[1]
|
Llovet, J.M., Kelley, R.K., Villanueva, A., Singal, A.G., Pikarsky, E., Roayaie, S., et al. (2021) Hepatocellular Carcinoma. Nature Reviews Disease Primers, 7, Article No. 6. https://doi.org/10.1038/s41572-020-00240-3
|
[2]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
|
[3]
|
Gao, Y., You, M., Fu, J., Tian, M., Zhong, X., Du, C., et al. (2022) Intratumoral Stem-Like CCR4+ Regulatory T Cells Orchestrate the Immunosuppressive Microenvironment in HCC Associated with Hepatitis B. Journal of Hepatology, 76, 148-159. https://doi.org/10.1016/j.jhep.2021.08.029
|
[4]
|
Hoechst, B., Voigtlaender, T., Ormandy, L., Gamrekelashvili, J., Zhao, F., Wedemeyer, H., et al. (2009) Myeloid Derived Suppressor Cells Inhibit Natural Killer Cells in Patients with Hepatocellular Carcinoma via the NKP30 Receptor. Hepatology, 50, 799-807. https://doi.org/10.1002/hep.23054
|
[5]
|
Gupta, T. and Jarpula, N.S. (2024) Hepatocellular Carcinoma Immune Microenvironment and Check Point Inhibitors-Current Status. World Journal of Hepatology, 16, 353-365. https://doi.org/10.4254/wjh.v16.i3.353
|
[6]
|
Wu, J., Lu, A.D., Zhang, L.P., et al. (2019) Study of Clinical Outcome and Prognosis in Pediatric Core Binding Factor-Acute Myeloid Leukemia. Chinese Journal of Hematology, 40, 52-57.
|
[7]
|
Hou, K., Xu, X., Ge, X., Jiang, J. and Ouyang, F. (2023) Blockade of PD-1 and CTLA-4: A Potent Immunotherapeutic Approach for Hepatocellular Carcinoma. BioFactors, 50, 250-265. https://doi.org/10.1002/biof.2012
|
[8]
|
Li, X., Hu, W., Zheng, X., Zhang, C., Du, P., Zheng, Z., et al. (2015) Emerging Immune Checkpoints for Cancer Therapy. Acta Oncologica, 54, 1706-1713. https://doi.org/10.3109/0284186x.2015.1071918
|
[9]
|
El-Khoueiry, A.B., Sangro, B., Yau, T., Crocenzi, T.S., Kudo, M., Hsu, C., et al. (2017) Nivolumab in Patients with Advanced Hepatocellular Carcinoma (Checkmate 040): An Open-Label, Non-Comparative, Phase 1/2 Dose Escalation and Expansion Trial. The Lancet, 389, 2492-2502. https://doi.org/10.1016/s0140-6736(17)31046-2
|
[10]
|
Yau, T., Park, J., Finn, R.S., Cheng, A., Mathurin, P., Edeline, J., et al. (2022) Nivolumab versus Sorafenib in Advanced Hepatocellular Carcinoma (Checkmate 459): A Randomized, Multi-Centre, Open-Label, Phase 3 Trial. The Lancet Oncology, 23, 77-90. https://doi.org/10.1016/s1470-2045(21)00604-5
|
[11]
|
Zhu, A.X., Finn, R.S., Edeline, J., Cattan, S., Ogasawara, S., Palmer, D., et al. (2018) Pembrolizumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib (KEYNOTE-224): A Non-Randomized, Open-Label Phase 2 Trial. The Lancet Oncology, 19, 940-952. https://doi.org/10.1016/s1470-2045(18)30351-6
|
[12]
|
Kudo, M., Finn, R.S., Edeline, J., Cattan, S., Ogasawara, S., Palmer, D.H., et al. (2022) Updated Efficacy and Safety of KEYNOTE-224: A Phase II Study of Pembrolizumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib. European Journal of Cancer, 167, 1-12. https://doi.org/10.1016/j.ejca.2022.02.009
|
[13]
|
Kuo, H., Han, M., Liao, C., Lin, Y., Wang, C., Chen, S., et al. (2022) Real-World Comparative Effectiveness of Nivolumab versus Pembrolizumab in Patients with Unresectable Hepatocellular Carcinoma. Pharmaceutics, 14, Article 2263. https://doi.org/10.3390/pharmaceutics14112263
|
[14]
|
Chen, Y., Tsai, C., Chen, Y., Wang, C., Wang, J., Hung, C., et al. (2023) Real-World Comparison of Pembrolizumab and Nivolumab in Advanced Hepatocellular Carcinoma. BMC Cancer, 23, Article No. 810. https://doi.org/10.1186/s12885-023-11298-z
|
[15]
|
Huang, X., Xu, L., Ma, T., Yin, X., Huang, Z., Ran, Y., et al. (2021) Lenvatinib Plus Immune Checkpoint Inhibitors Improve Survival in Advanced Hepatocellular Carcinoma: A Retrospective Study. Frontiers in Oncology, 11, Article 751159. https://doi.org/10.3389/fonc.2021.751159
|
[16]
|
Scheiner, B., Kirstein, M.M., Hucke, F., Finkelmeier, F., Schulze, K., von Felden, J., et al. (2019) Programmed Cell Death Protein-1 (PD-1)-Targeted Immunotherapy in Advanced Hepatocellular Carcinoma: Efficacy and Safety Data from an International Multi-Centre Real-World Cohort. Alimentary Pharmacology & Therapeutics, 49, 1323-1333. https://doi.org/10.1111/apt.15245
|
[17]
|
Qin, S., Ren, Z., Meng, Z., Chen, Z., Chai, X., Xiong, J., et al. (2020) Camrelizumab in Patients with Previously Treated Advanced Hepatocellular Carcinoma: A Multicentre, Open-Label, Parallel-Group, Randomized, Phase 2 Trial. The Lancet Oncology, 21, 571-580. https://doi.org/10.1016/s1470-2045(20)30011-5
|
[18]
|
Abou-Alfa, G.K.,Lau, G., Kudo, M., et al. (2022) Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evidence, 1, EVIDoa2100070.
|
[19]
|
Yau, T., Kang, Y., Kim, T., El-Khoueiry, A.B., Santoro, A., Sangro, B., et al. (2020) Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib. JAMA Oncology, 6, e204564. https://doi.org/10.1001/jamaoncol.2020.4564
|
[20]
|
Qin, S., Kudo, M., Meyer, T., Bai, Y., Guo, Y., Meng, Z., et al. (2023) Tislelizumab vs Sorafenib as First-Line Treatment for Unresectable Hepatocellular Carcinoma. JAMA Oncology, 9, 1651-1659. https://doi.org/10.1001/jamaoncol.2023.4003
|
[21]
|
Zheng, X., Liu, X., Lei, Y., Wang, G. and Liu, M. (2022) Glypican-3: A Novel and Promising Target for the Treatment of Hepatocellular Carcinoma. Frontiers in Oncology, 12, Article 824208. https://doi.org/10.3389/fonc.2022.824208
|
[22]
|
Liu, H., Xu, Y., Xiang, J., Long, L., Green, S., Yang, Z., et al. (2017) Targeting Alpha-Fetoprotein (AFP)-MHC Complex with CAR T-Cell Therapy for Liver Cancer. Clinical Cancer Research, 23, 478-488. https://doi.org/10.1158/1078-0432.ccr-16-1203
|
[23]
|
Ko, C., Li, C., Wu, M. and Chu, P. (2018) Overexpression of Epithelial Cell Adhesion Molecule as a Predictor of Poor Outcome in Patients with Hepatocellular Carcinoma. Experimental and Therapeutic Medicine, 16, 4810-4816. https://doi.org/10.3892/etm.2018.6794
|
[24]
|
Milone, M.C., Xu, J., Chen, S., Collins, M.A., Zhou, J., Powell, D.J., et al. (2021) Engineering-Enhanced CAR T Cells for Improved Cancer Therapy. Nature Cancer, 2, 780-793. https://doi.org/10.1038/s43018-021-00241-5
|
[25]
|
Chen, C., Wang, Z., Ding, Y. and Qin, Y. (2023) Tumor Microenvironment-Mediated Immune Evasion in Hepatocellular Carcinoma. Frontiers in Immunology, 14, Article 1133308. https://doi.org/10.3389/fimmu.2023.1133308
|
[26]
|
Cappell, K.M. and Kochenderfer, J.N. (2023) Long-Term Outcomes Following CAR T Cell Therapy: What We Know So Far. Nature Reviews Clinical Oncology, 20, 359-371. https://doi.org/10.1038/s41571-023-00754-1
|
[27]
|
Wang, H., Wang, X., Ye, X., Ju, Y., Cao, N., Wang, S., et al. (2022) Nonviral mcDNA-Mediated Bispecific CAR T Cells Kill Tumor Cells in an Experimental Mouse Model of Hepatocellular Carcinoma. BMC Cancer, 22, Article No. 814. https://doi.org/10.1186/s12885-022-09861-1
|
[28]
|
Agarwal, S., Aznar, M.A., Rech, A.J., Good, C.R., Kuramitsu, S., Da, T., et al. (2023) Deletion of the Inhibitory Co-Receptor CTLA-4 Enhances and Invigorates Chimeric Antigen Receptor T Cells. Immunity, 56, 2388-2407.e9. https://doi.org/10.1016/j.immuni.2023.09.001
|
[29]
|
Guo, X., Jiang, H., Shi, B., Zhou, M., Zhang, H., Shi, Z., et al. (2018) Disruption of PD-1 Enhanced the Anti-Tumor Activity of Chimeric Antigen Receptor T Cells against Hepatocellular Carcinoma. Frontiers in Pharmacology, 9, Article 1118. https://doi.org/10.3389/fphar.2018.01118
|
[30]
|
Liu, Y., Di, S., Shi, B., Zhang, H., Wang, Y., Wu, X., et al. (2019) Armored Inducible Expression of IL-12 Enhances Antitumor Activity of Glypican-3-Targeted Chimeric Antigen Receptor-Engineered T Cells in Hepatocellular Carcinoma. The Journal of Immunology, 203, 198-207. https://doi.org/10.4049/jimmunol.1800033
|
[31]
|
Taniguchi, M., Mizuno, S., Yoshikawa, T., Fujinami, N., Sugimoto, M., Kobayashi, S., et al. (2020) Peptide Vaccine as an Adjuvant Therapy for Glypican-3-Positive Hepatocellular Carcinoma Induces Peptide-Specific CTLS and Improves Long Prognosis. Cancer Science, 111, 2747-2759. https://doi.org/10.1111/cas.14497
|
[32]
|
Chen, Y., Huang, A., Gao, M., Yan, Y. and Zhang, W. (2013) Potential Therapeutic Value of Dendritic Cells Loaded with NY-ESO-1 Protein for the Immunotherapy of Advanced Hepatocellular Carcinoma. International Journal of Molecular Medicine, 32, 1366-1372. https://doi.org/10.3892/ijmm.2013.1510
|
[33]
|
Charneau, J., Suzuki, T., Shimomura, M., Fujinami, N. and Nakatsura, T. (2021) Peptide-Based Vaccines for Hepatocellular Carcinoma: A Review of Recent Advances. Journal of Hepatocellular Carcinoma, 8, 1035-1054. https://doi.org/10.2147/jhc.s291558
|
[34]
|
Schumacher, T.N., Scheper, W. and Kvistborg, P. (2019) Cancer Neoantigens. Annual Review of Immunology, 37, 173-200. https://doi.org/10.1146/annurev-immunol-042617-053402
|
[35]
|
Silva, L., Egea, J., Villanueva, L., Ruiz, M., Llopiz, D., Repáraz, D., et al. (2020) Cold-Inducible RNA Binding Protein as a Vaccination Platform to Enhance Immunotherapeutic Responses against Hepatocellular Carcinoma. Cancers, 12, Article 3397. https://doi.org/10.3390/cancers12113397
|
[36]
|
Zhang, Y., Xie, F., Yin, Y., Zhang, Q., Jin, H., Wu, Y., et al. (2021) Immunotherapy of Tumor RNA-Loaded Lipid Nanoparticles against Hepatocellular Carcinoma. International Journal of Nanomedicine, 16, 1553-1564. https://doi.org/10.2147/ijn.s291421
|
[37]
|
Allen, E., Jabouille, A., Rivera, L.B., Lodewijckx, I., Missiaen, R., Steri, V., et al. (2017) Combined Antiangiogenic and Anti-PD-L1 Therapy Stimulates Tumor Immunity through HEV Formation. Science Translational Medicine, 9, 1-13. https://doi.org/10.1126/scitranslmed.aak9679
|
[38]
|
Cheng, A., Qin, S., Ikeda, M., Galle, P.R., Ducreux, M., Kim, T., et al. (2022) Updated Efficacy and Safety Data from IMbrave150: Atezolizumab plus Bevacizumab vs. Sorafenib for Unresectable Hepatocellular Carcinoma. Journal of Hepatology, 76, 862-873. https://doi.org/10.1016/j.jhep.2021.11.030
|
[39]
|
Ren, Z., Xu, J., Bai, Y., Xu, A., Cang, S., Du, C., et al. (2021) Sintilimab Plus a Bevacizumab Biosimilar (IBI305) versus Sorafenib in Unresectable Hepatocellular Carcinoma (ORIENT-32): A Randomized, Open-Label, Phase 2-3 Study. The Lancet Oncology, 22, 977-990. https://doi.org/10.1016/s1470-2045(21)00252-7
|
[40]
|
Finn, R.S., Ikeda, M., Zhu, A.X., Sung, M.W., Baron, A.D., Kudo, M., et al. (2020) Phase IB Study of Lenvatinib Plus Pembrolizumab in Patients with Unresectable Hepatocellular Carcinoma. Journal of Clinical Oncology, 38, 2960-2970. https://doi.org/10.1200/jco.20.00808
|
[41]
|
Xu, J., Shen, J., Gu, S., Zhang, Y., Wu, L., Wu, J., et al. (2021) Camrelizumab in Combination with Apatinib in Patients with Advanced Hepatocellular Carcinoma (RESCUE): A Nonrandomized, Open-Label, Phase II Trial. Clinical Cancer Research, 27, 1003-1011. https://doi.org/10.1158/1078-0432.ccr-20-2571
|
[42]
|
Lu, M., Zhang, X., Gao, X., Sun, S., Wei, X., Hu, X., et al. (2021) Lenvatinib Enhances T Cell Immunity and the Efficacy of Adoptive Chimeric Antigen Receptor-Modified T Cells by Decreasing Myeloid-Derived Suppressor Cells in Cancer. Pharmacological Research, 174, Article 105829. https://doi.org/10.1016/j.phrs.2021.105829
|
[43]
|
Kelley, R.K., Sangro, B., Harris, W., Ikeda, M., Okusaka, T., Kang, Y., et al. (2021) Safety, Efficacy, and Pharmacodynamics of Tremelimumab Plus Durvalumab for Patients with Unresectable Hepatocellular Carcinoma: Randomized Expansion of a Phase I/II Study. Journal of Clinical Oncology, 39, 2991-3001. https://doi.org/10.1200/jco.20.03555
|
[44]
|
Duffy, A.G., Ulahannan, S.V., Makorova-Rusher, O., Rahma, O., Wedemeyer, H., Pratt, D., et al. (2017) Tremelimumab in Combination with Ablation in Patients with Advanced Hepatocellular Carcinoma. Journal of Hepatology, 66, 545-551. https://doi.org/10.1016/j.jhep.2016.10.029
|
[45]
|
Cao, F., Shi, C., Zhang, G., Luo, J., Zheng, J. and Hao, W. (2023) Improved Clinical Outcomes in Advanced Hepatocellular Carcinoma Treated with Transarterial Chemoembolization Plus Atezolizumab and Bevacizumab: A Bicentric Retrospective Study. BMC Cancer, 23, Article No. 873. https://doi.org/10.1186/s12885-023-11389-x
|
[46]
|
Nobuoka, D.,Motomura, Y.,Shirakawa, H., et al. (2012) Radiofrequency Ablation for Hepatocellular Carcinoma Induces Glypican-3 Peptide-Specific Cytotoxic T Lymphocytes. International Journal of Oncology, 40, 63-70.
|
[47]
|
Spahn, S., Roessler, D., Pompilia, R., Gabernet, G., Gladstone, B.P., Horger, M., et al. (2020) Clinical and Genetic Tumor Characteristics of Responding and Non-Responding Patients to PD-1 Inhibition in Hepatocellular Carcinoma. Cancers, 12, Article 3830. https://doi.org/10.3390/cancers12123830
|
[48]
|
Dharmapuri, S., Özbek, U., Lin, J., Sung, M., Schwartz, M., Branch, A.D., et al. (2020) Predictive Value of Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio in Advanced Hepatocellular Carcinoma Patients Treated with Anti-PD-1 Therapy. Cancer Medicine, 9, 4962-4970. https://doi.org/10.1002/cam4.3135
|
[49]
|
Chung, M., Kim, M., Won, E.J., Lee, Y.J., Yun, Y., Cho, S.B., et al. (2021) Gut Microbiome Composition Can Predict the Response to Nivolumab in Advanced Hepatocellular Carcinoma Patients. World Journal of Gastroenterology, 27, 7340-7349. https://doi.org/10.3748/wjg.v27.i42.7340
|
[50]
|
Mao, J., Wang, D., Long, J., Yang, X., Lin, J., Song, Y., et al. (2021) Gut Microbiome Is Associated with the Clinical Response to Anti-PD-1 Based Immunotherapy in Hepatobiliary Cancers. Journal for Immuno Therapy of Cancer, 9, e003334. https://doi.org/10.1136/jitc-2021-003334
|
[51]
|
Xu, J., Zhang, Y., Jia, R., Yue, C., Chang, L., Liu, R., et al. (2019) Anti-PD-1 Antibody SHR-1210 Combined with Apatinib for Advanced Hepatocellular Carcinoma, Gastric, or Esophagogastric Junction Cancer: An Open-Label, Dose Escalation and Expansion Study. Clinical Cancer Research, 25, 515-523. https://doi.org/10.1158/1078-0432.ccr-18-2484
|
[52]
|
Xu, X., Tan, Y., Qian, Y., Xue, W., Wang, Y., Du, J., et al. (2019) Clinicopathologic and Prognostic Significance of Tumor-Infiltrating CD8+T Cells in Patients with Hepatocellular Carcinoma. Medicine, 98, e13923. https://doi.org/10.1097/md.0000000000013923
|
[53]
|
Zhu, A.X., Abbas, A.R., de Galarreta, M.R., Guan, Y., Lu, S., Koeppen, H., et al. (2022) Molecular Correlates of Clinical Response and Resistance to Atezolizumab in Combination with Bevacizumab in Advanced Hepatocellular Carcinoma. Nature Medicine, 28, 1599-1611. https://doi.org/10.1038/s41591-022-01868-2
|