[1]
|
El-Azizi, M., Farag, N. and Khardori, N. (2015) Antifungal Activity of Amphotericin B and Voriconazole against the Biofilms and Biofilm-Dispersed Cells of Candida albicans Employing a Newly Developed in Vitro Pharmacokinetic Model. Annals of Clinical Microbiology and Antimicrobials, 14, Article No. 21. https://doi.org/10.1186/s12941-015-0083-3
|
[2]
|
Tobudic, S., Kratzer, C., Lassnigg, A. and Presterl, E. (2011) Antifungal Susceptibility of Candida albicans in Biofilms. Mycoses, 55, 199-204. https://doi.org/10.1111/j.1439-0507.2011.02076.x
|
[3]
|
韦帝远, 闫志敏. 光动力疗法在口腔念珠菌病中的应用前景及研究进展[J]. 口腔医学研究, 2020, 36(12): 1087-1090.
|
[4]
|
Sun, Y., Sun, X., Li, X., Li, W., Li, C., Zhou, Y., et al. (2021) A Versatile Nanocomposite Based on Nanoceria for Antibacterial Enhancement and Protection from aPDT-Aggravated Inflammation via Modulation of Macrophage Polarization. Biomaterials, 268, Article 120614. https://doi.org/10.1016/j.biomaterials.2020.120614
|
[5]
|
Chambrone, L., Wang, H.L. and Romanos, G.E. (2018) Antimicrobial Photodynamic Therapy for the Treatment of Periodontitis and Peri-Implantitis: An American Academy of Periodontology Best Evidence Review. Journal of Periodontology, 89, 783-803.
|
[6]
|
Kwiatkowski, S., Knap, B., Przystupski, D., Saczko, J., Kędzierska, E., Knap-Czop, K., et al. (2018) Photodynamic Therapy—Mechanisms, Photosensitizers and Combinations. Biomedicine & Pharmacotherapy, 106, 1098-1107. https://doi.org/10.1016/j.biopha.2018.07.049
|
[7]
|
Calzavara‐Pinton, P., Rossi, M.T., Sala, R. and Venturini, M. (2012) Photodynamic Antifungal Chemotherapy. Photochemistry and Photobiology, 88, 512-522. https://doi.org/10.1111/j.1751-1097.2012.01107.x
|
[8]
|
解方, 赵华, 李恒进. 5-氨基酮戊酸光动力疗法的原理、应用及不良反应研究进展[J]. 中国药物应用与监测, 2015, 12(2): 111-115.
|
[9]
|
Shi, H., Li, J., Zhang, H., Zhang, J. and Sun, H. (2016) Effect of 5-Aminolevulinic Acid Photodynamic Therapy on Candida albicans Biofilms: An in vitro Study. Photodiagnosis and Photodynamic Therapy, 15, 40-45. https://doi.org/10.1016/j.pdpdt.2016.04.011
|
[10]
|
徐辉, 陈虹霞, 邹先彪. 不同浓度5-氨基酮戊酸对光动力方法抗白念珠菌效果的影响[J]. 中国真菌学杂志, 2015, 10(2): 104-107.
|
[11]
|
张子平, 钟熙, 程波, 等. 5-氨基酮戊酸光动力作用对白念珠菌超微结构的影响[J]. 福建医科大学学报, 2016, 50(4): 260-263.
|
[12]
|
郭庆玲, 孙红英, 马晓娟, 等. 5-氨基酮戊酸光动力疗法对白念珠菌生物膜超微结构的影响[J]. 中国激光医学杂志, 2016, 25(5): 254.
|
[13]
|
梁义, 卢丽明, 陈勇, 等. 5-氨基酮戊酸光动力疗法对白念珠菌抑制效应的实验研究[J]. 海南医学, 2013, 24(10): 1405-1407.
|
[14]
|
仵宁, 刘颖. 不同浓度5-盐酸氨酮戊酸光动力疗法对白色念珠菌耐药菌株的体外抑菌作用[J]. 临床医学研究与实践, 2021, 6(3): 4-7.
|
[15]
|
AlGhamdi, A.S., Qamar, Z., AlSheikh, R., Al Hinai, M.T.A., Abdul, N.S., Aljoghaiman, E.A., et al. (2023) Clinical Efficacy of 5-Aminolevulinic Acid-Mediated Photodynamic Therapy versus Topical Antifungal Agent and Surgical Excision for the Treatment of Hyperplastic Candidiasis. Photodiagnosis and Photodynamic Therapy, 41, Article 103258. https://doi.org/10.1016/j.pdpdt.2022.103258
|
[16]
|
Li, B., Fang, X., Hu, X., Hua, H. and Wei, P. (2022) Successful Treatment of Chronic Hyperplastic Candidiasis with 5-Aminolevulinic Acid Photodynamic Therapy: A Case Report. Photodiagnosis and Photodynamic Therapy, 37, Article 102633. https://doi.org/10.1016/j.pdpdt.2021.102633
|
[17]
|
Wang, Y., Song, J., Zhang, F., Zeng, K. and Zhu, X. (2020) Antifungal Photodynamic Activity of Hexyl-Aminolevulinate Ethosomes against Candida albicans Biofilm. Frontiers in Microbiology, 11, Article 2052. https://doi.org/10.3389/fmicb.2020.02052
|
[18]
|
魏玉德. 竹红菌素研究的进展[J]. 中国实用医药, 2008, 3(11): 147-149.
|
[19]
|
张俭, 马岚. 竹红菌素研究的进展[J]. 云南大学学报(自然科学版), 2003, 25(S1): 184-188.
|
[20]
|
徐倩, 任清褒, 张燕, 等. 竹红菌素的研究进展[J]. 丽水学院学报, 2021, 43(5): 43-48.
|
[21]
|
Yang, Y., Wang, C., Zhuge, Y., Zhang, J., Xu, K., Zhang, Q., et al. (2019) Photodynamic Antifungal Activity of Hypocrellin a against Candida albicans. Frontiers in Microbiology, 10, Article 1810. https://doi.org/10.3389/fmicb.2019.01810
|
[22]
|
Pan, G., Hu, C., Hong, S., Li, H., Yu, D., Cui, C., et al. (2021) Biomimetic Caged Platinum Catalyst for Hydrosilylation Reaction with High Site Selectivity. Nature Communications, 12, Article No. 64. https://doi.org/10.1038/s41467-020-20233-w
|
[23]
|
Qi, S., Lin, X., Zhang, M., Yan, S., Yu, S. and Chen, S. (2014) Preparation and Evaluation of Hypocrellin a Loaded Poly (Lactic-Co-Glycolic Acid) Nanoparticles for Photodynamic Therapy. RSC Advances, 4, 40085-40094. https://doi.org/10.1039/c4ra05796a
|
[24]
|
Liu, X., Fang, R., Feng, R., Li, Q., Su, M., Hou, C., et al. (2022) Cage-Modified Hypocrellin against Multidrug-Resistant Candida spp. with Unprecedented Activity in Light-Triggered Combinational Photodynamic Therapy. Drug Resistance Updates, 65, Article 100887. https://doi.org/10.1016/j.drup.2022.100887
|
[25]
|
Sakita, K.M., Conrado, P.C., Faria, D.R., Arita, G.S., Capoci, I.R., Rodrigues-Vendramini, F.A., et al. (2019) Copolymeric Micelles as Efficient Inert Nanocarrier for Hypericin in the Photodynamic Inactivation of candida Species. Future Microbiology, 14, 519-531. https://doi.org/10.2217/fmb-2018-0304
|
[26]
|
Sato, M.R., Oshiro-Junior, J.A., Rodero, C.F., Boni, F.I., Araújo, V.H.S., Bauab, T.M., et al. (2022) Photodynamic Therapy-Mediated Hypericin-Loaded Nanostructured Lipid Carriers against Vulvovaginal Candidiasis. Journal of Medical Mycology, 32, Article 101296. https://doi.org/10.1016/j.mycmed.2022.101296
|
[27]
|
Paz‐Cristobal, M.P., Royo, D., Rezusta, A., Andrés‐Ciriano, E., Alejandre, M.C., Meis, J.F., et al. (2013) Photodynamic Fungicidal Efficacy of Hypericin and Dimethyl Methylene Blue against Azole‐Resistant Candida albicans Strains. Mycoses, 57, 35-42. https://doi.org/10.1111/myc.12099
|
[28]
|
Casu, C., Orrù, G. and Scano, A. (2022) Curcumin/H2O2 Photodynamically Activated: An Antimicrobial Time-Response Assessment against an MDR Strain of Candida albicans. European Review for Medical and Pharmacological Sciences, 26, 8841-8851.
|
[29]
|
Zheng, D., Huang, C., Huang, H., Zhao, Y., Khan, M.R.U., Zhao, H., et al. (2020) Antibacterial Mechanism of Curcumin: A Review. Chemistry & Biodiversity, 17, e2000171. https://doi.org/10.1002/cbdv.202000171
|
[30]
|
周子伊, 任彪, 周学东. 姜黄素介导光动力治疗口腔感染性疾病的研究进展[J]. 口腔疾病防治, 2022, 30(8): 588-593.
|
[31]
|
Dantas Lopes dos Santos, D., Besegato, J.F., de Melo, P.B.G., Oshiro Junior, J.A., Chorilli, M., Deng, D., et al. (2021) Curcumin‐Loaded Pluronic® F‐127 Micelles as a Drug Delivery System for Curcumin‐Mediated Photodynamic Therapy for Oral Application. Photochemistry and Photobiology, 97, 1072-1088. https://doi.org/10.1111/php.13433
|
[32]
|
Sakima, V.T., Barbugli, P.A., Cerri, P.S., Chorilli, M., Carmello, J.C., Pavarina, A.C., et al. (2018) Antimicrobial Photodynamic Therapy Mediated by Curcumin-Loaded Polymeric Nanoparticles in a Murine Model of Oral Candidiasis. Molecules, 23, Article 2075. https://doi.org/10.3390/molecules23082075
|
[33]
|
Kanpittaya, K., Teerakapong, A., Morales, N.P., Hormdee, D., Priprem, A., Weera-Archakul, W., et al. (2021) Inhibitory Effects of Erythrosine/Curcumin Derivatives/Nano-Titanium Dioxide-Mediated Photodynamic Therapy on Candida albicans. Molecules, 26, Article 2405. https://doi.org/10.3390/molecules26092405
|
[34]
|
Ma, J., Shi, H., Sun, H., Li, J. and Bai, Y. (2019) Antifungal Effect of Photodynamic Therapy Mediated by Curcumin on Candida albicans Biofilms in vitro. Photodiagnosis and Photodynamic Therapy, 27, 280-287. https://doi.org/10.1016/j.pdpdt.2019.06.015
|
[35]
|
Al-Ghamdi, A.R.S., Khanam, H.K., Qamar, Z., Abdul, N.S., Reddy, N., Vempalli, S., et al. (2023) Therapeutic Efficacy of Adjunctive Photodynamic Therapy in the Treatment of Denture Stomatitis. Photodiagnosis and Photodynamic Therapy, 42, Article 103326. https://doi.org/10.1016/j.pdpdt.2023.103326
|
[36]
|
Labban, N., Taweel, S.M.A., ALRabiah, M.A., Alfouzan, A.F., Alshiddi, I.F. and Assery, M.K. (2021) Efficacy of Rose Bengal and Curcumin Mediated Photodynamic Therapy for the Treatment of Denture Stomatitis in Patients with Habitual Cigarette Smoking: A Randomized Controlled Clinical Trial. Photodiagnosis and Photodynamic Therapy, 35, Article 102380. https://doi.org/10.1016/j.pdpdt.2021.102380
|
[37]
|
马婧, 李继扬, 杨巧珍, 等. 不同功率密度的姜黄素-光动力疗法对白色念珠菌生物膜的影响[J]. 上海口腔医学, 2020, 29(5): 456-461.
|
[38]
|
Schamberger, B. and Plaetzer, K. (2021) Photofungizides Based on Curcumin and Derivates Thereof against Candida albicans and Aspergillus Niger. Antibiotics, 10, Article 1315. https://doi.org/10.3390/antibiotics10111315
|
[39]
|
Fonseca, L.L., Durães, C.P., Menezes, A.S.d.S., Tabosa, A.T.L., Barbosa, C.U., de Paulo Santiago Filho, A., et al. (2022) Comparison between Two Antimicrobial Photodynamic Therapy Protocols for Oral Candidiasis in Patients Undergoing Treatment for Head and Neck Cancer: A Two-Arm, Single-Blind Clinical Trial. Photodiagnosis and Photodynamic Therapy, 39, Article 102983. https://doi.org/10.1016/j.pdpdt.2022.102983
|
[40]
|
Daliri, F., Azizi, A., Goudarzi, M., Lawaf, S. and Rahimi, A. (2019) In Vitro Comparison of the Effect of Photodynamic Therapy with Curcumin and Methylene Blue on Candida albicans Colonies. Photodiagnosis and Photodynamic Therapy, 26, 193-198. https://doi.org/10.1016/j.pdpdt.2019.03.017
|
[41]
|
Galstyan, A. (2020) Turning Photons into Drugs: Phthalocyanine‐Based Photosensitizers as Efficient Photoantimicrobials. Chemistry—A European Journal, 27, 1903-1920. https://doi.org/10.1002/chem.202002703
|
[42]
|
Ozturk, I., Tunçel, A., Yurt, F., Biyiklioglu, Z., Ince, M. and Ocakoglu, K. (2020) Antifungal Photodynamic Activities of Phthalocyanine Derivatives on Candida albicans. Photodiagnosis and Photodynamic Therapy, 30, Article 101715. https://doi.org/10.1016/j.pdpdt.2020.101715
|
[43]
|
Tiburcio, M.A., Rocha, A.R., Romano, R.A., Inada, N.M., Bagnato, V.S., Carlos, R.M., et al. (2022) In Vitro Evaluation of the cis-[Ru(phen)2(pPDIp)]2+⁎⁎ Complex for Antimicrobial Photodynamic Therapy against Sporothrix brasiliensis and Candida albicans. Journal of Photochemistry and Photobiology B: Biology, 229, Article 112414. https://doi.org/10.1016/j.jphotobiol.2022.112414
|
[44]
|
Prandini, J.A., Castro, K.A.D.F., Biazzotto, J.C., Brancini, G.T.P., Tomé, J.P.C., Lourenço, L.M.O., et al. (2022) Thiopyridinium Phthalocyanine for Improved Photodynamic Efficiency against Pathogenic Fungi. Journal of Photochemistry and Photobiology B: Biology, 231, Article 112459. https://doi.org/10.1016/j.jphotobiol.2022.112459
|
[45]
|
Gonçalves, J.M.L.A., Monteiro, C.M., Machado, G.B. and Pavani, C. (2023) The Combination of Methylene Blue and Sodium Dodecyl Sulfate Enhances the Antimicrobial Photodynamic Therapy of Candida albicans at Lower Light Parameters. Photodiagnosis and Photodynamic Therapy, 42, Article 103583. https://doi.org/10.1016/j.pdpdt.2023.103583
|
[46]
|
李峥, 甄秀梅, 黄力毅, 等. 亚甲基蓝对白色念珠菌的光动力杀伤作用[J]. 广西医科大学学报, 2019, 36(4): 555-558.
|
[47]
|
赵玥, 覃金梅, 黄力毅, 等. 二甲基蓝介导的光动力抗菌疗法对AIDS合并口腔白色念珠菌病的疗效观察[J]. 广西医科大学学报, 2018, 35(2): 178-180.
|
[48]
|
Mariño-Ocampo, N., Reyes, J.S., Günther, G., Heyne, B. and Fuentealba, D. (2022) Thiol-Reacting Toluidine Blue Derivatives: Synthesis, Photophysical Properties and Covalent Conjugation with Human Serum Albumin. Dyes and Pigments, 201, Article 110225. https://doi.org/10.1016/j.dyepig.2022.110225
|
[49]
|
Rodrigues, A.B.F., da Silva Passos, J.C. and Costa, M.S. (2023) Effect of Antimicrobial Photodynamic Therapy, Using Toluidine Blue on Dual-Species Biofilms of Candida albicans and Candida krusei. Photodiagnosis and Photodynamic Therapy, 42, Article 103600. https://doi.org/10.1016/j.pdpdt.2023.103600
|
[50]
|
Zhang, L., Hu, Q., Zhang, Y., Wang, Y., Liu, N. and Liu, Q. (2023) Rapid Inactivation of Mixed Biofilms of Candida albicans and Candida tropicalis Using Antibacterial Photodynamic Therapy: Based on PAD™ Plus. Heliyon, 9, e15396. https://doi.org/10.1016/j.heliyon.2023.e15396
|
[51]
|
Karges, J., Basu, U., Blacque, O., Chao, H. and Gasser, G. (2019) Polymeric Encapsulation of Novel Homoleptic Bis(Dipyrrinato) Zinc(II) Complexes with Long Lifetimes for Applications as Photodynamic Therapy Photosensitisers. Angewandte Chemie International Edition, 58, 14334-14340. https://doi.org/10.1002/anie.201907856
|
[52]
|
Zhang, J., Jiang, C., Figueiró Longo, J.P., Azevedo, R.B., Zhang, H. and Muehlmann, L.A. (2018) An Updated Overview on the Development of New Photosensitizers for Anticancer Photodynamic Therapy. Acta Pharmaceutica Sinica B, 8, 137-146. https://doi.org/10.1016/j.apsb.2017.09.003
|
[53]
|
Huang, H., Banerjee, S., Qiu, K., Zhang, P., Blacque, O., Malcomson, T., et al. (2019) Targeted Photoredox Catalysis in Cancer Cells. Nature Chemistry, 11, 1041-1048. https://doi.org/10.1038/s41557-019-0328-4
|
[54]
|
Lin, M., Zou, S., Liao, X., Chen, Y., Luo, D., Ji, L., et al. (2021) Ruthenium(II) Complexes as Bioorthogonal Two-Photon Photosensitizers for Tumour-Specific Photodynamic Therapy against Triple-Negative Breast Cancer Cells. Chemical Communications, 57, 4408-4411. https://doi.org/10.1039/d1cc00661d
|
[55]
|
Paul, S., Kundu, P., Kondaiah, P. and Chakravarty, A.R. (2021) Bodipy-Ruthenium(II) Bis-Terpyridine Complexes for Cellular Imaging and Type-I/-II Photodynamic Therapy. Inorganic Chemistry, 60, 16178-16193. https://doi.org/10.1021/acs.inorgchem.1c01850
|
[56]
|
de Sousa, T.V., Jordão, C.C., Abreu-Pereira, C.A., Pereira, A.L.G., Barbugli, P.A., Klein, M.I., et al. (2023) Hydrogen Peroxide Enhances the Efficacy of Photodynamic Therapy against Candida albicans Biofilms. Biofouling, 39, 94-109. https://doi.org/10.1080/08927014.2023.2189011
|
[57]
|
陈冲, 热依拉∙艾克兰木, 郭涛. 制霉菌素联合光动力抗菌疗法治疗口腔念珠菌病的疗效及安全性分析[J]. 中国现代医学杂志, 2022, 32(4): 9-13.
|
[58]
|
杨善林, 蓝丽娜, 黄力毅, 等. Photofrin联合碘化钾抗白色念珠菌光动力效果的研究[J]. 中国激光医学杂志, 2022, 31(1): 6-12, 58, 59.
|
[59]
|
Vieira, C., Gomes, A.T.P.C., Mesquita, M.Q., Moura, N.M.M., Neves, M.G.P.M.S., Faustino, M.A.F., et al. (2018) An Insight into the Potentiation Effect of Potassium Iodide on aPDT Efficacy. Frontiers in Microbiology, 9, Article 2665. https://doi.org/10.3389/fmicb.2018.02665
|
[60]
|
Nunes, I.P.F., Crugeira, P.J.L., Sampaio, F.J.P., de Oliveira, S.C.P.S., Azevedo, J.M., Santos, C.L.O., et al. (2023) Evaluation of Dual Application of Photodynamic Therapy—PDT in Candida albicans. Photodiagnosis and Photodynamic Therapy, 42, Article 103327. https://doi.org/10.1016/j.pdpdt.2023.103327
|
[61]
|
Chow, E.W.L., Pang, L.M. and Wang, Y. (2023) Impact of the Host Microbiota on Fungal Infections: New Possibilities for Intervention? Advanced Drug Delivery Reviews, 198, Article 114896. https://doi.org/10.1016/j.addr.2023.114896
|
[62]
|
Wang, Y., Xu, Y., Guo, X., Wang, L., Zeng, J., Qiu, H., et al. (2022) Enhanced Antimicrobial Activity through the Combination of Antimicrobial Photodynamic Therapy and Low-Frequency Ultrasonic Irradiation. Advanced Drug Delivery Reviews, 183, Article 114168. https://doi.org/10.1016/j.addr.2022.114168
|
[63]
|
Awad, M., Thomas, N., Barnes, T.J. and Prestidge, C.A. (2022) Nanomaterials Enabling Clinical Translation of Antimicrobial Photodynamic Therapy. Journal of Controlled Release, 346, 300-316. https://doi.org/10.1016/j.jconrel.2022.04.035
|
[64]
|
Qi, M., Chi, M., Sun, X., Xie, X., Weir, M.D., Oates, T.W., et al. (2019) Novel Nanomaterial-Based Antibacterial Photodynamic Therapies to Combat Oral Bacterial Biofilms and Infectious Diseases. International Journal of Nanomedicine, 14, 6937-6956. https://doi.org/10.2147/ijn.s212807
|
[65]
|
Rodríguez-Cerdeira, C., Martínez-Herrera, E., Fabbrocini, G., Sanchez-Blanco, B., López-Barcenas, A., EL-Samahy, M., et al. (2021) New Applications of Photodynamic Therapy in the Management of Candidiasis. Journal of Fungi, 7, Article 1025. https://doi.org/10.3390/jof7121025
|
[66]
|
Martins Antunes de Melo, W.d.C., Celiešiūtė-Germanienė, R., Šimonis, P. and Stirkė, A. (2021) Antimicrobial Photodynamic Therapy (aPDT) for Biofilm Treatments. Possible Synergy between APDT and Pulsed Electric Fields. Virulence, 12, 2247-2272. https://doi.org/10.1080/21505594.2021.1960105
|