口腔念珠菌病的抗菌光动力治疗最新研究进展
Latest Research Progress on Antibacterial Photodynamic Therapy for Oral Candidiasis
DOI: 10.12677/acm.2025.151036, PDF, HTML, XML,   
作者: 罗 逍, 陈方淳:重庆医科大学附属口腔医院口腔黏膜科,重庆
关键词: 口腔念珠菌病光动力治疗光敏剂Oral Candidiasis Photodynamic Therapy Photosensitizers
摘要: 光动力疗法(PDT)是一种保守性治疗,光敏剂(PS)在特定波长的可见光照射下发生光化学反应,产生ROS,杀伤病变细胞从而达到治疗效果,具有多项优点,如难引发耐药性、高度的选择性、低毒性、微创性等,其最受广泛关注的在临床治疗的应用方面,集中于抗恶性肿瘤和多种皮肤黏膜疾病方向。PDT作为一种新型微创治疗方法,对于口腔多种微生物引起的感染拥有确切的治疗效果,且能解决口腔疾病治疗中常规物理手段会产生的一些缺陷,如难以彻底清除深部致病微生物、会引起较大创伤,影响生活质量及治疗过程复杂等难点,为口腔疾病治疗提供了新方向。口腔念珠菌病是一种口腔黏膜常见感染,是由以白色念珠菌为主的念珠菌属感染引起的口腔黏膜疾病,近年来随着抗真菌药物的广泛使用,其引发的耐药问题使临床治疗面临着严峻的挑战。
Abstract: Photodynamic therapy (PDT) is a conservative treatment in which photosensitizers (PS) under the irradiation of visible light at specific wavelengths undergo photochemical reactions, generate ROS, and kill diseased cells to achieve therapeutic effects, which has a number of advantages, such as difficulty in triggering drug resistance, highly selective, low toxicity, and minimally invasive, etc., and has received the most attention in the application of clinical treatment, focusing on the direction of the anti-malignant tumors and various skin and mucous membrane diseases. As a new minimally invasive therapeutic method, PDT has a definite therapeutic effect on infections caused by a variety of microorganisms in the oral cavity, and it can solve some of the defects of conventional physical means in the treatment of oral diseases, such as difficulty in completely removing deep-seated disease-causing microorganisms, causing large trauma, affecting the quality of life, and the complexity of the therapeutic process, thus providing a new direction for the treatment of oral diseases. Oral candidiasis is a common infection of the oral mucosa, which is caused by Candida albicans-based Candida spp. In recent years, with the widespread use of antifungal drugs, the drug-resistant problem it triggers makes the clinical treatment face a serious challenge.
文章引用:罗逍, 陈方淳. 口腔念珠菌病的抗菌光动力治疗最新研究进展[J]. 临床医学进展, 2025, 15(1): 245-253. https://doi.org/10.12677/acm.2025.151036

1. 引言

口腔念珠菌病是一种口腔黏膜常见感染疾病,当患者受到全身或局部因素引起的免疫降低时,定植于体内的白色念珠菌为主的念珠菌属将增殖引起宿主机体感染,最主要引起患者产生口干、口腔黏膜烧灼感、自发性疼痛及感觉异常等症状,严重影响生活质量。该病可发生内源性传播,向全身各个器官播散,引起广泛念珠菌感染,如肺念珠菌病等,严重者甚至会威胁生命。白色念珠菌是一种机会性真菌病原体,在人类中经常被分离出来。它通常定植于口腔、呼吸道、肠道和阴道。白色念珠菌引起各种临床症状,从轻微的皮肤粘膜病变到危及生命的内脏感染,尤其是在免疫力低下的病人中。生物膜相关的白色念珠菌往往对许多抗真菌药物表现出更大的耐药性,使得这些感染的治疗特别困难[1] [2]。传统药物对白色念珠菌生物膜的杀伤力比浮游细胞低20~100倍。换句话说,生物膜不仅会导致高死亡率,而且会恶化抗真菌药物的耐药性。因此,白色念珠菌感染的管理已成为一个临床挑战,迫切需要新的治疗方法,而抗菌性光动力治疗(aPDT)是近年来对于耐药念珠菌提出的新型治疗方法[3],其已经广泛用于牙周疾病等[4] [5]。本文就aPDT对于口腔念珠菌的最新治疗研究进行简要总结,为以后进一步的治疗提供思路。

2. 光动力治疗

2.1. 原理

光敏剂、分子氧和合适的光源的协同应用会导致活性氧(ROS)的产生,当PS吸收光线时,受到与PS吸收光谱一致的光波照射,由于光子吸收的作用,从单线态基能级S˚转化为激发态单线态S1。部分以量子荧光的形式辐射,剩余的能量将光敏剂分子引导至激发三重态T1,光敏剂可以将能量从周围环境传递给生物分子。在T1态的光敏剂和病变组织(底物)之间,氢或电子被传递,从而导致光敏剂和底物形成自由基和阴离子基团。电子与氧分子发生反应,而氧分子仍保持其基本能量状态。这一过程导致活性氧物种(ROS)的产生——最初以超氧阴离子自由基( O 2 · )的形式出现,并在细胞内进一步产生ROS。引发的级联反应导致氧化应激,从而破坏病变区域细胞,这就是I型反应。

由于光敏剂转变为激发三重态,能量直接传递给处于基本激发态(基本三重态)的氧分子。分子之间(PS→O2)直接能量传递是可能的,因为它们具有相同的自旋。通过这种方式,激发氧粒子(即单线态氧)被生成,其特点是具有极强的氧化性大多数有机化合物处于基本的单线态。然而,氧分子的特征是三线态(作为基础)和激发成单线态。由于这一事实,激发光敏剂粒子不会破坏有机细胞结构,只与溶解在细胞质中的氧分子反应。这就是II型反应。

两种机制的贡献比例取决于许多因素,包括:氧气浓度、组织介电常数和pH值以及光敏剂的结构。据推测,II型机制是调节PDT效率的最重要过程,这一过程通过I型反应形成活性氧(ROS),通过II型反应形成单线态氧,这些活性氧具有毒性,通过非特异性靶向作用迅速造成细胞损伤和死亡,而不损害宿主组织,从而导致邻近微生物的破坏[6]。目前的研究证实,与细菌相比,光动力疗法在真菌中的效果受结构因素的限制较小,其原因是,与细菌细胞相比,真菌中有多个细胞目标,如酶、复杂的蛋白质和脂类[7]

2.2. 光敏剂的性质

理想的光敏剂应该具备以下性质:

1. 高程度的化学纯度。

2. 室温下的稳定性。

3. 只有在适当的波长下才有光敏反应。

4. 高光化学反应性;对光的最大吸收在波长600 nm到800 nm之间。吸收波长超过800纳米的光不能提供足够的能量刺激单线态氧及其他ROS的产生,不能产生足够的杀伤性。

5. 较少吸收400纳米到600纳米范围内的光,防止由自然光引起的可能的过度光反应。

6. 光敏剂的吸收波长应尽量少地与体内其他化学物质的吸收波长重叠,包括一些内源性染料,如褪黑激素、血红蛋白等。

7. 在黑暗中基本没有明显的细胞毒性。

8. 在人体组织中溶解度较高,不易沉淀。

9. 对肿瘤组织具有相当高的选择性:光敏剂应向异常病变部位浓集,如肿瘤部位、感染部位等,至少在那里停留几个小时,但能很快地从健康组织中排出,从而减少治疗对正常组织产生的光毒性副作用。

10. 价格便宜,合成容易,便于获得。

第一代光敏剂:光动力治疗需要三种必要的元素,集齐之后才能产生反应,三者分别是光敏剂、适当波长的光及溶解在细胞中的氧气。第一代光敏剂是一种叫血卟啉(Hp)的物质,后来还出现了叫血卟啉衍生物(HpD)的水溶性卟啉混合物,是通过纯化和化学修饰第一种被用作PS的卟啉得到的,其展现出了更好的肿瘤组织选择性,随后,一种由HpD异构的卟啉二聚体和低聚体的混合物以“Photofrin”的商品名上市,这也是一种常用的PS,但其有一些不可忽视的缺点,如化学纯度低,组织渗透性差,在皮肤中积累量大导致较长时间的皮肤光敏性,所以人们研发了第二代PS。

2.3. 光敏剂类型

2.3.1. 卟啉衍生物

主要有5-氨基酮戊酸(5-ALA),临床常用盐酸氨酮戊酸外用散,其介导的光动力治疗原理是在病变区域局部给予5-ALA外用,周围发生异常增生或者感染严重的区域将选择性地吸收,产生浓集中效应,5-ALA在体内转换成具有强效光敏作用的原卟啉IX (PpIX),这是一种血红素生物合成途径中的最终中间产物,经过合适波长的光照射,产生大量ROS,从而使病变区域的细胞发生破坏,对周围无异常的组织及细胞不会产生明显损伤。目前,治疗所用的5-ALA浓度一般为3%~20%,光源为波长631~635 nm的红光,能量为60~150 J∙cm2 [8]。5-ALA在临床的应用已经取得一定的效果,但仍有一些缺陷,PpIX在治疗过程中,病变部位的浓集比较差,部分比较深的组织浓度较低,并且对于病体组织选择特异性不高,所以在表浅病变组织的治疗中效果较好,而深部病变治疗效果较差,如口腔黏膜白斑等。最近的研究也表明5-ALA有作为光敏剂治疗念珠菌病的潜力[9]-[14],一项对于增生性念珠菌病(HC)的临床实验表明5-ALA介导的PDT与制霉菌素凝胶结合应用,具有作为治疗HC患者的良好耐受性和安全治疗方式的潜力[15] [16]。Wang等发现,基于脂质的纳米载体Ethosomes (ES)能够促进药物的经皮渗透,与单独的ALA或Hexyl-aminolevulinate (HAL)相比,HAL-ES系统呈现出优越的光动力效果,HAL-ES介导的aPDT可以成为白色念珠菌生物膜感染的有效疗法[17]

2.3.2. 稠环醌类光敏剂

稠环醌类光敏剂是一种能够从菌类植物中获取的光敏剂,有比较好的光反应性,能够产生较高的活性氧。在现在的研究中,竹红菌素、金丝桃素、姜黄素等稠环醌类光敏剂是最为广泛使用的。

竹红菌素主要分为两种类型,甲型和乙型,并且可以转化。在碱性的条件下,竹红菌甲素可以发生变化,脱水生成竹红菌乙素。竹红菌素是一种真菌天然产物,与HpD相比,有易得、易纯化、体内代谢快、三重态氧量产率高、对正常组织损伤小等优点,但其是脂溶性物质,在水中溶解性差,不易聚集,且吸收主要波长在450~600 nm之间[18]-[20],从而降低了光动力活性,但其仍是一种对白色念珠菌具有有效杀伤的光敏剂[21]。近年来多孔有机笼(porous organic cages, POCs)获得了越来越多的关注,其独特的孔隙率预计可以解决竹红菌素甲型(HA)的聚集问题,同时能通过在笼上引入亲水基团解决其水溶性的问题。HA的羟基通过酯化作用与COP1T的羧酸基团相连。Pan等制备了具有优良孔隙率的新型模块化多孔有机笼——共价有机多面体1系(COP1T) [22]。然后,引入PEG 2000基团以提高HA的水溶性,称为COP1T-HA [23],刘等对于耐药真菌,在470纳米激光照射下(100毫瓦/平方厘米,30分钟),COP1T-HA的抗真菌和生物膜根除能力分别比自由HA增强了6.16倍和2.56倍,同时COP1T-HA的吸收波长从600纳米(自由HA)到620纳米有一个红移,导致COP1T-HA在光热窗口的抗真菌活性提高[24]。所得到的COP1T-HA在体外抗真菌的效率比自由HA高几倍,可以对抗四种类型的多药性真菌浮游细胞和生物膜,包括“超级真菌”白色念珠菌。有趣的是,COP1T-HA吸附的红移导致笼状修饰的HA或衍生物实现了光热动力学aPDT。此外,COP1T-HA表现出良好的生物相容性,出色的消毒能力和伤口愈合效率,在大鼠体内模型中没有明显的毒性作用。随着进一步的开发和优化,COP1T-HA有很大的潜力成为一类新的抗真菌剂来对抗抗药性病原体[24]

金丝桃素(HYP)是一种从贯叶连翘中提取而出的物质,百余年来一直作为药物使用,是一种天然存在的多环醌类物质,具有较高的疏水性及强力的光反应性,属萘骈二蒽酮类化合物,最大的光吸收波长区域在590 nm附近,单线态氧产率较高,具有优异的光敏性[25] [26]。对大多数菌株来说,HYP杀菌所需浓度比二甲基亚甲基蓝(DMMB)低,H2O2是参与HYP-aPDT杀真菌作用的主要光毒性物种,而单线态氧对基于DMMB的处理更为重要。HYP在低真菌浓度下更有效,DMMB在高浓度下更有效[27]

姜黄素(CUR)是一种从姜黄中提取的光敏剂,安全无害,它可以被400~500 nm左右波长的蓝光激活,它的最大激发波长为425 nm,最大发射波长为530 nm [28] [29]。但其水溶性低,在水溶液中容易发生自聚反应,稳定性差,在高浓度可能导致组织染色,影响了其临床应用[30]。负载Pluronic® F-127胶束的给药系统有助于改善CUR的溶解度、稳定性、渗透性并控制其释放[31],装载在纳米颗粒中也能增强其水溶性[32]。CUR作为光敏剂用来治疗细菌及真菌近些年也得到了一定的进展,其对念珠菌有着明显的杀伤作用[32]-[34]。Abdul Rahman等通过对50名患者的临床研究发现CUR介导的PDT是一种有效的治疗方式,可以减轻假牙表面和腭黏膜上的念珠菌数量,并改善义齿性口炎患者的唾液IL-6和MMP-8水平[35],同时另一项临床实验发现CUR与玫瑰红素介导的PDT有着与外用制霉菌素近似的临床效果[36]。马婧等发现姜黄素–光动力疗法杀伤白色念珠菌生物膜的效果与功率密度存在较强的正相关性,经过体外实验论证,建议将82 mW/cm2作为较适宜的功率密度[37]。一项新的研究使用7 W的波长460 nm的光和一种新的、从未评估过的25 W的偏振光源,波长范围为λ = 380~3400纳米的光来激发CUR,两种光源都能激活其反应,发现与460纳米的光源相比,偏振光更活跃[28]。其水溶性正电荷衍生物(SA-CUR 12a)也被发现有更明显的效果[38]。然而一项对于头颈部肿瘤患者念珠菌病的临床实验似乎认为MB比CUR能取得更好的效果[39],而一项体外实验却表现出了不一样的结果,即CUR比MB效果更佳[40]

2.3.3. 酞菁类光敏剂

酞菁是一种由人工合成的光敏剂,其优点包括在卟啉环结构的基础上发生p电子体系扩展,使得吸收波长变长,主要吸收范围移动至750~900 nm;患者服用后经过1 h即可进行激光照射,能大大缩减治疗准备时间,并且可以在24 h之内排出体外[41],降低对人体的影响。Pcs被用于APDT,以激活I型和II型途径,在Ismail Ozturk等的实验中,发现Zn(II)Pc在实验的各种酞菁类光敏剂中具有最高的吸收率,但吸收率低的ZnPc具有更高的抗菌活性[42]。酞菁类光敏剂具有较强疏水性,影响其作为光敏剂的使用,有人研究锌酞菁–科利司汀(ZnPc-Col)共轭物作为一种新的光敏剂,通过将ZnPc-Col纳入壳聚糖水凝胶,克服了酞菁的低溶解度,显示了更好的APDT效率[43]。还有针对白色念珠菌合成的带有硫代吡啶基的ZnPc衍生物复合物,展现出了对白色念珠菌的完全光杀[44]

2.3.4. 吩噻嗪类光敏剂

3,7-双(二甲氨基)吩噻嗪-5鎓氯(MB)是一种极具代表性的吩嗪类光敏剂。MB可以在660 nm附近的光区可以发生强吸收并且拥有良好的治疗效果,所以成为了一种在PDT中常用的药物。近来,有部分研究表明,MB和十二烷基硫酸钠(SDS)的结合是提高aPDT效果的有效策略[45]。在160~320 J/cm2光能量范围内,使用MB介导的PDT可以对白色念珠菌的菌落产生较强的光毒作用,当光能量强度在范围内升高时,杀伤作用也会随之提升,MB杀灭白色念珠菌的主要机制可能为产生自由基和阴离子自由基,即PDT灭菌机制中的II型机制[46]。DMMB介导的APDT对AIDS患者合并口腔白色念珠菌感染有明显的疗效及较好的杀菌作用[47]。甲苯胺蓝O (TBO)是一种吩噻嗪类染料,由于其成本低、对宿主细胞的细胞毒性低、激发能量低、单态氧量子产率高、对细胞成分和目标细胞膜的亲和力强等优点,已被广泛研究用于抗菌应用[48]。甲苯胺蓝O是一个得到了广泛验证的能用于念珠菌治疗的光敏剂,其对于白色念珠菌和克鲁斯氏念珠菌双重感染形成的双物种生物膜也能有明显的效果[49],其与PADTMPLUS联合后可以快速灭活白色念珠菌和热带念珠菌的成熟混合生物膜[50]

3. 讨论

这些化合物存在一些共同的缺点,包括合成和纯化过程中的复杂性、低水溶解度、光稳定性差,以及缺乏肿瘤组织选择性,此外,短波长可见光穿透组织的能力较差,这也限制了它们的潜在用途[51] [52]。因此,多年来人们进行了各种尝试,以提高PDT治疗的有效性,不同的疾病会根据其优缺点选择合适的光敏剂,如口腔白斑选择ALA介导的PDT,其对黏膜增生类病损有更好的治疗效果。其中,过渡金属配合物[53],特别是具有多吡啶配体的钌(II)配合物[54] [55],由于钌(II)配合物具有优异的光物理特性,被认为是PDT的优秀光敏剂。钌(II)配合物的巨大潜力还在于:1) 它们进入细胞的多重机制,例如被动扩散、主动转运和内吞作用;2) 它们可以作用于不同的细胞靶点,例如细胞核、线粒体或溶酶体;3) 它们破坏和杀死癌细胞的方式,即通过DNA插入、蛋白质相互作用和ROS的产生;4) 低全身毒性和选择性抗转移特性。在β-咔啉配体的存在下,钌(II)复合物具有高度的选择性细胞毒性。通过利用许多天然和合成生物碱共有的杂环平台[51]β-咔啉配体可以伪装金属,并通过特定受体促进钌(II)络合物扩散到细胞靶标中。通过这种方式,通过多种机制(即干扰DNA合成、抑制DNA拓扑异构酶I和II)实现了对多种癌细胞的高选择性细胞毒性和抗肿瘤活性。aPDT可以联合多种治疗方式,而不是局限于单一光敏剂的功效,如H2O2的应用可以扰乱细胞外基质的组织,它与aPDT的关联增强了处理的效果[56]。制霉菌素联合光动力抗菌疗法就是一种得到验证的可靠联合疗法,其治疗口腔念珠菌病疗效显著增强,可降低念珠菌病复发率及菌落数量,并且安全可靠,几乎不会有其他的毒副作用[57]。KI可增强PF介导的光动力抗C.albicans效果,PF产生光动力抗菌效应主要经历II型光化学反应[58] [59]。还有研究发现PDT在一次治疗中的双重应用是抑制白色念珠菌增殖的最有效方法[60],在对抗白色念珠菌的治疗中,细菌的联合应用也可能是一个发展方向,目前发现很多的细菌在白色念珠菌的定植与增殖过程中存在拮抗与协同作用[61],可将其与光动力联合治疗,作为一种新的有效治疗手段。除与各种药物联用,还可以联合各种物理治疗方式,有人提出和低强度超声联合,光和超声波在其抗菌活性方面具有相似和互补的特点,因此有可能在这两种治疗方法之间产生协同效应,但其具体机制仍未清楚,这也是一个未来可以考虑深入研究的方向[62],给光敏剂增加纳米载体也是一个值得思考的方向,其可以有效地解决光敏剂的物理化学难题,即溶解性、稳定性和毒性,但并不总是能实现更好的抗菌活性,因为存在难以控制给药部位和给药途径的困难,尚需要更多的研究[63]-[65],aPDT还可以结合多种疗法,比如脉冲电场(PEF),都有助于增强生物膜的抑制作用[66]。aPDT各种类型光敏剂的临床疗效值得进行深入探讨,与其他疗法的联合也是值得发展,期待更加深入研究的成果。

参考文献

[1] El-Azizi, M., Farag, N. and Khardori, N. (2015) Antifungal Activity of Amphotericin B and Voriconazole against the Biofilms and Biofilm-Dispersed Cells of Candida albicans Employing a Newly Developed in Vitro Pharmacokinetic Model. Annals of Clinical Microbiology and Antimicrobials, 14, Article No. 21.
https://doi.org/10.1186/s12941-015-0083-3
[2] Tobudic, S., Kratzer, C., Lassnigg, A. and Presterl, E. (2011) Antifungal Susceptibility of Candida albicans in Biofilms. Mycoses, 55, 199-204.
https://doi.org/10.1111/j.1439-0507.2011.02076.x
[3] 韦帝远, 闫志敏. 光动力疗法在口腔念珠菌病中的应用前景及研究进展[J]. 口腔医学研究, 2020, 36(12): 1087-1090.
[4] Sun, Y., Sun, X., Li, X., Li, W., Li, C., Zhou, Y., et al. (2021) A Versatile Nanocomposite Based on Nanoceria for Antibacterial Enhancement and Protection from aPDT-Aggravated Inflammation via Modulation of Macrophage Polarization. Biomaterials, 268, Article 120614.
https://doi.org/10.1016/j.biomaterials.2020.120614
[5] Chambrone, L., Wang, H.L. and Romanos, G.E. (2018) Antimicrobial Photodynamic Therapy for the Treatment of Periodontitis and Peri-Implantitis: An American Academy of Periodontology Best Evidence Review. Journal of Periodontology, 89, 783-803.
[6] Kwiatkowski, S., Knap, B., Przystupski, D., Saczko, J., Kędzierska, E., Knap-Czop, K., et al. (2018) Photodynamic Therapy—Mechanisms, Photosensitizers and Combinations. Biomedicine & Pharmacotherapy, 106, 1098-1107.
https://doi.org/10.1016/j.biopha.2018.07.049
[7] Calzavara‐Pinton, P., Rossi, M.T., Sala, R. and Venturini, M. (2012) Photodynamic Antifungal Chemotherapy. Photochemistry and Photobiology, 88, 512-522.
https://doi.org/10.1111/j.1751-1097.2012.01107.x
[8] 解方, 赵华, 李恒进. 5-氨基酮戊酸光动力疗法的原理、应用及不良反应研究进展[J]. 中国药物应用与监测, 2015, 12(2): 111-115.
[9] Shi, H., Li, J., Zhang, H., Zhang, J. and Sun, H. (2016) Effect of 5-Aminolevulinic Acid Photodynamic Therapy on Candida albicans Biofilms: An in vitro Study. Photodiagnosis and Photodynamic Therapy, 15, 40-45.
https://doi.org/10.1016/j.pdpdt.2016.04.011
[10] 徐辉, 陈虹霞, 邹先彪. 不同浓度5-氨基酮戊酸对光动力方法抗白念珠菌效果的影响[J]. 中国真菌学杂志, 2015, 10(2): 104-107.
[11] 张子平, 钟熙, 程波, 等. 5-氨基酮戊酸光动力作用对白念珠菌超微结构的影响[J]. 福建医科大学学报, 2016, 50(4): 260-263.
[12] 郭庆玲, 孙红英, 马晓娟, 等. 5-氨基酮戊酸光动力疗法对白念珠菌生物膜超微结构的影响[J]. 中国激光医学杂志, 2016, 25(5): 254.
[13] 梁义, 卢丽明, 陈勇, 等. 5-氨基酮戊酸光动力疗法对白念珠菌抑制效应的实验研究[J]. 海南医学, 2013, 24(10): 1405-1407.
[14] 仵宁, 刘颖. 不同浓度5-盐酸氨酮戊酸光动力疗法对白色念珠菌耐药菌株的体外抑菌作用[J]. 临床医学研究与实践, 2021, 6(3): 4-7.
[15] AlGhamdi, A.S., Qamar, Z., AlSheikh, R., Al Hinai, M.T.A., Abdul, N.S., Aljoghaiman, E.A., et al. (2023) Clinical Efficacy of 5-Aminolevulinic Acid-Mediated Photodynamic Therapy versus Topical Antifungal Agent and Surgical Excision for the Treatment of Hyperplastic Candidiasis. Photodiagnosis and Photodynamic Therapy, 41, Article 103258.
https://doi.org/10.1016/j.pdpdt.2022.103258
[16] Li, B., Fang, X., Hu, X., Hua, H. and Wei, P. (2022) Successful Treatment of Chronic Hyperplastic Candidiasis with 5-Aminolevulinic Acid Photodynamic Therapy: A Case Report. Photodiagnosis and Photodynamic Therapy, 37, Article 102633.
https://doi.org/10.1016/j.pdpdt.2021.102633
[17] Wang, Y., Song, J., Zhang, F., Zeng, K. and Zhu, X. (2020) Antifungal Photodynamic Activity of Hexyl-Aminolevulinate Ethosomes against Candida albicans Biofilm. Frontiers in Microbiology, 11, Article 2052.
https://doi.org/10.3389/fmicb.2020.02052
[18] 魏玉德. 竹红菌素研究的进展[J]. 中国实用医药, 2008, 3(11): 147-149.
[19] 张俭, 马岚. 竹红菌素研究的进展[J]. 云南大学学报(自然科学版), 2003, 25(S1): 184-188.
[20] 徐倩, 任清褒, 张燕, 等. 竹红菌素的研究进展[J]. 丽水学院学报, 2021, 43(5): 43-48.
[21] Yang, Y., Wang, C., Zhuge, Y., Zhang, J., Xu, K., Zhang, Q., et al. (2019) Photodynamic Antifungal Activity of Hypocrellin a against Candida albicans. Frontiers in Microbiology, 10, Article 1810.
https://doi.org/10.3389/fmicb.2019.01810
[22] Pan, G., Hu, C., Hong, S., Li, H., Yu, D., Cui, C., et al. (2021) Biomimetic Caged Platinum Catalyst for Hydrosilylation Reaction with High Site Selectivity. Nature Communications, 12, Article No. 64.
https://doi.org/10.1038/s41467-020-20233-w
[23] Qi, S., Lin, X., Zhang, M., Yan, S., Yu, S. and Chen, S. (2014) Preparation and Evaluation of Hypocrellin a Loaded Poly (Lactic-Co-Glycolic Acid) Nanoparticles for Photodynamic Therapy. RSC Advances, 4, 40085-40094.
https://doi.org/10.1039/c4ra05796a
[24] Liu, X., Fang, R., Feng, R., Li, Q., Su, M., Hou, C., et al. (2022) Cage-Modified Hypocrellin against Multidrug-Resistant Candida spp. with Unprecedented Activity in Light-Triggered Combinational Photodynamic Therapy. Drug Resistance Updates, 65, Article 100887.
https://doi.org/10.1016/j.drup.2022.100887
[25] Sakita, K.M., Conrado, P.C., Faria, D.R., Arita, G.S., Capoci, I.R., Rodrigues-Vendramini, F.A., et al. (2019) Copolymeric Micelles as Efficient Inert Nanocarrier for Hypericin in the Photodynamic Inactivation of candida Species. Future Microbiology, 14, 519-531.
https://doi.org/10.2217/fmb-2018-0304
[26] Sato, M.R., Oshiro-Junior, J.A., Rodero, C.F., Boni, F.I., Araújo, V.H.S., Bauab, T.M., et al. (2022) Photodynamic Therapy-Mediated Hypericin-Loaded Nanostructured Lipid Carriers against Vulvovaginal Candidiasis. Journal of Medical Mycology, 32, Article 101296.
https://doi.org/10.1016/j.mycmed.2022.101296
[27] Paz‐Cristobal, M.P., Royo, D., Rezusta, A., Andrés‐Ciriano, E., Alejandre, M.C., Meis, J.F., et al. (2013) Photodynamic Fungicidal Efficacy of Hypericin and Dimethyl Methylene Blue against Azole‐Resistant Candida albicans Strains. Mycoses, 57, 35-42.
https://doi.org/10.1111/myc.12099
[28] Casu, C., Orrù, G. and Scano, A. (2022) Curcumin/H2O2 Photodynamically Activated: An Antimicrobial Time-Response Assessment against an MDR Strain of Candida albicans. European Review for Medical and Pharmacological Sciences, 26, 8841-8851.
[29] Zheng, D., Huang, C., Huang, H., Zhao, Y., Khan, M.R.U., Zhao, H., et al. (2020) Antibacterial Mechanism of Curcumin: A Review. Chemistry & Biodiversity, 17, e2000171.
https://doi.org/10.1002/cbdv.202000171
[30] 周子伊, 任彪, 周学东. 姜黄素介导光动力治疗口腔感染性疾病的研究进展[J]. 口腔疾病防治, 2022, 30(8): 588-593.
[31] Dantas Lopes dos Santos, D., Besegato, J.F., de Melo, P.B.G., Oshiro Junior, J.A., Chorilli, M., Deng, D., et al. (2021) Curcumin‐Loaded Pluronic® F‐127 Micelles as a Drug Delivery System for Curcumin‐Mediated Photodynamic Therapy for Oral Application. Photochemistry and Photobiology, 97, 1072-1088.
https://doi.org/10.1111/php.13433
[32] Sakima, V.T., Barbugli, P.A., Cerri, P.S., Chorilli, M., Carmello, J.C., Pavarina, A.C., et al. (2018) Antimicrobial Photodynamic Therapy Mediated by Curcumin-Loaded Polymeric Nanoparticles in a Murine Model of Oral Candidiasis. Molecules, 23, Article 2075.
https://doi.org/10.3390/molecules23082075
[33] Kanpittaya, K., Teerakapong, A., Morales, N.P., Hormdee, D., Priprem, A., Weera-Archakul, W., et al. (2021) Inhibitory Effects of Erythrosine/Curcumin Derivatives/Nano-Titanium Dioxide-Mediated Photodynamic Therapy on Candida albicans. Molecules, 26, Article 2405.
https://doi.org/10.3390/molecules26092405
[34] Ma, J., Shi, H., Sun, H., Li, J. and Bai, Y. (2019) Antifungal Effect of Photodynamic Therapy Mediated by Curcumin on Candida albicans Biofilms in vitro. Photodiagnosis and Photodynamic Therapy, 27, 280-287.
https://doi.org/10.1016/j.pdpdt.2019.06.015
[35] Al-Ghamdi, A.R.S., Khanam, H.K., Qamar, Z., Abdul, N.S., Reddy, N., Vempalli, S., et al. (2023) Therapeutic Efficacy of Adjunctive Photodynamic Therapy in the Treatment of Denture Stomatitis. Photodiagnosis and Photodynamic Therapy, 42, Article 103326.
https://doi.org/10.1016/j.pdpdt.2023.103326
[36] Labban, N., Taweel, S.M.A., ALRabiah, M.A., Alfouzan, A.F., Alshiddi, I.F. and Assery, M.K. (2021) Efficacy of Rose Bengal and Curcumin Mediated Photodynamic Therapy for the Treatment of Denture Stomatitis in Patients with Habitual Cigarette Smoking: A Randomized Controlled Clinical Trial. Photodiagnosis and Photodynamic Therapy, 35, Article 102380.
https://doi.org/10.1016/j.pdpdt.2021.102380
[37] 马婧, 李继扬, 杨巧珍, 等. 不同功率密度的姜黄素-光动力疗法对白色念珠菌生物膜的影响[J]. 上海口腔医学, 2020, 29(5): 456-461.
[38] Schamberger, B. and Plaetzer, K. (2021) Photofungizides Based on Curcumin and Derivates Thereof against Candida albicans and Aspergillus Niger. Antibiotics, 10, Article 1315.
https://doi.org/10.3390/antibiotics10111315
[39] Fonseca, L.L., Durães, C.P., Menezes, A.S.d.S., Tabosa, A.T.L., Barbosa, C.U., de Paulo Santiago Filho, A., et al. (2022) Comparison between Two Antimicrobial Photodynamic Therapy Protocols for Oral Candidiasis in Patients Undergoing Treatment for Head and Neck Cancer: A Two-Arm, Single-Blind Clinical Trial. Photodiagnosis and Photodynamic Therapy, 39, Article 102983.
https://doi.org/10.1016/j.pdpdt.2022.102983
[40] Daliri, F., Azizi, A., Goudarzi, M., Lawaf, S. and Rahimi, A. (2019) In Vitro Comparison of the Effect of Photodynamic Therapy with Curcumin and Methylene Blue on Candida albicans Colonies. Photodiagnosis and Photodynamic Therapy, 26, 193-198.
https://doi.org/10.1016/j.pdpdt.2019.03.017
[41] Galstyan, A. (2020) Turning Photons into Drugs: Phthalocyanine‐Based Photosensitizers as Efficient Photoantimicrobials. Chemistry—A European Journal, 27, 1903-1920.
https://doi.org/10.1002/chem.202002703
[42] Ozturk, I., Tunçel, A., Yurt, F., Biyiklioglu, Z., Ince, M. and Ocakoglu, K. (2020) Antifungal Photodynamic Activities of Phthalocyanine Derivatives on Candida albicans. Photodiagnosis and Photodynamic Therapy, 30, Article 101715.
https://doi.org/10.1016/j.pdpdt.2020.101715
[43] Tiburcio, M.A., Rocha, A.R., Romano, R.A., Inada, N.M., Bagnato, V.S., Carlos, R.M., et al. (2022) In Vitro Evaluation of the cis-[Ru(phen)2(pPDIp)]2+⁎⁎ Complex for Antimicrobial Photodynamic Therapy against Sporothrix brasiliensis and Candida albicans. Journal of Photochemistry and Photobiology B: Biology, 229, Article 112414.
https://doi.org/10.1016/j.jphotobiol.2022.112414
[44] Prandini, J.A., Castro, K.A.D.F., Biazzotto, J.C., Brancini, G.T.P., Tomé, J.P.C., Lourenço, L.M.O., et al. (2022) Thiopyridinium Phthalocyanine for Improved Photodynamic Efficiency against Pathogenic Fungi. Journal of Photochemistry and Photobiology B: Biology, 231, Article 112459.
https://doi.org/10.1016/j.jphotobiol.2022.112459
[45] Gonçalves, J.M.L.A., Monteiro, C.M., Machado, G.B. and Pavani, C. (2023) The Combination of Methylene Blue and Sodium Dodecyl Sulfate Enhances the Antimicrobial Photodynamic Therapy of Candida albicans at Lower Light Parameters. Photodiagnosis and Photodynamic Therapy, 42, Article 103583.
https://doi.org/10.1016/j.pdpdt.2023.103583
[46] 李峥, 甄秀梅, 黄力毅, 等. 亚甲基蓝对白色念珠菌的光动力杀伤作用[J]. 广西医科大学学报, 2019, 36(4): 555-558.
[47] 赵玥, 覃金梅, 黄力毅, 等. 二甲基蓝介导的光动力抗菌疗法对AIDS合并口腔白色念珠菌病的疗效观察[J]. 广西医科大学学报, 2018, 35(2): 178-180.
[48] Mariño-Ocampo, N., Reyes, J.S., Günther, G., Heyne, B. and Fuentealba, D. (2022) Thiol-Reacting Toluidine Blue Derivatives: Synthesis, Photophysical Properties and Covalent Conjugation with Human Serum Albumin. Dyes and Pigments, 201, Article 110225.
https://doi.org/10.1016/j.dyepig.2022.110225
[49] Rodrigues, A.B.F., da Silva Passos, J.C. and Costa, M.S. (2023) Effect of Antimicrobial Photodynamic Therapy, Using Toluidine Blue on Dual-Species Biofilms of Candida albicans and Candida krusei. Photodiagnosis and Photodynamic Therapy, 42, Article 103600.
https://doi.org/10.1016/j.pdpdt.2023.103600
[50] Zhang, L., Hu, Q., Zhang, Y., Wang, Y., Liu, N. and Liu, Q. (2023) Rapid Inactivation of Mixed Biofilms of Candida albicans and Candida tropicalis Using Antibacterial Photodynamic Therapy: Based on PAD™ Plus. Heliyon, 9, e15396.
https://doi.org/10.1016/j.heliyon.2023.e15396
[51] Karges, J., Basu, U., Blacque, O., Chao, H. and Gasser, G. (2019) Polymeric Encapsulation of Novel Homoleptic Bis(Dipyrrinato) Zinc(II) Complexes with Long Lifetimes for Applications as Photodynamic Therapy Photosensitisers. Angewandte Chemie International Edition, 58, 14334-14340.
https://doi.org/10.1002/anie.201907856
[52] Zhang, J., Jiang, C., Figueiró Longo, J.P., Azevedo, R.B., Zhang, H. and Muehlmann, L.A. (2018) An Updated Overview on the Development of New Photosensitizers for Anticancer Photodynamic Therapy. Acta Pharmaceutica Sinica B, 8, 137-146.
https://doi.org/10.1016/j.apsb.2017.09.003
[53] Huang, H., Banerjee, S., Qiu, K., Zhang, P., Blacque, O., Malcomson, T., et al. (2019) Targeted Photoredox Catalysis in Cancer Cells. Nature Chemistry, 11, 1041-1048.
https://doi.org/10.1038/s41557-019-0328-4
[54] Lin, M., Zou, S., Liao, X., Chen, Y., Luo, D., Ji, L., et al. (2021) Ruthenium(II) Complexes as Bioorthogonal Two-Photon Photosensitizers for Tumour-Specific Photodynamic Therapy against Triple-Negative Breast Cancer Cells. Chemical Communications, 57, 4408-4411.
https://doi.org/10.1039/d1cc00661d
[55] Paul, S., Kundu, P., Kondaiah, P. and Chakravarty, A.R. (2021) Bodipy-Ruthenium(II) Bis-Terpyridine Complexes for Cellular Imaging and Type-I/-II Photodynamic Therapy. Inorganic Chemistry, 60, 16178-16193.
https://doi.org/10.1021/acs.inorgchem.1c01850
[56] de Sousa, T.V., Jordão, C.C., Abreu-Pereira, C.A., Pereira, A.L.G., Barbugli, P.A., Klein, M.I., et al. (2023) Hydrogen Peroxide Enhances the Efficacy of Photodynamic Therapy against Candida albicans Biofilms. Biofouling, 39, 94-109.
https://doi.org/10.1080/08927014.2023.2189011
[57] 陈冲, 热依拉∙艾克兰木, 郭涛. 制霉菌素联合光动力抗菌疗法治疗口腔念珠菌病的疗效及安全性分析[J]. 中国现代医学杂志, 2022, 32(4): 9-13.
[58] 杨善林, 蓝丽娜, 黄力毅, 等. Photofrin联合碘化钾抗白色念珠菌光动力效果的研究[J]. 中国激光医学杂志, 2022, 31(1): 6-12, 58, 59.
[59] Vieira, C., Gomes, A.T.P.C., Mesquita, M.Q., Moura, N.M.M., Neves, M.G.P.M.S., Faustino, M.A.F., et al. (2018) An Insight into the Potentiation Effect of Potassium Iodide on aPDT Efficacy. Frontiers in Microbiology, 9, Article 2665.
https://doi.org/10.3389/fmicb.2018.02665
[60] Nunes, I.P.F., Crugeira, P.J.L., Sampaio, F.J.P., de Oliveira, S.C.P.S., Azevedo, J.M., Santos, C.L.O., et al. (2023) Evaluation of Dual Application of Photodynamic Therapy—PDT in Candida albicans. Photodiagnosis and Photodynamic Therapy, 42, Article 103327.
https://doi.org/10.1016/j.pdpdt.2023.103327
[61] Chow, E.W.L., Pang, L.M. and Wang, Y. (2023) Impact of the Host Microbiota on Fungal Infections: New Possibilities for Intervention? Advanced Drug Delivery Reviews, 198, Article 114896.
https://doi.org/10.1016/j.addr.2023.114896
[62] Wang, Y., Xu, Y., Guo, X., Wang, L., Zeng, J., Qiu, H., et al. (2022) Enhanced Antimicrobial Activity through the Combination of Antimicrobial Photodynamic Therapy and Low-Frequency Ultrasonic Irradiation. Advanced Drug Delivery Reviews, 183, Article 114168.
https://doi.org/10.1016/j.addr.2022.114168
[63] Awad, M., Thomas, N., Barnes, T.J. and Prestidge, C.A. (2022) Nanomaterials Enabling Clinical Translation of Antimicrobial Photodynamic Therapy. Journal of Controlled Release, 346, 300-316.
https://doi.org/10.1016/j.jconrel.2022.04.035
[64] Qi, M., Chi, M., Sun, X., Xie, X., Weir, M.D., Oates, T.W., et al. (2019) Novel Nanomaterial-Based Antibacterial Photodynamic Therapies to Combat Oral Bacterial Biofilms and Infectious Diseases. International Journal of Nanomedicine, 14, 6937-6956.
https://doi.org/10.2147/ijn.s212807
[65] Rodríguez-Cerdeira, C., Martínez-Herrera, E., Fabbrocini, G., Sanchez-Blanco, B., López-Barcenas, A., EL-Samahy, M., et al. (2021) New Applications of Photodynamic Therapy in the Management of Candidiasis. Journal of Fungi, 7, Article 1025.
https://doi.org/10.3390/jof7121025
[66] Martins Antunes de Melo, W.d.C., Celiešiūtė-Germanienė, R., Šimonis, P. and Stirkė, A. (2021) Antimicrobial Photodynamic Therapy (aPDT) for Biofilm Treatments. Possible Synergy between APDT and Pulsed Electric Fields. Virulence, 12, 2247-2272.
https://doi.org/10.1080/21505594.2021.1960105