 36.
|
[2]
|
张静, 吴慧芳, 陈佳琪, 等. 预处理技术对超滤膜污染控制的研究现状[J]. 能源环境保护, 2022, 36(1): 18-22.
|
[3]
|
Li, K., Wen, G., Li, S., Chang, H., Shao, S., Huang, T., et al. (2019) Effect of Pre-Oxidation on Low Pressure Membrane (LPM) for Water and Wastewater Treatment: A Review. Chemosphere, 231, 287-300. https://doi.org/10.1016/j.chemosphere.2019.05.081
|
[4]
|
Ma, Y., Velioğlu, S., Tanis-Kanbur, M.B., Wang, R. and Chew, J.W. (2020) Mechanistic Understanding of the Adsorption of Natural Organic Matter by Heated Aluminum Oxide Particles (HAOPs) via Molecular Dynamics Simulation. Journal of Membrane Science, 598, Article ID: 117651. https://doi.org/10.1016/j.memsci.2019.117651
|
[5]
|
赵晨阳, 刘明华, 孟庆龙, 等. 超滤膜技术在饮用水处理中的应用现状及膜污染控制[J]. 给水排水, 2023, 59(S2): 389-396.
|
[6]
|
Jermann, D., Pronk, W., Kägi, R., Halbeisen, M. and Boller, M. (2008) Influence of Interactions between NOM and Particles on UF Fouling Mechanisms. Water Research, 42, 3870-3878. https://doi.org/10.1016/j.watres.2008.05.013
|
[7]
|
张大为, 徐慧, 王希, 等. 藻形态及混凝剂组成对混凝-超滤过程的影响[J]. 环境科学, 2017, 38(8): 3281-3289.
|
[8]
|
樊华, 方凡, 刘强, 等. 基于平行因子分析的藻菌共生膜污染机制研究[J].膜科学与技术, 2020, 40(4): 17-24.
|
[9]
|
Yuan, W. and Zydney, A.L. (2000) Humic Acid Fouling during Ultrafiltration. Environmental Science & Technology, 34, 5043-5050. https://doi.org/10.1021/es0012366
|
[10]
|
孙丽华, 俞天敏, 田海龙, 等. 典型有机物与超滤膜界面作用及膜污染机制研究[J]. 环境科学学报, 2016, 36(2): 530-536.
|
[11]
|
林涛, 沈斌, 陈卫. 有机物亲疏水特性对超滤膜污染的影响[J]. 华中科技大学学报(自然科学版), 2012, 40(10): 82-86.
|
[12]
|
Kennedy, M.D., Chun, H.K., Quintanilla Yangali, V.A., Heijman, B.G.J. and Schippers, J.C. (2005) Natural Organic Matter (NOM) Fouling of Ultrafiltration Membranes: Fractionation of NOM in Surface Water and Characterisation by LC-OCD. Desalination, 178, 73-83. https://doi.org/10.1016/j.desal.2005.02.004
|
[13]
|
杨海燕, 王灿, 赵焱, 等. 东江水膜污染物质的确定及污染机理研究[J]. 哈尔滨工业大学学报, 2017, 49(8): 8-14.
|
[14]
|
Zhang, Z., Wang, Y., Leslie, G.L. and Waite, T.D. (2015) Effect of Ferric and Ferrous Iron Addition on Phosphorus Removal and Fouling in Submerged Membrane Bioreactors. Water Research, 69, 210-222. https://doi.org/10.1016/j.watres.2014.11.011
|
[15]
|
王旭东, 张银辉, 王磊, 等. 基于膜特征参数变化的蛋白质超滤过程膜污染研究[J]. 环境科学, 2014, 35(11): 4176-4184.
|
[16]
|
牛璐瑶, 方月英, 官泽玉, 等. 高锰酸钾预氧化耦合混凝工艺对藻类及类蛋白物质的控制效果[J]. 净水技术, 2020, 39(4): 102-107.
|
[17]
|
Bu, F., Gao, B., Shen, X., Wang, W. and Yue, Q. (2019) The Combination of Coagulation and Ozonation as a Pre-Treatment of Ultrafiltration in Water Treatment. Chemosphere, 231, 349-356. https://doi.org/10.1016/j.chemosphere.2019.05.154
|
[18]
|
瞿芳术, 杨枝盟, 周鸿, 等. 高锰酸钾预氧化对高藻水超滤过程中膜污染及锰沉积的影响[J]. 膜科学与技术, 2020, 40(6): 29-36.
|
[19]
|
王鹏, 李杰, 张莉红, 等. 西北农村微污染水的氧化处理研究[J]. 应用化工, 2021, 50(12): 3249-3254.
|
[20]
|
孙子为, 高乃云, 王奕岚, 等. 预氯化与高锰酸钾预氧化处理长江芜湖段水源水[J]. 中国给水排水, 2015, 31(21): 118-123.
|
[21]
|
Cheng, X., Liang, H., Ding, A., Qu, F., Shao, S., Liu, B., et al. (2016) Effects of Pre-Ozonation on the Ultrafiltration of Different Natural Organic Matter (NOM) Fractions: Membrane Fouling Mitigation, Prediction and Mechanism. Journal of Membrane Science, 505, 15-25. https://doi.org/10.1016/j.memsci.2016.01.022
|
[22]
|
郭瑾, 曾嘉, 魏娜, 等. 臭氧-CNTs预沉积耦合方法缓解膜污染研究[J]. 北京工业大学学报, 2024, 50(12): 1486-1500.
|
[23]
|
王晓云, 蒋柱武, 付爱民. 原水硬度对臭氧和高锰酸钾预氧化除藻效果的影响[J]. 中国给水排水, 2021, 37(1): 46-50.
|
[24]
|
卢伟, 杨子晗, 王磊, 等. 臭氧预氧化对蛋白类污染物超滤膜污染的影响研究[J]. 工业水处理, 2021, 41(2): 57-61.
|
[25]
|
张立涛, 张玉忠, 林立刚, 等. 中空纤维膜的抗臭氧性能研究[J]. 膜科学与技术, 2012, 32(5): 45-51, 73.
|
[26]
|
许杰龙, 任随周, 张国霞, 等. pH及浓度对次氯酸钠除藻效果的影响[J]. 安徽农业科学, 2011, 39(17): 10353-10355.
|
[27]
|
杨涛, 傅金祥, 梁建浩. 次氯酸钠预氧化处理微污染水源水的试验[J]. 工业用水与废水, 2005, 36(6): 14-16.
|
[28]
|
郜玉楠, 王信之, 宗子翔, 等. 混凝-超滤短流程工艺膜污染特性及防治研究[J]. 水处理技术, 2017, 43(3): 78-81.
|
[29]
|
雷晓玲, 秦颖, 文永林, 等. 预氧化强化混凝工艺处理含锰水实验研究[J]. 应用化工, 2022, 51(1): 110-113.
|