偏头痛相关发病机制进展综述
Progress in Research on the Pathogenesis of Migraine: A Review
DOI: 10.12677/acm.2025.151045, PDF, HTML, XML,    科研立项经费支持
作者: 王 怡, 康富丽, 蔡青青, 马璟曦*:重庆医科大学,重庆;重庆市人民医院神经内科,重庆;廖金成:重庆市人民医院神经内科,重庆;薛锐灵:重庆医科大学,重庆;重庆市人民医院康复医学科,重庆;张晖集:重庆医科大学,重庆;李佳妮:重庆医科大学附属第二医院神经内科,重庆;李 鑫:重庆市沙坪坝区人民医院神经内科,重庆
关键词: 偏头痛皮质扩散性抑制三叉神经血管学说遗传学Migraine Cortical Spreading Depression Trigeminal Neurovascular Theory Genetics
摘要: 偏头痛是一种较为常见的头痛,在世界流行疾病中排名第三,同时也是世界第二大致残疾病,可为患者带来巨大的生活负担,这就亟需对因治疗偏头痛,为患者从根本上解决头痛问题,但是目前针对偏头痛发病机制的研究结论尚不明确,各种关于偏头痛发病机制的理论层出不穷,其中就皮质扩散性抑制、三叉神经血管学说及遗传学三个理论被学术界广泛接受。本文通过回顾以往关于偏头痛发病机制的研究,总结上述三大理论的研究进展,以期明确偏头痛患者头痛背后的原因,从而为临床医生更好地治疗偏头痛提供更为有力的证据。
Abstract: Migraine is a widespread headache, ranking third in global epidemic diseases and the second most disabling disease worldwide, which burdens patients significantly. It is urgent to treat migraines and fundamentally solve the headache problem for patients, but the research conclusions on migraines’ pathogenesis are unclear. Various theories on the pathogenesis of migraine emerge endlessly, among which the academic community widely accepts cortical spreading depression, trigeminal neurovascular theory, and genetic theory. This article will review the previous research on the pathogenesis of migraine and summarize the research progress of the above three theories, clarify the reasons behind migraine patients’ headaches, and provide more powerful evidence for clinicians to treat migraine better.
文章引用:王怡, 康富丽, 廖金成, 薛锐灵, 蔡青青, 张晖集, 李佳妮, 李鑫, 马璟曦. 偏头痛相关发病机制进展综述[J]. 临床医学进展, 2025, 15(1): 323-332. https://doi.org/10.12677/acm.2025.151045

1. 引言

偏头痛是一种慢性的、较为复杂的常见神经系统疾病,主要以单侧或双侧反复发作的、搏动性的中重度头痛为表现,发病时间多在4~72小时,发作时常伴有恶心、呕吐、畏声、畏光等症状,被世界卫生组织列为世界第三大流行疾病和第二大致残疾病[1] [2],且偏头痛在15~49岁女性人群伤残调整生命年中排名居首位。据全球疾病负担研究显示,全球约有10.4亿人口饱受偏头痛折磨,主要发生在中老年人群中,40岁左右最常见,其中女性患病率高于男性[3]。据调查,全球偏头痛患者中,男性患病率约11.24%,女性患病率约19.01%。在我国,2019年女性偏头痛患者新增超过8000万,男性患者新增超过4700万。偏头痛的发生会导致患者工作效率降低,对患者的生活方式及社会和人际关系产生严重影响[4],严重影响患者的生活质量。因此,了解偏头痛的发病机制,并据其发病机制进行对因治疗就成为了偏头痛患者亟须解决的一大问题。本文就偏头痛的发病机制进行相关概述,以期为偏头痛的对因治疗提供临床依据。

2. 皮质扩散性抑制与偏头痛

何为皮质扩散性抑制?皮质扩散性抑制(cortical spreading depression, CSD)是Leao于1947年在实验兔子的脑部发现,简单来说,它是由于大脑皮质细胞外高钾离子和细胞内高钠及高钙离子产生的缓慢的直流电位的播散,从而导致胶质细胞和神经元细胞去极化的缓慢(2~5 mm/min)传播波[5] [6]。研究发现,CSD主要是以神经元细胞肿胀、细胞外高钾及谷氨酸升高为特征的[7]。同时,临床前试验包括测量CSD诱导后的脑血流量和神经元活动,表明钠通道阻滞剂能够抑制CSD诱导的局部血流量变化[8]。此外,也有研究发现L型、N型和P/Q型电压钙通道阻滞剂可以减少CSD的反复发作,而且P/Q型钙离子通道突变的小鼠在电和氯化钾诱导下表现出的CSD阈值更高[9],这表明钙离子在CSD中也发挥一定的作用。

研究发现,偏头痛可能与大脑活动的过度兴奋状态有关[10] [11]。而大脑中较为主要的兴奋性神经递质是谷氨酸和天冬氨酸。早期一项针对偏头痛患者的相关研究表明,与对照组相比,有先兆偏头痛患者在头痛发作间期的谷氨酸和天冬氨酸水平升高[8]。研究发现,在这两种神经递质中,血浆谷氨酸水平(0.89 mg/dL)高于天冬氨酸水平(0.167 mg/dL) [12]。因此,两种兴奋性神经递质中谷氨酸最受关注,并且在另一项有关于无先兆偏头痛的研究中也得出同样的结论[13]。在一项涉及大鼠的临床前研究中,研究人员观察到谷氨酸的表达增加,可能导致三叉神经尾侧核的神经元敏化[14]。此外,三叉神经血管系统中的伤害性信号的传递已被证明与N-甲基-D-天冬氨酸(N-methyl-D-aspartate, NMDA)受体有关,而谷氨酸是内源性NMDA受体激动剂[15]。而谷氨酸的释放与CSD双向相关,谷氨酸可刺激CSD,同时CSD也可促进谷氨酸释放。在一个大鼠实验中,单独应用氯化钾和NMDA受体拮抗剂MK-801诱导CSD,MK-801处理的脑片显示触发CSD所需的阈值增加[11]。同前所述,钾离子水平在CSD激活过程中增加,但谷氨酸水平也增加,总体效果是导致相邻神经元细胞的持续去极化。

而经过反复试验及临床证实,钙通道激活和钙通道阻滞剂在偏头痛的治疗中起着重要作用,这也在一定程度上表明CSD与偏头痛的发生具有相关性。似乎是为了证实这一点,相关研究在有先兆偏头痛中观察到了CSD,研究发现,CSD阈值降低有助于触发先兆,导致偏头痛发作前先兆的出现,这似乎也为偏头痛的治疗提供了新思路。例如,一些研究观察到偏头痛预防药物可减少大鼠化学诱导的CSD,长时间给药可持续抑制CSD [16],研究表明,这种抑制是通过激活三叉神经血管系统,促进一氧化氮释放,引起血管舒张,进而导致脑膜动脉血流增加,从而预防偏头痛的发作。实验发现,大鼠CSD的发生会导致三叉神经尾侧核Fos的释放和下游二级神经元的激活,从而导致类似偏头痛的血管事件[17]。这在偏头痛中起着不可或缺的作用,因此也被作为监测抗偏头痛药物的疗效和药理学活性的工具[18]

虽然CSD是一个自发事件,但神经元过度兴奋性可影响CSD的发生。目前,相关研究表明CSD与先兆偏头痛的发生有关,而关于无先兆偏头痛的发生与CSD的关系尚存在争议,无先兆偏头痛可能仅依赖于增加脑内伤害性受体敏化的血管变化和神经源性机制,这就需要后续更多的研究去明确其相关性。

3. 三叉神经血管与偏头痛

“三叉神经血管”学说由Moskowitz等人在1979年首次提出[19],用于解释三叉神经与脑内异常释放的神经递质和偏头痛的相关性。通过研究发现,血管活性神经肽是由三叉神经节及其纤维受刺激释放出的一类神经递质,其可激活下游相关信号产生级联反应从而引起血管舒张,同时增加血管壁的通透性,使得血浆蛋白渗出,从而产生无菌性炎症,炎症进一步激活分布于硬脑膜和脑膜血管的伤害性感受器从而产生疼痛信号,这些疼痛信号再通过三叉神经痛觉传入纤维传到中枢,即可导致偏头痛的发生。随后经过一系列的研究,相关的血管活性神经肽相继被证实,为该学说提供了证据支持,其中就包括降钙素基因相关肽(calcitonin-gene-related peptide, CGRP)、P物质及垂体腺苷酸环化酶激活肽(Pituitary adenylate cyclase activating peptide, PACAP)。

CGRP在外周和中枢神经系统中广泛表达。神经肽CGRP的α异构体在躯体感觉周围神经和中枢神经系统中高表达,而β-CGRP异构体主要在运动神经元和肠神经系统中表达[20]。越来越多的研究发现,CGRP是三叉神经血管系统中与偏头痛发生最具相关性的神经肽。免疫组化研究表明,CGRP在三叉神经节神经元中高度表达。具体而言,CGRP几乎只在薄而无髓鞘的伤害性C纤维中表达,而在有髓鞘的A纤维和硬脑膜的血管平滑肌细胞则发现了CGRP受体的表达[21]。相关研究表明,CGRP并不能直接致痛,研究人员发现将神经肽皮内注射会于皮肤产生红斑,但并不产生痛觉[22]。而另一研究发现,将CGRP进行静脉输注可以诱导大多数有偏头痛病史的人发生延迟性偏头痛[23]。相对而言,在健康个体中,CGRP不会诱导出迟发性偏头痛,也不会引起除头痛之外的其他疼痛。这些研究均表明,CGRP能够引起偏头痛发作,并非其本身具有致痛作用,而是通过激活下游信号产生级联反应而发生的。相比之下,静脉输入前列腺素E2 (一种具有直接伤害感受作用的促炎剂)可在易感人群中立即引起偏头痛发作[24]。多项相关研究提示,偏头痛患者血液中的CGRP水平在患者偏头痛发作期间升高[25]-[28],同时,与非偏头痛患者相比,偏头痛患者的发作间期血液中的CGRP也处于较高水平[28]。此外,慢性偏头痛患者的发作间期血液中的CGRP水平也高于发作性偏头痛患者,这提示CGRP水平升高有可能成为帮助诊断慢性偏头痛的生物标志物[28]。目前关于降低患者血液中的CGRP水平的药物研究也取得了相关进展。例如,1个月以上的A型肉毒杆菌毒素治疗降低了对治疗有反应的慢性偏头痛患者的发作间期血液中的CGRP的水平,但没有降低对治疗无反应的慢性偏头痛患者血液中的CGRP水平[29] [30]。2005年发表的一项研究表明,舒马曲普坦可抑制三叉神经末梢的CGRP释放,同时降低了偏头痛疼痛强度以及血液中CGRP的水平[31],这也从侧面表明偏头痛与CGRP相关。在时隔四年之后的另一项研究中发现,偏头痛发作还与唾液中的CGRP水平升高相关,而利扎曲普坦可减少唾液中CGRP水平的升高,同时CGRP升高程度较高的患者对利扎曲普坦的反应性也较好[32]。总之,这些研究均提示三叉神经血管系统中的CGRP与偏头痛的发作明显相关。

相比之下,目前对于P物质及PACAP的研究较CGRP少,进展缓慢,可能是由于前两者的证据相较于后者不够充分。

P物质于1931年被首次发现,它广泛分布于神经系统中,包括血管及神经,例如颅内血管、神经节及三叉神经感觉传入纤维[33]。它是硬脑膜无菌性炎症的介质,被认为是诱发偏头痛发作的物质之一。研究表明,P物质不仅可使血管舒张[34],同时还可以兴奋伤害性神经元[35],从而激活三叉神经通路并引起肥大细胞脱颗粒及血浆蛋白外渗[36] [37]。据研究报道,P物质可抑制性突触后电位,使疼痛刺激更容易在轴突内传播[38],这可能意味着P物质在一定程度上对于CGRP致偏头痛具有协同作用。虽然以上证据均提示P物质在三叉神经血管方面对于偏头痛的发作具有一定的作用,但是,相比实验证明靶向阻断CGRP功能可有效预防及治疗偏头痛,靶向阻断P物质的相关临床研究却未能得到理想的结果,结果发现,接受P物质受体拮抗剂治疗的偏头痛患者的头痛程度无显著降低。

另一个神经肽PACAP,于1989年首次从绵羊下丘脑中被发现,它具有两种生物活性形式,即PACAP27和PACAP38 [39],其中以PACAP38为主。免疫组化研究显示,PACAP在三叉神经血管痛觉传导通路中的多个部位均有表达,如三叉神经节[40]及三叉神经尾侧核[41],而这两个部位参与了偏头痛的发病机制[42],其中PACAP38可以引起脑膜血管舒张和三叉神经–颈神经元的敏化和延迟激活[43],因此,PACAP也被认为是偏头痛的潜在治疗靶点。目前,动物实验发现PACAP可诱导痛觉过敏和脑膜炎症[44] [45]。然而,目前认为PACAP影响偏头痛的途径不同于其他途径(如CGRP和硝酸甘油) [46]。临床研究提示,偏头痛患者的血液PACAP浓度可能与偏头痛疾病持续时间和头痛频率相关[47]。目前,描述PACAP在偏头痛诱发中的作用的关键证据已经得到证实[48],但不同临床研究报告的PACAP血液水平相互矛盾。部分研究表明,偏头痛患者在偏头痛发作期的血液PACAP浓度均高于非偏头痛对照组和偏头痛发作间期[47] [49] [50]。然而其他研究却报告了相互矛盾的结果,即偏头痛患者的血液PACAP浓度低于非偏头痛对照组[51] [52]。而且,一项基于病例对照和交叉研究的Meta分析发现,在未进行定量分析的情况下,与发作间期相比,偏头痛患者发作期的血浆PACAP水平升高和/或无变化[53]

所以,我们不难发现,对于P物质及PACAP在三叉神经血管学说与偏头痛的相关性方面的作用,目前研究仍不清楚,甚至有些相互矛盾。但是可以肯定的是,在偏头痛发作方面,三叉神经血管系统起着非常重要的作用,具体相关机制及相关神经肽的作用还需要继续研究。

4. 遗传学与偏头痛

长期以来,人们一直观察到偏头痛具有家族聚集现象,有些偏头痛患者的一级亲属也受到偏头痛的影响[54]。在上世纪90年代,偏头痛及其遗传机制已被双生子、家族和人群研究所证实[54]-[60]。一项基于人群的研究表明,偏头痛先证者的亲属患偏头痛的风险比对照者的亲属高50% [58]。而在2015年发表的一项研究表明,偏头痛的遗传率为42% [61]。同时,通过已发表的数据可以得出结论,有先兆偏头痛的遗传度高于无先兆偏头痛,因此遗传易感性较高[62]-[64]

虽然目前已有许多研究证实偏头痛与遗传因素相关,但却未能明确其遗传方式。例如,一项研究表明,无先兆偏头痛与性染色体遗传有关[65],该研究发现,先证者中女性比例显著高于男性,且无先兆偏头痛在女性亲属中更常见。而两年后发表的另一项研究表明,偏头痛(有先兆偏头痛及无先兆偏头痛)为常染色体隐性遗传,该研究经系谱分析后认为偏头痛的母体和X连锁遗传的可能性不大,经典分离分析提示偏头痛可能为常染色体隐性遗传[66]。目前被广泛接受的是,偏头痛的遗传方式涉及多因子[67]

由于目前偏头痛的遗传方式研究尚不明确,有关于偏头痛的相关遗传基因的研究层出不穷,目前已发现诸多与偏头痛相关的遗传基因,例如Xp22 [68]、18p11 [69]、4q24 [70]及1q31 [71]等,但是基于单核苷酸多态性以及位点及基因之间的相关关系研究不明确,关于导致偏头痛发作相关的基因目前仍未研究透彻。直至2022年偏头痛与药物靶点相关的基因位点的相关性才首次被发现[72],如CGRP受体拮抗剂、5-HT1B/1D受体激动剂等在后续临床实践中才被证实有效,编码CGRP的CALCACALCB基因所在的位点被发现与偏头痛相关,但是编码CGRP受体蛋白的基因 CALCRLRAMP1RCP所在的位点与偏头痛并没有显示出明显相关性。

现阶段,随着科技的迅速发展,针对偏头痛病人的测序研究也进行得如火如荼。2020年Rasmussen等[73]结合117个偏头痛家系的全基因组测序,整合了可能参与偏头痛病理的脑和血管组织的RNA测序数据,首次确定了视觉皮质中一个携带罕见突变的基因模块,该基因模块主要在中间神经元、锥体CA1细胞和锥体SS细胞中表达,其在偏头痛家族中罕见突变比例增加,该通路分析显示与激素信号通路(促甲状腺素释放激素受体和催产素受体信号通路)、5-羟色胺受体信号通路、阿尔茨海默病信号通路和G蛋白信号通路相关。2022年的一项研究[74]进行了相关DNA测序研究,该研究采用双端全外显子组测序,样本选择为阿拉伯地区的偏头痛患者中的年轻女性的血液样本,结果表明,在12个基因(RETNLB、SCAI、ADH4、ESPL1、CPT2、FLG、PPP4R1、SERPINB5、ZNF66、ETAA1、EXO1和CPA6)中,共有17个功能性变异与较高的偏头痛风险相关,基因分析显示,半数显著的偏头痛风险基因在颞叶中表达。另外一些研究则针对表观遗传学进行相关基因组研究。2020年的一项研究[75]进行了全基因组测序,该研究样本来自155个家庭的1040个偏头痛患者,在PHACTR1KCNK5ASTN2RNF2134个偏头痛风险相关基因位点附近,研究人员发现了1个CpG岛和3个Polycomb响应元件的罕见变异负荷增加,并且他们发现这种基因附近的罕见变异与偏头痛的相关关系是独立于基因内部的常见风险变异的。2022年Carvalho等人[76]通过研究104例女性血液DNA样本中RAMP1启动子的甲基化状态,鉴定了51个CpG二核苷酸,结果发现,在这51个CpG二核苷酸中有5个显示出甲基化变异,偏头痛患者中5个CpG均发生甲基化的患者数量与对照组相比明显更高,同时,研究还发现转录起始位点相关的CpG-284 bp的甲基化水平在患者中明显较高,提示CpG可能通过影响RAMP1转录或受体功能障碍和(或)改变CGRP结合从而在偏头痛中发挥一定的作用。

通过以上研究,我们可以发现,偏头痛的发生可能同时受遗传学及表观遗传学机制影响,但是相关的具体分子生物学还需要进一步的研究去证实。

5. 相互作用

通过上述,我们已经了解了上文三大理论与偏头痛之间的关系,但是,它们是如何相互作用的呢?一次典型的偏头痛发作包括四个阶段:前驱期、先兆期、头痛发作期及头痛发作后期[77],当然这些阶段可能依次发生,也可能有显著的重叠。

首先,在头痛发作之前约72小时,部分患者会出现易怒、食欲不振、渴望、情绪波动、疲劳、颈部僵硬及电话恐惧等症状[78],这便是头痛前驱期的表现,这些症状在先兆期甚至整个头痛发作期也可持续存在。影像学研究发现,此时患者大脑下丘脑区域的血流量增加,这表明下丘脑也在偏头痛发作的早期阶段发挥作用[79]

在偏头痛患者中,有三分之一的患者存在先兆期,如前文所述,CSD在这一时期起着重要作用,它导致了偏头痛先兆的发生,视觉皮质中的视网膜拓扑传播为这一观点提供了证据支持,相关的成像研究也支持这一点[80] [81]

目前对于偏头痛发作从先兆发展至头痛阶段的机制尚不清楚,且存在一定争议,但这一阶段可能是因为支配硬脑膜血管供应的感觉神经纤维被激活,并释放CGRP、P物质等炎症介质。这些介质沿着三叉神经血管通路启动信号。来自三叉神经节和颈部皮肤及肌肉的传入神经纤维在三叉神经颈复合体(trigeminal cervical complex, TCC)中的第二级神经元上形成突触,这就解释了上颈部疼痛。来自TCC的上行纤维在经过脑干、丘脑、下丘脑和基底节神经核后,将信号传递到多个皮质区域,导致疼痛的发生[82] [83]

而在最后的头痛发作后期,患者主要表现为疲劳、肌肉无力、情绪变化、难以集中注意力和食欲不振等,由于多数患者及临床医师将其视为头痛发作的后遗表现,因此大多会被忽略。有相关研究表明,脑干和中脑持续被激活可能是出现这些症状的关键[84]

通过上述我们不难发现,偏头痛并不只是由单一机制所引发,它可能是多种机制相互作用的结果,而遗传因素则在决定个体对偏头痛的易感性方面起着重要作用。

6. 总结与展望

综上所述,偏头痛的发病机制涉及许多方面,从宏观到微观,从神经、血管、神经肽到基因及其调控因子。尽管目前针对偏头痛相关发病机制的研究层出不穷,但其发病机制目前仍不能够明确,这就为偏头痛的对因治疗带来许多挑战,导致许多患者治疗效果不佳、使得偏头痛反复发作,严重影响患者的社交及生活质量。所以,目前亟须明确偏头痛的发病机制,针对不同病人的不同发病机制采用不同的治疗手段,由此针对病症釜底抽薪,从根本上解决患者的病痛,提高偏头痛的治愈率,这可为长期饱受头痛折磨的偏头痛患者带来福音,提高患者的生活质量。

基金项目

重庆市科卫联合医学科研项目(2024MSXM127),重庆市卫生健康委医学科研项目(2023WSJK008),国家自然科学基金(82402983),重庆市自然科学基金(CSTB2022BSXM-JCX0049),重庆市卫生健康委员会(2024QNXMO43)。

NOTES

*通讯作者。

参考文献

[1] (2018) Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd Edition. Cephalalgia, 38, 1-211.
http://doi.org/10.1177/0333102417738202
[2] Vos, T., Abajobir, A.A., Abate, K.H., Abbafati, C., Abbas, K.M., Abd-Allah, F., et al. (2017) Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 328 Diseases and Injuries for 195 Countries, 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016. The Lancet, 390, 1211-1259.
https://doi.org/10.1016/s0140-6736(17)32154-2
[3] Feigin, V.L., Nichols, E., Alam, T., Bannick, M.S., Beghi, E., Blake, N., et al. (2019) Global, Regional, and National Burden of Neurological Disorders, 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18, 459-480.
https://doi.org/10.1016/s1474-4422(18)30499-x
[4] Ashina, M., Katsarava, Z., Do, T.P., Buse, D.C., Pozo-Rosich, P., Özge, A., et al. (2021) Migraine: Epidemiology and Systems of Care. The Lancet, 397, 1485-1495.
https://doi.org/10.1016/s0140-6736(20)32160-7
[5] Leo, A.A.P. (1947) Further Observations on the Spreading Depression of Activity in the Cerebral Cortex. Journal of Neurophysiology, 10, 409-414.
https://doi.org/10.1152/jn.1947.10.6.409
[6] Close, L.N., Eftekhari, S., Wang, M., Charles, A.C. and Russo, A.F. (2018) Cortical Spreading Depression as a Site of Origin for Migraine: Role of CGRP. Cephalalgia, 39, 428-434.
https://doi.org/10.1177/0333102418774299
[7] Yang, M., Ren, D., Pan, X., Li, C. and Xu, S. (2024) The Role of Astrocytes in Migraine with Cortical Spreading Depression: Protagonists or Bystanders? A Narrative Review. Pain and Therapy, 13, 679-690.
https://doi.org/10.1007/s40122-024-00610-9
[8] Akerman, S., Holland, P.R. and Goadsby, P.J. (2008) Mechanically-Induced Cortical Spreading Depression Associated Regional Cerebral Blood Flow Changes Are Blocked by Na+ Ion Channel Blockade. Brain Research, 1229, 27-36.
https://doi.org/10.1016/j.brainres.2008.07.014
[9] Ayata, C., Shimizu-Sasamata, M., Lo, E.H., Noebels, J.L. and Moskowitz, M.A. (1999) Impaired Neurotransmitter Release and Elevated Threshold for Cortical Spreading Depression in Mice with Mutations in the Α1a Subunit of P/Q Type Calcium Channels. Neuroscience, 95, 639-645.
https://doi.org/10.1016/s0306-4522(99)00446-7
[10] Ferrari, M.D., Odink, J., Bos, K.D., Malessy, M.J.A. and Bruyn, G.W. (1990) Neuroexcitatory Plasma Amino Acids Are Elevated in Migraine. Neurology, 40, 1582-1582.
https://doi.org/10.1212/wnl.40.10.1582
[11] Petzold, G.C., Haack, S., von Bohlen und Halbach, O., Priller, J., Lehmann, T., Heinemann, U., et al. (2008) Nitric Oxide Modulates Spreading Depolarization Threshold in the Human and Rodent Cortex. Stroke, 39, 1292-1299.
https://doi.org/10.1161/strokeaha.107.500710
[12] Castillo, J., Martinez, F., Leira, R., et al. J. (1994) [Changes in Neuroexcitatory Amino Acids during and between Migraine Attacks]. Neurologia, 9, 42-45.
[13] Zielman, R., Wijnen, J.P., Webb, A., Onderwater, G.L.J., Ronen, I., Ferrari, M.D., et al. (2017) Cortical glutamate in migraine. Brain, 140, 1859-1871.
https://doi.org/10.1093/brain/awx130
[14] Oshinsky, M.L., Sanghvi, M.M., Maxwell, C.R., Gonzalez, D., Spangenberg, R.J., Cooper, M., et al. (2012) Spontaneous Trigeminal Allodynia in Rats: A Model of Primary Headache. Headache: The Journal of Head and Face Pain, 52, 1336-1349.
https://doi.org/10.1111/j.1526-4610.2012.02247.x
[15] Storer, R.J. and Goadsby, P.J. (1999) Trigeminovascular Nociceptive Transmission Involves N-Methyl-D-Aspartate and Non-N-Methyl-D-Aspartate Glutamate Receptors. Neuroscience, 90, 1371-1376.
https://doi.org/10.1016/s0306-4522(98)00536-3
[16] Ayata, C., Jin, H., Kudo, C., Dalkara, T. and Moskowitz, M.A. (2006) Suppression of Cortical Spreading Depression in Migraine Prophylaxis. Annals of Neurology, 59, 652-661.
https://doi.org/10.1002/ana.20778
[17] Bolay, H., Reuter, U., Dunn, A.K., Huang, Z., Boas, D.A. and Moskowitz, M.A. (2002) Intrinsic Brain Activity Triggers Trigeminal Meningeal Afferents in a Migraine Model. Nature Medicine, 8, 136-142.
https://doi.org/10.1038/nm0202-136
[18] Schain, A.J., Melo-Carrillo, A., Stratton, J., Strassman, A.M. and Burstein, R. (2019) CSD-Induced Arterial Dilatation and Plasma Protein Extravasation Are Unaffected by Fremanezumab: Implications for CGRP’s Role in Migraine with Aura. The Journal of Neuroscience, 39, 6001-6011.
https://doi.org/10.1523/jneurosci.0232-19.2019
[19] Moskowitz, M., Romero, J., Reinhard, J., Melamed, E. and Pettibone, D. (1979) Neurotransmitters and the Fifth Cranial Nerve: Is There a Relation to the Headache Phase of Migraine? The Lancet, 314, 883-885.
https://doi.org/10.1016/s0140-6736(79)92692-8
[20] Mulderry, P.K., Ghatki, M.A., Spokks, R.A., Jonhs, P.M., Pierson, A.M., Hamid, Q.A., et al. (1988) Differential Expression of α-CGRP and β-CGRP by Primary Sensory Neurons and Enteric Autonomic Neurons of the Rat. Neuroscience, 25, 195-205.
https://doi.org/10.1016/0306-4522(88)90018-8
[21] Eftekhari, S., Salvatore, C.A., Calamari, A., Kane, S.A., Tajti, J. and Edvinsson, L. (2010) Differential Distribution of Calcitonin Gene-Related Peptide and Its Receptor Components in the Human Trigeminal Ganglion. Neuroscience, 169, 683-696.
https://doi.org/10.1016/j.neuroscience.2010.05.016
[22] Weidner, C., Klede, M., Rukwied, R., Lischetzki, G., Neisius, U., Schmelz, M., et al. (2000) Acute Effects of Substance P and Calcitonin Gene-Related Peptide in Human Skin—A Microdialysis Study. Journal of Investigative Dermatology, 115, 1015-1020.
https://doi.org/10.1046/j.1523-1747.2000.00142.x
[23] Thomsen, L.L., Kruuse, C., Iversen, H.K. and Olesen, J. (1994) A Nitric Oxide Donor (Nitroglycerin) Triggers Genuine Migraine Attacks. European Journal of Neurology, 1, 73-80.
https://doi.org/10.1111/j.1468-1331.1994.tb00053.x
[24] Antonova, M., Wienecke, T., Olesen, J. and Ashina, M. (2012) Prostaglandin E2 Induces Immediate Migraine-Like Attack in Migraine Patients without Aura. Cephalalgia, 32, 822-833.
https://doi.org/10.1177/0333102412451360
[25] Goadsby, P.J., Edvinsson, L. and Ekman, R. (1988) Release of Vasoactive Peptides in the Extracerebral Circulation of Humans and the Cat during Activation of the Trigeminovascular System. Annals of Neurology, 23, 193-196.
https://doi.org/10.1002/ana.410230214
[26] Goadsby, P.J., Edvinsson, L. and Ekman, R. (1990) Vasoactive Peptide Release in the Extracerebral Circulation of Humans during Migraine Headache. Annals of Neurology, 28, 183-187.
https://doi.org/10.1002/ana.410280213
[27] Goadsby, P.J. and Edvinsson, L. (1993) The Trigeminovascular System and Migraine: Studies Characterizing Cerebrovascular and Neuropeptide Changes Seen in Humans and Cats. Annals of Neurology, 33, 48-56.
https://doi.org/10.1002/ana.410330109
[28] Cernuda-Morollón, E., Larrosa, D., Ramón, C., Vega, J., Martínez-Camblor, P. and Pascual, J. (2013) Interictal Increase of CGRP Levels in Peripheral Blood as a Biomarker for Chronic Migraine. Neurology, 81, 1191-1196.
https://doi.org/10.1212/wnl.0b013e3182a6cb72
[29] Cernuda‐Morollón, E., Martínez‐Camblor, P., Ramón, C., Larrosa, D., Serrano‐Pertierra, E. and Pascual, J. (2014) CGRP and VIP Levels as Predictors of Efficacy of Onabotulinumtoxin Type a in Chronic Migraine. Headache: The Journal of Head and Face Pain, 54, 987-995.
https://doi.org/10.1111/head.12372
[30] Cernuda-Morollón, E., Ramón, C., Martínez-Camblor, P., Serrano-Pertierra, E., Larrosa, D. and Pascual, J. (2015) Onabotulinumtoxina Decreases Interictal CGRP Plasma Levels in Patients with Chronic Migraine. Pain, 156, 820-824.
https://doi.org/10.1097/j.pain.0000000000000119
[31] Juhasz, G., Zsombok, T., Jakab, B., Nemeth, J., Szolcsanyi, J. and Bagdy, G. (2005) Sumatriptan Causes Parallel Decrease in Plasma Calcitonin Gene-Related Peptide (CGRP) Concentration and Migraine Headache during Nitroglycerin Induced Migraine Attack. Cephalalgia, 25, 179-183.
https://doi.org/10.1111/j.1468-2982.2005.00836.x
[32] Cady, R.K., Vause, C.V., Ho, T.W., Bigal, M.E. and Durham, P.L. (2009) Elevated Saliva Calcitonin Gene‐related Peptide Levels during Acute Migraine Predict Therapeutic Response to Rizatriptan. Headache: The Journal of Head and Face Pain, 49, 1258-1266.
https://doi.org/10.1111/j.1526-4610.2009.01523.x
[33] May, A. and Goadsby, P.J. (2001) Substance P Receptor Antagonists in the Therapy of Migraine. Expert Opinion on Investigational Drugs, 10, 673-678.
https://doi.org/10.1517/13543784.10.4.673
[34] Edvinsson, L., McCulloch, J. and Uddman, R. (1981) Substance P: Immunohistochemical Localization and Effect Upon Cat Pial Arteries in Vitro and in Situ. The Journal of Physiology, 318, 251-258.
https://doi.org/10.1113/jphysiol.1981.sp013862
[35] Salter, M.W. and Henry, J.L. (1991) Responses of Functionally Identified Neurones in the Dorsal Horn of the Cat Spinal Cord to Substance P, Neurokinin A and Physalaemin. Neuroscience, 43, 601-610.
https://doi.org/10.1016/0306-4522(91)90319-j
[36] Buzzi, M.G. and Moskowitz, M.A. (1990) The Antimigraine Drug, Sumatriptan (GR43175), Selectively Blocks Neurogenic Plasma Extravasation from Blood Vessels in Dura Mater. British Journal of Pharmacology, 99, 202-206.
https://doi.org/10.1111/j.1476-5381.1990.tb14679.x
[37] Pietrobon, D. and Moskowitz, M.A. (2013) Pathophysiology of Migraine. Annual Review of Physiology, 75, 365-391.
https://doi.org/10.1146/annurev-physiol-030212-183717
[38] Thörn Pérez, C., Hill, R.H., Manira, A.E. and Grillner, S. (2009) Endocannabinoids Mediate Tachykinin-Induced Effects in the Lamprey Locomotor Network. Journal of Neurophysiology, 102, 1358-1365.
https://doi.org/10.1152/jn.00294.2009
[39] Miyata, A., Jiang, L., Dahl, R.D., Kitada, C., Kubo, K., Fujino, M., et al. (1990) Isolation of a Neuropeptide Corresponding to the N-Terminal 27 Residues of the Pituitary Adenylate Cyclase Activating Polypeptide with 38 Residues (PACAP38). Biochemical and Biophysical Research Communications, 170, 643-648.
https://doi.org/10.1016/0006-291x(90)92140-u
[40] Moller, K., Zhang, Y., Håkanson, R., Luts, A., Sjölund, B., Uddman, R., et al. (1993) Pituitary Adenylate Cyclase Activating Peptide Is a Sensory Neuropeptide: Immunocytochemical and Immunochemical Evidence. Neuroscience, 57, 725-732.
https://doi.org/10.1016/0306-4522(93)90018-b
[41] Jansen-Olesen, I., Baun, M., Amrutkar, D.V., Ramachandran, R., Christophersen, D.V. and Olesen, J. (2014) PACAP-38 but Not VIP Induces Release of CGRP from Trigeminal Nucleus Caudalis via a Receptor Distinct from the PAC1 Receptor. Neuropeptides, 48, 53-64.
https://doi.org/10.1016/j.npep.2014.01.004
[42] Ashina, M., Hansen, J.M., Do, T.P., Melo-Carrillo, A., Burstein, R. and Moskowitz, M.A. (2019) Migraine and the Trigeminovascular System—40 Years and Counting. The Lancet Neurology, 18, 795-804.
https://doi.org/10.1016/s1474-4422(19)30185-1
[43] Akerman, S. and Goadsby, P.J. (2015) Neuronal PAC1 Receptors Mediate Delayed Activation and Sensitization of Trigeminocervical Neurons: Relevance to Migraine. Science Translational Medicine, 7, 308ra157.
https://doi.org/10.1126/scitranslmed.aaa7557
[44] Körtési, T., Tuka, B., Nyári, A., Vécsei, L. and Tajti, J. (2019) The Effect of Orofacial Complete Freund’s Adjuvant Treatment on the Expression of Migraine-Related Molecules. The Journal of Headache and Pain, 20, Article No. 43.
https://doi.org/10.1186/s10194-019-0999-7
[45] Pedersen, S.H., la Cour, S.H., Calloe, K., Hauser, F., Olesen, J., Klaerke, D.A., et al. (2019) PACAP-38 and PACAP (6-38) Degranulate Rat Meningeal Mast Cells via the Orphan MRGB3-Receptor. Frontiers in Cellular Neuroscience, 13, Article 114.
https://doi.org/10.3389/fncel.2019.00114
[46] Ernstsen, C., Christensen, S.L., Rasmussen, R.H., Nielsen, B.S., Jansen-Olesen, I., Olesen, J., et al. (2022) The PACAP Pathway Is Independent of CGRP in Mouse Models of Migraine: Possible New Drug Target? Brain, 145, 2450-2460.
https://doi.org/10.1093/brain/awac040
[47] Hanci, F., Kilinc, Y.B., Kilinc, E., Turay, S., Dilek, M. and Kabakus, N. (2020) Plasma Levels of Vasoactive Neuropeptides in Pediatric Patients with Migraine during Attack and Attack-Free Periods. Cephalalgia, 41, 166-175.
https://doi.org/10.1177/0333102420957588
[48] Guo, S., Vollesen, A.L.H., Hansen, Y.B.L., Frandsen, E., Andersen, M.R., Amin, F.M., et al. (2016) Part II: Biochemical Changes after Pituitary Adenylate Cyclase-Activating Polypeptide-38 Infusion in Migraine Patients. Cephalalgia, 37, 136-147.
https://doi.org/10.1177/0333102416639517
[49] Liu, J., Wang, G., Dan, Y. and Liu, X. (2022) CGRP and PACAP-38 Play an Important Role in Diagnosing Pediatric Migraine. The Journal of Headache and Pain, 23, Article No. 68.
https://doi.org/10.1186/s10194-022-01435-7
[50] Pérez-Pereda, S., Toriello-Suárez, M., Ocejo-Vinyals, G., Guiral-Foz, S., Castillo-Obeso, J., Montes-Gómez, S., et al. (2020) Serum CGRP, VIP, and PACAP Usefulness in Migraine: A Case–control Study in Chronic Migraine Patients in Real Clinical Practice. Molecular Biology Reports, 47, 7125-7138.
https://doi.org/10.1007/s11033-020-05781-0
[51] Han, X., Dong, Z., Hou, L., Wan, D., Chen, M., Tang, W., et al. (2015) Interictal Plasma Pituitary Adenylate Cyclase-Activating Polypeptide Levels Are Decreased in Migraineurs but Remain Unchanged in Patients with Tension-Type Headache. Clinica Chimica Acta, 450, 151-154.
https://doi.org/10.1016/j.cca.2015.08.017
[52] Tuka, B., Helyes, Z., Markovics, A., Bagoly, T., Szolcsányi, J., Szabó, N., et al. (2013) Alterations in PACAP-38-Like Immunoreactivity in the Plasma during Ictal and Interictal Periods of Migraine Patients. Cephalalgia, 33, 1085-1095.
https://doi.org/10.1177/0333102413483931
[53] Frederiksen, S.D., Bekker‐Nielsen Dunbar, M., Snoer, A.H., Deen, M. and Edvinsson, L. (2020) Serotonin and Neuropeptides in Blood from Episodic and Chronic Migraine and Cluster Headache Patients in Case‐Control and Case‐Crossover Settings: A Systematic Review and Meta‐analysis. Headache: The Journal of Head and Face Pain, 60, 1132-1164.
https://doi.org/10.1111/head.13802
[54] Russell, M.B. and Olesen, J. (1993) The Genetics of Migraine without Aura and Migraine with Aura. Cephalalgia, 13, 245-248.
https://doi.org/10.1046/j.1468-2982.1993.1304245.x
[55] Ziegler, D.K., Hur, Y., Bouchard, T.J., Hassanein, R.S. and Barter, R. (1998) Migraine in Twins Raised Together and Apart. Headache: The Journal of Head and Face Pain, 38, 417-422.
https://doi.org/10.1046/j.1526-4610.1998.3806417.x
[56] Russell, M.B. and Olesen, J. (1995) Increased Familial Risk and Evidence of Genetic Factor in Migraine. BMJ, 311, 541-544.
https://doi.org/10.1136/bmj.311.7004.541
[57] Russell, M., Iselius, L. and Olesen, J. (1995) Inheritance of Migraine Investigated by Complex Segregation Analysis. Human Genetics, 96, 726-730.
https://doi.org/10.1007/bf00210307
[58] Stewart, W.F., Staffa, J., Lipton, R.B. and Ottman, R. (1997) Familial Risk of Migraine: A Population‐Based Study. Annals of Neurology, 41, 166-172.
https://doi.org/10.1002/ana.410410207
[59] Ulrich, V., Gervil, M., Kyvik, K.O., et al. J. (1999) The Inheritance of Migraine with Aura Estimated by Means of Structural Equation Modelling. Journal of Medical Genetics, 36, 225-227.
[60] Ulrich, V., Gervil, M., Kyvik, K.O., Olesen, J. and Russell, M.B. (1999) Evidence of a Genetic Factor in Migraine with Aura: A Population-Based Danish Twin Study. Annals of Neurology, 45, 242-246.
https://doi.org/10.1002/1531-8249(199902)45:2<242::aid-ana15>3.0.co;2-1
[61] Polderman, T.J.C., Benyamin, B., de Leeuw, C.A., Sullivan, P.F., van Bochoven, A., Visscher, P.M., et al. (2015) Meta-analysis of the Heritability of Human Traits Based on Fifty Years of Twin Studies. Nature Genetics, 47, 702-709.
https://doi.org/10.1038/ng.3285
[62] Russell, M., Iselius, L. and Olesen, J. (1996) Migraine without Aura and Migraine with Aura Are Inherited Disorders. Cephalalgia, 16, 305-309.
https://doi.org/10.1046/j.1468-2982.1996.1605305.x
[63] Stewart, W.F., Bigal, M.E., Kolodner, K., Dowson, A., Liberman, J.N. and Lipton, R.B. (2006) Familial Risk of Migraine. Neurology, 66, 344-348.
https://doi.org/10.1212/01.wnl.0000196640.71600.00
[64] Russell, M.B., Ulrich, V., Gervil, M. and Olesen, J. (2002) Migraine without Aura and Migraine with Aura Are Distinct Disorders. a Population‐based Twin Survey: Variation by Proband Age at Onset and Headache Severity. Headache: The Journal of Head and Face Pain, 42, 332-336.
https://doi.org/10.1046/j.1526-4610.2002.02102.x
[65] D’Amico, D., Leone, M., Macciardi, F., Valentini, S. and Bussone, G. (1991) Genetic Transmission of Migraine without Aura: A Study of 68 Families. The Italian Journal of Neurological Sciences, 12, 581-584.
https://doi.org/10.1007/bf02336955
[66] Mochi, M., Sangiorgi, S., Cortelli, P., Carelli, V., Scapoli, C., Crisci, M., et al. (1993) Testing Models for Genetic Determination in Migraine. Cephalalgia, 13, 389-394.
https://doi.org/10.1046/j.1468-2982.1993.1306389.x
[67] Gormley, P., Anttila, V., Winsvold, B.S., Palta, P., Esko, T., Pers, T.H., et al. (2016) Meta-Analysis of 375,000 Individuals Identifies 38 Susceptibility Loci for Migraine. Nature Genetics, 48, 856-866.
https://doi.org/10.1038/ng.3598
[68] Wieser, T., Pascual, J., Oterino, A., Soso, M., Barmada, M. and Gardner, K.L. (2010) A Novel Locus for Familial Migraine on XP22. Headache: The Journal of Head and Face Pain, 50, 955-962.
https://doi.org/10.1111/j.1526-4610.2010.01673.x
[69] Lea, R.A., Nyholt, D.R., Curtain, R.P., Ovcaric, M., Sciascia, R., Bellis, C., et al. (2005) A Genome-Wide Scan Provides Evidence for Loci Influencing a Severe Heritable Form of Common Migraine. Neurogenetics, 6, 67-72.
https://doi.org/10.1007/s10048-005-0215-6
[70] Wessman, M., Kallela, M., Kaunisto, M.A., Marttila, P., Sobel, E., Hartiala, J., et al. (2002) A Susceptibility Locus for Migraine with Aura, on Chromosome 4q24. The American Journal of Human Genetics, 70, 652-662.
https://doi.org/10.1086/339078
[71] Lea, R.A., Shepherd, G.A., Curtain, R.P., Nyholt, D.R., Quinlan, S., Brimage, P.J., et al. (2002) A Typical Migraine Susceptibility Region Localizes to Chromosome 1q31. Neurogenetics, 4, 17-22.
https://doi.org/10.1007/s10048-001-0125-1
[72] Hautakangas, H., Winsvold, B.S., Ruotsalainen, S.E., Bjornsdottir, G., Harder, A.V.E., Kogelman, L.J.A., et al. (2022) Genome-Wide Analysis of 102,084 Migraine Cases Identifies 123 Risk Loci and Subtype-Specific Risk Alleles. Nature Genetics, 54, 152-160.
https://doi.org/10.1038/s41588-021-00990-0
[73] Rasmussen, A.H., Kogelman, L.J.A., Kristensen, D.M., Chalmer, M.A., Olesen, J. and Hansen, T.F. (2020) Functional Gene Networks Reveal Distinct Mechanisms Segregating in Migraine Families. Brain, 143, 2945-2956.
https://doi.org/10.1093/brain/awaa242
[74] Khan, J., Al Asoom, L., Al Sunni, A., Rafique, N., Latif, R., Alabdali, M., et al. (2022) Whole-exome Sequencing Reveals Migraine-Associated Novel Functional Variants in Arab Ancestry Females: A Pilot Study. Brain Sciences, 12, Article 1429.
https://doi.org/10.3390/brainsci12111429
[75] Techlo, T.R., Rasmussen, A.H., Møller, P.L., Bøttcher, M., Winther, S., Davidsson, O.B., et al. (2020) Familial Analysis Reveals Rare Risk Variants for Migraine in Regulatory Regions. Neurogenetics, 21, 149-157.
https://doi.org/10.1007/s10048-020-00606-5
[76] Carvalho, E., Dias, A., Sousa, A., Lopes, A.M., Martins, S., Pinto, N., et al. (2022) A High Methylation Level of a Novel −284 bp CpG Island in the RAMP1 Gene Promoter Is Potentially Associated with Migraine in Women. Brain Sciences, 12, Article 526.
https://doi.org/10.3390/brainsci12050526
[77] Khan, J., Asoom, L.I.A., Sunni, A.A., Rafique, N., Latif, R., Saif, S.A., et al. (2021) Genetics, Pathophysiology, Diagnosis, Treatment, Management, and Prevention of Migraine. Biomedicine & Pharmacotherapy, 139, Article ID: 111557.
https://doi.org/10.1016/j.biopha.2021.111557
[78] Giffin, N.J., Ruggiero, L., Lipton, R.B., Silberstein, S.D., Tvedskov, J.F., Olesen, J., et al. (2003) Premonitory Symptoms in Migraine. Neurology, 60, 935-940.
https://doi.org/10.1212/01.wnl.0000052998.58526.a9
[79] Maniyar, F.H., Sprenger, T., Monteith, T., Schankin, C. and Goadsby, P.J. (2013) Brain Activations in the Premonitory Phase of Nitroglycerin-Triggered Migraine Attacks. Brain, 137, 232-241.
https://doi.org/10.1093/brain/awt320
[80] Lauritzen, M., Dreier, J.P., Fabricius, M., Hartings, J.A., Graf, R. and Strong, A.J. (2010) Clinical Relevance of Cortical Spreading Depression in Neurological Disorders: Migraine, Malignant Stroke, Subarachnoid and Intracranial Hemorrhage, and Traumatic Brain Injury. Journal of Cerebral Blood Flow & Metabolism, 31, 17-35.
https://doi.org/10.1038/jcbfm.2010.191
[81] Olesen, J., Larsen, B. and Lauritzen, M. (1981) Focal Hyperemia Followed by Spreading Oligemia and Impaired Activation of RCBF in Classic Migraine. Annals of Neurology, 9, 344-352.
https://doi.org/10.1002/ana.410090406
[82] Charles, A. (2018) The Pathophysiology of Migraine: Implications for Clinical Management. The Lancet Neurology, 17, 174-182.
https://doi.org/10.1016/s1474-4422(17)30435-0
[83] Dodick, D.W. (2018) A Phase‐by‐phase Review of Migraine Pathophysiology. Headache: The Journal of Head and Face Pain, 58, 4-16.
https://doi.org/10.1111/head.13300
[84] Pavlovic, J.M., Buse, D.C., Sollars, C.M., Haut, S. and Lipton, R.B. (2014) Trigger Factors and Premonitory Features of Migraine Attacks: Summary of Studies. Headache: The Journal of Head and Face Pain, 54, 1670-1679.
https://doi.org/10.1111/head.12468