[1]
|
《中国老年骨质疏松症诊疗指南(2023)》工作组, 中国老年学和老年医学学会骨质疏松分会, 中国医疗保健国际交流促进会骨质疏松病学分会, 等. 中国老年骨质疏松症诊疗指南(2023) [J]. 中华骨与关节外科杂志, 2023, 16(10): 865-885.
|
[2]
|
Chen, Y., Zhang, L., Li, E., Ding, L., Zhang, G., Hou, Y., et al. (2017) Association of the Insulin-Like Growth Factor-1 Single Nucleotide Polymorphisms Rs35767, Rs2288377, and Rs5742612 with Osteoporosis Risk. Medicine, 96, e9231. https://doi.org/10.1097/md.0000000000009231
|
[3]
|
姚彦冰. 骨质疏松与血清IGF-1、ET-1及MMP水平具有相关性[J]. 基因组学与应用生物学, 2018, 37(1): 123-128.
|
[4]
|
Dixit, M., Poudel, S.B. and Yakar, S. (2021) Effects of GH/IGF Axis on Bone and Cartilage. Molecular and Cellular Endocrinology, 519, Article 111052. https://doi.org/10.1016/j.mce.2020.111052
|
[5]
|
吴文, 智喜梅, 李东风, 等. 绝经后妇女骨质疏松患者血清IGF-1、IGFBP-3与骨密度及骨代谢指标的关系[J]. 中国病理生理杂志, 2007(2): 376-378.
|
[6]
|
Yuan, S., Wan, Z., Cheng, S., Michaëlsson, K. and Larsson, S.C. (2021) Insulin-Like Growth Factor-1, Bone Mineral Density, and Fracture: A Mendelian Randomization Study. The Journal of Clinical Endocrinology & Metabolism, 106, 1552-1558. https://doi.org/10.1210/clinem/dgaa963
|
[7]
|
吴文, 李东风, 智喜梅, 等. 老年男性骨质疏松患者血清IGF-1、IGFBP-3与骨密度的关系[J]. 中国老年学杂志, 2004(8): 698-699.
|
[8]
|
Alberti, K.G.M.M. and Zimmet, P.Z. (1998) Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications. Part 1: Diagnosis and Classification of Diabetes Mellitus. Provisional Report of a WHO Consultation. Diabetic Medicine, 15, 539-553. https://doi.org/10.1002/(sici)1096-9136(199807)15:7<539::aid-dia668>3.0.co;2-s
|
[9]
|
中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2017) [J]. 中华骨质疏松和骨矿盐疾病杂志, 2017, 10(5): 413-443.
|
[10]
|
虎静, 雷涛. IGF-1、IGFBP-3、TNF-α对绝经后2型糖尿病骨质疏松疗效评价[J]. 中国骨质疏松杂志, 2023, 29(12): 1774-1779.
|
[11]
|
Ullrich, A., Gray, A., Tam, A.W., Yang-Feng, T., Tsubokawa, M., Collins, C., et al. (1986) Insulin-Like Growth Factor I Receptor Primary Structure: Comparison with Insulin Receptor Suggests Structural Determinants That Define Functional Specificity. The EMBO Journal, 5, 2503-2512. https://doi.org/10.1002/j.1460-2075.1986.tb04528.x
|
[12]
|
Greere, D. (2023) Insulin Resistance and Pathogenesis of Postmenopausal Osteoporosis. Acta Endocrinologica (Bucharest), 19, 349-363. https://doi.org/10.4183/aeb.2023.349
|
[13]
|
Muthuvel, G., Dauber, A., Alexandrou, E., Tyzinski, L., Andrew, M., Hwa, V., et al. (2023) Five-Year Therapy with Recombinant Human Insulin-Like Growth Factor-1 in a Patient with PAPP-A2 Deficiency. Hormone Research in Paediatrics, 96, 449-457. https://doi.org/10.1159/000529071
|
[14]
|
Cabrera-Salcedo, C., Mizuno, T., Tyzinski, L., Andrew, M., Vinks, A.A., Frystyk, J., et al. (2017) Pharmacokinetics of IGF-1 in Papp-A2-Deficient Patients, Growth Response, and Effects on Glucose and Bone Density. The Journal of Clinical Endocrinology & Metabolism, 102, 4568-4577. https://doi.org/10.1210/jc.2017-01411
|
[15]
|
Grinspoon, S., Thomas, L., Miller, K., Herzog, D. and Klibanski, A. (2002) Effects of Recombinant Human IGF-I and Oral Contraceptive Administration on Bone Density in Anorexia Nervosa. The Journal of Clinical Endocrinology & Metabolism, 87, 2883-2891. https://doi.org/10.1210/jcem.87.6.8574
|
[16]
|
Yu, Y., Cai, W., Xu, Y. and Zuo, W. (2022) Down-Regulation of miR-19b-3p Enhances IGF-1 Expression to Induce Osteoblast Differentiation and Improve Osteoporosis. Cellular and Molecular Biology, 68, 160-168. https://doi.org/10.14715/cmb/2022.68.1.20
|
[17]
|
de Mambro, V.E., Kawai, M., Clemens, T.L., Fulzele, K., Maynard, J.A., Marín de Evsikova, C., et al. (2009) A Novel Spontaneous Mutation of Irs1 in Mice Results in Hyperinsulinemia, Reduced Growth, Low Bone Mass and Impaired Adipogenesis. Journal of Endocrinology, 204, 241-253. https://doi.org/10.1677/joe-09-0328
|
[18]
|
Kassem, M., Blum, W., Ristelli, J., Mosekilde, L. and Eriksen, E.F. (1993) Growth Hormone Stimulates Proliferation and Differentiation of Normal Human Osteoblast-Like Cells in Vitro. Calcified Tissue International, 52, 222-226. https://doi.org/10.1007/bf00298723
|
[19]
|
Xu, L., Wang, Q., Wang, Q., Lyytikäinen, A., Mikkola, T., Völgyi, E., et al. (2011) Concerted Actions of Insulin-Like Growth Factor 1, Testosterone, and Estradiol on Peripubertal Bone Growth: A 7-Year Longitudinal Study. Journal of Bone and Mineral Research, 26, 2204-2211. https://doi.org/10.1002/jbmr.422
|
[20]
|
Regan, J.N., Trivedi, T., Guise, T.A. and Waning, D.L. (2017) The Role of TGFβ in Bone-Muscle Crosstalk. Current Osteoporosis Reports, 15, 18-23. https://doi.org/10.1007/s11914-017-0344-5
|
[21]
|
Misra, M., McGrane, J., Miller, K.K., Goldstein, M.A., Ebrahimi, S., Weigel, T., et al. (2009) Effects of RHIGF-1 Administration on Surrogate Markers of Bone Turnover in Adolescents with Anorexia Nervosa. Bone, 45, 493-498. https://doi.org/10.1016/j.bone.2009.06.002
|
[22]
|
邓子阳, 刘学政, 张德志, 等. 胰岛素样生长因子-1改善糖尿病大鼠骨质疏松及其机制的初步研究[J]. 第三军医大学学报, 2014, 36(19): 1987-1990.
|
[23]
|
Sandri, M., Barberi, L., Bijlsma, A.Y., Blaauw, B., Dyar, K.A., Milan, G., et al. (2013) Signaling Pathways Regulating Muscle Mass in Ageing Skeletal Muscle. The Role of the IGF1-Akt-mTOR-Foxo Pathway. Biogerontology, 14, 303-323. https://doi.org/10.1007/s10522-013-9432-9
|
[24]
|
Mukherjee, A. and Rotwein, P. (2009) Akt Promotes BMP2-Mediated Osteoblast Differentiation and Bone Development. Journal of Cell Science, 122, 716-726. https://doi.org/10.1242/jcs.042770
|
[25]
|
李冬, 董晓俊, 徐成栋. IGF-1介导MAPKs通路在C3H10T1/2细胞成骨分化中的作用[J]. 中国骨质疏松杂志, 2024, 30(5): 668-672.
|
[26]
|
Xian, L., Wu, X., Pang, L., Lou, M., Rosen, C.J., Qiu, T., et al. (2012) Matrix IGF-1 Maintains Bone Mass by Activation of mTOR in Mesenchymal Stem Cells. Nature Medicine, 18, 1095-1101. https://doi.org/10.1038/nm.2793
|
[27]
|
Jia, L., Li, Y., Wu, G., Song, Z., Lu, H., Song, C., et al. (2013) MiRNA-199a-3p Regulates C2C12 Myoblast Differentiation through IGF-1/AKT/mTOR Signal Pathway. International Journal of Molecular Sciences, 15, 296-308. https://doi.org/10.3390/ijms15010296
|
[28]
|
Jones, R.M., Mulle, J.G. and Pacifici, R. (2018) Osteomicrobiology: The Influence of Gut Microbiota on Bone in Health and Disease. Bone, 115, 59-67. https://doi.org/10.1016/j.bone.2017.04.009
|
[29]
|
Dao, M.C., Everard, A., Aron-Wisnewsky, J., Sokolovska, N., Prifti, E., Verger, E.O., et al. (2015) Akkermansia muciniphilaand Improved Metabolic Health during a Dietary Intervention in Obesity: Relationship with Gut Microbiome Richness and Ecology. Gut, 65, 426-436. https://doi.org/10.1136/gutjnl-2014-308778
|
[30]
|
谢辉, 林上阳, 夏晨洁, 等. 肠道菌群对骨质疏松的影响机制及治疗的研究进展[J]. 中国药理学通报, 2020, 36(5): 600-603.
|
[31]
|
Sjögren, K., Engdahl, C., Henning, P., Lerner, U.H., Tremaroli, V., Lagerquist, M.K., et al. (2012) The Gut Microbiota Regulates Bone Mass in Mice. Journal of Bone and Mineral Research, 27, 1357-1367. https://doi.org/10.1002/jbmr.1588
|
[32]
|
Ohlsson, C. and Sjögren, K. (2015) Effects of the Gut Microbiota on Bone Mass. Trends in Endocrinology & Metabolism, 26, 69-74. https://doi.org/10.1016/j.tem.2014.11.004
|
[33]
|
Zhao, H., Chen, J., Li, X., Sun, Q., Qin, P. and Wang, Q. (2019) Compositional and Functional Features of the Female Premenopausal and Postmenopausal Gut Microbiota. FEBS Letters, 593, 2655-2664. https://doi.org/10.1002/1873-3468.13527
|
[34]
|
Schwarzer, M., Makki, K., Storelli, G., Machuca-Gayet, I., Srutkova, D., Hermanova, P., et al. (2016) Lactobacillus plantarum Strain Maintains Growth of Infant Mice during Chronic Undernutrition. Science, 351, 854-857. https://doi.org/10.1126/science.aad8588
|
[35]
|
Yan, J., Herzog, J.W., Tsang, K., Brennan, C.A., Bower, M.A., Garrett, W.S., et al. (2016) Gut Microbiota Induce IGF-1 and Promote Bone Formation and Growth. Proceedings of the National Academy of Sciences, 113, E7554-E7563. https://doi.org/10.1073/pnas.1607235113
|
[36]
|
Haines, M.S., Kimball, A., Meenaghan, E., Bachmann, K.N., Santoso, K., et al. (2021) Sequential Therapy with Recombinant Human IGF-1 Followed by Risedronate Increases Spine Bone Mineral Density in Women with Anorexia Nervosa: A Randomized, Placebo-Controlled Trial. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 36, 2116-2126.
|