Mn2+修饰二维层状Ti3C2Tx用于高性能超级电容器负极材料
Mn2+ Modified Two-Dimensional Layered Ti3C2Tx as Negative Electrode Material for High-Performance Supercapacitor
DOI: 10.12677/ms.2025.151001, PDF, HTML, XML,   
作者: 谢洪楠, 李 璐*:哈尔滨师范大学光电带隙材料教育部重点实验室,黑龙江 哈尔滨
关键词: 离子修饰超级电容器电化学性能Ionic Modification Supercapacitor Electrochemical Performance
摘要: 二维层状Ti3C2Tx因其独特的二维结构、金属导电性、丰富的化学表面、负的工作电势窗口,被认为非常具有应用前景的超级电容器负极材料。然而,二维纳米片层不可避免的堆叠导致其活性表面无法充分利用,限制其电化学性能。本文界面工程调控Ti3C2Tx表面,提高其活性表面利用率,提高其电荷存储能力。首先采用碱性溶液KOH预处理Ti3C2Tx,定向减少表面-F官能团,得到K+嵌入到Ti3C2Tx;再通过离子交换,实现过渡金属Mn2+离子插层,成功制备Mn2+修饰的Ti3C2Tx材料(Mn2+-Ti3C2Tx)。由于所制备Mn2+-Ti3C2Tx纳米片表面的Mn原子d轨道对周围-O官能团有很强的施主效应,对电解质离子有更强的吸附作用,能够促进电解质离子的输运,促进电化学反应在表面上进行,使得Mn2+-Ti3C2Tx电极材料在电流密度为1 A g1时展现出323F g1的高比容量。并且,在电流密度为20 A g1时,电容保持率为83%。本文报道了一种高性能的Mn2+修饰的Ti3C2Tx材料,为超级电容器电极材料的开发提供了新的思路。
Abstract: Two-dimensional layered Ti3C2Tx is considered a very promising negative electrode material for supercapacitor applications due to its unique two-dimensional structure, metallic conductivity, abundant chemical surfaces, and negative working potential window. However, the unavoidable stacking of 2D nanosheets leads to the underutilization of its active surface, limiting its electrochemical performance. In this paper, interfacial engineering modulates the Ti3C2Tx surface to improve its active surface utilization and enhance its charge storage capacity. Firstly, Ti3C2Tx was pretreated with an alkaline solution of KOH to directionally reduce the -F surface functional groups, obtaining K+-embedded Ti3C2Tx. Subsequently, through ion exchange, the intercalation of Mn2+ transition metal ions was achieved, successfully fabricating Mn2+-modified Ti3C2Tx material (Mn2+-Ti3C2Tx). Owing to the strong donor effect of the d orbitals of Mn atoms on the surface of the prepared Mn2+-Ti3C2Tx nanosheets on the surrounding -O functional groups, there is a stronger adsorption of electrolyte ions, which promotes the transport of electrolyte ions and facilitates the electrochemical reaction on the surface, enabling the Mn2+-Ti3C2Tx electrode material to exhibit a high specific capacity of 323 F g1 when the current density is 1 A g1. Furthermore, when the current density is 20 A g1, the capacitance retention rate is 83%. This paper reports a high-performance Mn2+-modified Ti3C2Tx material, offering a novel idea for the development of supercapacitor electrode materials.
文章引用:谢洪楠, 李璐. Mn2+修饰二维层状Ti3C2Tx用于高性能超级电容器负极材料[J]. 材料科学, 2025, 15(1): 1-8. https://doi.org/10.12677/ms.2025.151001

1. 引言

随着石油需求的不断增加、不可再生资源的枯竭和环境污染的日益严重,发展环境友好的清洁型大功率能源已成为当今世界尤其是我国解决能源与环境问题,实现经济社会可持续和谐快速发展刻不容缓的重大战略需求。科学家们首先考虑利用太阳能、风能、潮汐能等清洁能源来缓解人类社会发展与自然生态环境保护之间的矛盾[1] [2]。然而,这些清洁能源具有地理区域限制,决定了这些能源的输出方式具有区域不平衡性,与之相应的能量储存与运输也是间歇式的。开发清洁能源的根本挑战之一是确定可持续的能源供应。能量储存与转化技术是实现太阳能、风能等清洁能源有效利用和普及所急需的能源技术之一[3] [4]

超级电容器具有高功率密度、快速充放电能力和长的循环寿命,在能量存储设备和转换系统的进步中发挥了突出作用[5]。然而,目前绝大部分的商用超级电容器采用碳基材料作为负极,其电容量较低,正如“木桶效应”,负极的短板大大限制了超级电容器的能量密度,通常≤ 10 Wh kg1,远小于电池(目前商用的钴酸锂材料的容量 < 150 mAh g−1),制约了超级电容器在高能量需求方面的应用[6]。因此,探索和开发新型负极材料,在保持高功率密度的同时获得高能量密度,对推动超级电容器更广泛的应用具有十分重要的意义。

近年来,一种新型的二维过渡金属碳化物/氮化物(MXene)材料成为了电化学储能领域的研究热点[7]-[10]。它具有金属导电性、元素组成多样性、亲水性以及良好的机械性能等特性,被认为是新一代储能和能源转化材料,在超级电容器领域具有巨大应用潜力[11]-[13]。在众多MXene中,Ti3C2Tx是第一个被研究的二维过渡金属碳/氮化物(MXene),由于其高金属导电性、丰富的表面终端、合适的工作电位范围以及在酸性电解质中的优异赝电容性能,其用作超级电容器的负极材料表现出广阔的应用前景[14] [15]。研究表明[16]-[18],Ti3C2Tx粘土膜电极在H2SO4电解质中可以表现出高达245 F g1的比电容,该值远高于碱性或中性电解质中的比电容(通常小于150 F g1) [19]-[21],这归因于赝电容贡献的水合氢可逆键合/脱键与O的表面终止,导致在Ti元素的价态的变化。然而,相邻Ti3C2Tx纳米薄片之间存在较强的范德瓦尔斯和氢键相互作用,单一组分的Ti3C2Tx纳米片很容易重新堆叠在一起。Ti3C2Tx纳米片的重新堆叠严重阻碍了离子的传输通道,大幅度降低其比表面积,减少可利用的活性位点,并且会引发Ti3C2Tx垂直层间方向电阻率大幅增加,从而影响和限制了Ti3C2Tx电极的实际电化学性能[22]-[24]。因此,通过界面工程调控Ti3C2Tx表面来抑制其堆叠、提高电化学反应动力学对优化Ti3C2Tx的超级电容性能具有重要的意义。

本文首先采用碱性溶液KOH预处理Ti3C2Tx,定向减少表面-F官能团,得到K+嵌入的Ti3C2Tx;再通过离子交换,实现过渡金属Mn2+离子插层,成功制备Mn2+修饰的Ti3C2Tx材料(Mn2+-Ti3C2Tx)。由于所制备Mn2+-Ti3C2Tx纳米片表面的Mn原子d轨道对周围-O官能团有很强的施主效应,对电解质离子有更强的吸附作用,能够促进电解质离子的输运,促进电化学反应在表面上进行,使得Mn2+-Ti3C2Tx电极材料在电流密度为1 A g1时展现出323F g1的高比容量。并且,在电流密度为20 A g1时,电容保持率为83%。本文报道了一种高性能的Mn2+修饰的Ti3C2Tx材料,为超级电容器电极材料的开发提供了新的思路。

2. 实验部分

2.1. 试剂

碳铝钛(Ti3AlC2)、氟化锂(LiF)、氯化锂(LiCl)、氢氧化钾(KOH)、六水合乙酸锰(Mn(CH3COO)2·6H2O)、盐酸、去离子(DI)水。

2.2. Ti3C2Tx的制备

取1.56 g氟化锂放入20 ml盐酸中搅拌均匀,边搅拌边加入1 g碳铝钛,保鲜膜封好38℃水浴加热48 h后,依次用9 ml盐酸与96 ml去离子水配成的稀盐酸、3.815 g氯化锂与90 ml去离子水配成的氯化锂溶液、去离子水各洗涤三次,离心收集上层清液。

2.3. Mn2+-Ti3C2Tx的合成

取5 ml浓度为8 mol/L的氢氧化钾快速加入到15 ml浓度为5 mg/ml的碳化钛溶液中,缓慢搅拌4 h。去离子水洗涤多次后加入10 ml浓度为5 mg/ml的乙酸锰溶液,搅拌均匀后在40℃温度下静置48 h,多次去离子水洗后真空抽滤成膜。

2.4. 样品结构和电化学性质表征

通过扫描电子显微镜(SEM,SU70,日立,日本)和透射电子显微镜(TEM, FEI, TecnaiTF20)对样品的显微形貌进行了表征。该晶体的结构通过X射线衍射(XRD)模式(D/max2600,日本Rigaku,日本)进行了表征。通过X射线光电子能谱(XPS, K-alpha, Thermofisher Scientific Company)分析样品的化学环境。

电化学测量采用VMP3电化学工作站(BioLogic,法国)用标准的三电极电化学装置,以碳棒用作对电极,Ag/AgCl作为参比电极,以1 M硫酸作为电解液。在−0.6~0.2 V的电压窗口下,以不同密度的电流密度和扫描速率进行了恒流充放电(GCD)测量和循环伏安法(CV)。此外,在0.01 Hz~200 kHz的频率范围内测量了电化学阻抗。使用GCD曲线来计算质量比电容。公式如下[25]

C m = iΔt ΔV

这里Cm是质量比电容(F g1),i为电流密度(A g1),∆t为放电时间(s),∆V为电位窗口(V)。

3. 结果与讨论

图1给出了Ti3C2Tx和Mn2+-Ti3C2Tx样品的SEM图像以及Mn2+-Ti3C2Tx样品的TEM图像。从图1(a)可以看出,制备的单层纳米Ti3C2Tx薄片表面光滑。采用碱性溶液KOH预处理Ti3C2Tx,定向减少表面-F官能团,得到K+嵌入的Ti3C2Tx;再通过离子交换,实现过渡金属Mn2+插层(M2+-Ti3C2Tx)也是单层薄纳米片结构(图1(b))。结果表明,Mn2+修饰后的Ti3C2Tx薄片在静电力作用下吸附的更加紧密(图1(d)图1(e)),因此可以证明Mn2+成功修饰了Ti3C2Tx表面。图1(c)显示了Mn2+-Ti3C2Tx纳米片的高分辨率透射电镜图像,其中平面间距为0.265 nm的晶格条纹与Ti3C2Tx的(010)晶面很好地对应,这个结果可以证明Ti3C2Tx的成功合成。图1(f)中的选区电子衍射(SAED)图案显示出一些清晰的点阵,显示出Mn2+-Ti3C2Tx的单晶特性[26]

Figure 1. (a) (d) cross-sectional and Top view of SEM image of Ti3C2Tx film; (b) (e) cross-sectional and Top view of SEM image of Mn2+-Ti3C2Tx film; (c) HRTEM image and (f) corresponding SAED pattern of Mn2+-Ti3C2Tx nanosheets

1. (a) (d) Ti3C2Tx平面和截面的SEM图像;(b) (e) Mn2+-Ti3C2Tx平面和截面的SEM图像;(c) Mn2+-Ti3C2Tx纳米片的HRTEM图像和(f)相应的SAED图样

用X射线衍射(XRD)方法研究了样品的晶体结构和化学组成。如图2(a)所示,Ti3C2TxT的XRD图与之前报道过的Ti3C2Tx的XRD图具有相似的峰[27],这表明Ti3C2Tx制备成功。Mn2+对Ti3C2Tx纳米片表面修饰后,样品的XRD谱(002)峰相比于Ti3C2Tx的(002)峰向右偏移,这说明Mn2+成功修饰Ti3C2Tx纳米片表面,在静电力作用下,Ti3C2Tx纳米片吸附更紧密。

利用X射线光电子能谱(XPS)分析了Mn2+-Ti3C2Tx和Ti3C2Tx薄膜的化学元素组成。结果如图2(b)所示,Mn2+-Ti3C2Tx中不利于离子传输的F显著降低,这将使其电化学性能相比于Ti3C2Tx得到提高,并且Mn2+成功加入,这证明了Mn2+的成功修饰。

通过CV曲线、GCD曲线和EIS光谱在1 M硫酸电解质中测试了Ti3C2Tx和Mn2+修饰的Mn2+-Ti3C2Tx电极的电化学性能。图3(a)为上述Mn2+-Ti3C2Tx电极在2~100 mV s1下的CV曲线。CV曲线均表现出相

似的形状和对称的氧化还原峰,表明其具有较优越的电化学性[28]。另外,根据GCD曲线计算了不同电流密度下的比电容。电流密度从1 A g1增加到20 A g1,Mn2+-Ti3C2Tx电极的比电容分别为323、311、299、292、291和270 F g1 (图3(b))。Mn2+的修饰使其对电解质离子有更强的吸附作用,能够促进电解质

Figure 2. (a) XRD patterns and (b) High resolution XPS spectrum of Ti3C2Tx, Mn2+-Ti3C2Tx

2. Ti3C2Tx、Mn2+-的(a) XRD谱图和(b)高分辨率XPS谱

Figure 3. (a) CV curves and (b) GCD curves of Mn2+-Ti3C2Tx; (c) EIS spectrums (d) specific capacitance versus at different current densities of Ti3C2Tx and Mn2+-Ti3C2Tx samples prepared in different proportions; (e) cycling performance of Mn2+-Ti3C2Tx electrodes at a current density of 10 A g1 (30000 charge–discharge cycles)

3. (a) Mn2+-Ti3C2Tx电极的CV曲线和(b) GCD曲线;(c) EIS谱(d)在不同电流密度下的比电容对比关系;(e) NiCo-LDH-100电极在10 A g1 (30000次充放电循环)下的循环性能

离子的输运,促进电化学反应在表面上进行,有利于促进电子和离子的扩散动力学[29]-[31]。EIS技术可以研究超级电容器电极材料的基本电容行为。为了更好地理解电极材料的离子转移和相互作用,我们在0.01 Hz到100 kHz的频率范围内进行了EIS测量和分析(图3(c))。显然,与Ti3C2Tx相比,Mn2+-Ti3C2Tx电极的Rs (欧姆电阻)和Rct (电荷转移内阻)最小,说明该电极的电导率更好,有利于离子的扩散和电子的快速输运。奈奎斯特图反映了电极材料优异的电容特性。

图3(d)可以看出,当电流密度从1 A g1增加到20 A g1时,Mn2+-Ti3C2Tx具有83%的比电容保持率优于Ti3C2Tx的59%比电容保持率,并且在不同电流密度下Mn2+-Ti3C2Tx比电容均高于Ti3C2Tx,在1 A g1电流密度下Ti3C2Tx比电容为264 F g1低于相同电流密度下的Mn2+-Ti3C2Tx。通过电流密度为10 A g−1的30,000次循环的GCD测试,评估了Mn2+-Ti3C2Tx电极长期循环的稳定性。如图3(f)所示,Mn2+-Ti3C2Tx电极在30,000次循环后仍循环稳定,电容保持率为97.5%。Mn2+-Ti3C2Tx纳米片表面的Mn原子d轨道对周围-O官能团有很强的施主效应,对电解质离子有更强的吸附作用,能够促进电解质离子的输运,促进电化学反应在表面上进行。与Ti3C2Tx相比,Mn2+-Ti3C2Tx具有更好的电化学性能。更重要的是,离子交换反应大大提高原电极的电导率,也使得Mn2+-Ti3C2Tx获得了更高的比电容。

4. 结论

综上所述,通过离子交换,实现过渡金属Mn2+插层,成功制备Mn2+修饰的Ti3C2Tx材料(Mn2+-Ti3C2Tx)。使得Mn2+-Ti3C2Tx电极材料在电流密度为1 A g1时展现出323 F g1的高比容量。并且,在电流密度为20 A g1时,电容保持率为83%。在30,000次循环后仍循环稳定,电容保持率为97.5%。本文通过Mn2+修饰Ti3C2Tx材料证明了通过界面工程调控Ti3C2Tx表面,能够提高其活性表面利用率和电荷存储能力。这里设计的高性能Mn2+-Ti3C2Tx电极材料将是一个有应用前景的储能材料,为超级电容器电极材料的开发提供了新的思路。

NOTES

*通讯作者。

参考文献

[1] Cook, T.R., Dogutan, D.K., Reece, S.Y., Surendranath, Y., Teets, T.S. and Nocera, D.G. (2010) Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chemical Reviews, 110, 6474-6502.
https://doi.org/10.1021/cr100246c
[2] Rui, X., Tan, H. and Yan, Q. (2014) Nanostructured Metal Sulfides for Energy Storage. Nanoscale, 6, 9889-9924.
https://doi.org/10.1039/c4nr03057e
[3] Tan, C., Lai, Z. and Zhang, H. (2017) Ultrathin Two‐Dimensional Multinary Layered Metal Chalcogenide Nanomaterials. Advanced Materials, 29, Article 1701392.
https://doi.org/10.1002/adma.201701392
[4] Chen, K. and Xue, D. (2016) Materials Chemistry toward Electrochemical Energy Storage. Journal of Materials Chemistry A, 4, 7522-7537.
https://doi.org/10.1039/c6ta01527a
[5] Kumar, R., Joanni, E., Sahoo, S., Shim, J., Tan, W.K., Matsuda, A., et al. (2022) An Overview of Recent Progress in Nanostructured Carbon-Based Supercapacitor Electrodes: From Zero to Bi-Dimensional Materials. Carbon, 193, 298-338.
https://doi.org/10.1016/j.carbon.2022.03.023
[6] Dubey, P., Shrivastav, V., Maheshwari, P.H. and Sundriyal, S. (2020) Recent Advances in Biomass Derived Activated Carbon Electrodes for Hybrid Electrochemical Capacitor Applications: Challenges and Opportunities. Carbon, 170, 1-29.
https://doi.org/10.1016/j.carbon.2020.07.056
[7] Theerthagiri, J., Durai, G., Karuppasamy, K., Arunachalam, P., Elakkiya, V., Kuppusami, P., et al. (2018) Recent Advances in 2-D Nanostructured Metal Nitrides, Carbides, and Phosphides Electrodes for Electrochemical Supercapacitors—A Brief Review. Journal of Industrial and Engineering Chemistry, 67, 12-27.
https://doi.org/10.1016/j.jiec.2018.06.038
[8] Peng, X., Peng, L., Wu, C. and Xie, Y. (2014) Two Dimensional Nanomaterials for Flexible Supercapacitors. Chemical Society Reviews, 43, 3303-3323.
https://doi.org/10.1039/c3cs60407a
[9] Guo, Y., Xu, K., Wu, C., Zhao, J. and Xie, Y. (2015) Surface Chemical-Modification for Engineering the Intrinsic Physical Properties of Inorganic Two-Dimensional Nanomaterials. Chemical Society Reviews, 44, 637-646.
https://doi.org/10.1039/c4cs00302k
[10] Chen, P., Tong, Y., Wu, C. and Xie, Y. (2018) Surface/Interfacial Engineering of Inorganic Low-Dimensional Electrode Materials for Electrocatalysis. Accounts of Chemical Research, 51, 2857-2866.
https://doi.org/10.1021/acs.accounts.8b00266
[11] Hong Ng, V.M., Huang, H., Zhou, K., Lee, P.S., Que, W., Xu, J.Z., et al. (2017) Recent Progress in Layered Transition Metal Carbides and/or Nitrides (MXenes) and Their Composites: Synthesis and Applications. Journal of Materials Chemistry A, 5, 3039-3068.
https://doi.org/10.1039/c6ta06772g
[12] Sun, S., Liao, C., Hafez, A.M., Zhu, H. and Wu, S. (2018) Two-Dimensional MXenes for Energy Storage. Chemical Engineering Journal, 338, 27-45.
https://doi.org/10.1016/j.cej.2017.12.155
[13] Zhang, X., Zhang, Z. and Zhou, Z. (2018) MXene-Based Materials for Electrochemical Energy Storage. Journal of Energy Chemistry, 27, 73-85.
https://doi.org/10.1016/j.jechem.2017.08.004
[14] Li, X., Huang, Z., Shuck, C.E., Liang, G., Gogotsi, Y. and Zhi, C. (2022) MXene Chemistry, Electrochemistry and Energy Storage Applications. Nature Reviews Chemistry, 6, 389-404.
https://doi.org/10.1038/s41570-022-00384-8
[15] Xu, X., Zhang, Y., Sun, H., Zhou, J., Yang, F., Li, H., et al. (2021) Progress and Perspective: MXene and MXene‐Based Nanomaterials for High‐Performance Energy Storage Devices. Advanced Electronic Materials, 7, Article 2000967.
https://doi.org/10.1002/aelm.202000967
[16] Lukatskaya, M.R., Bak, S., Yu, X., Yang, X., Barsoum, M.W. and Gogotsi, Y. (2015) Probing the Mechanism of High Capacitance in 2D Titanium Carbide Using in Situ X‐Ray Absorption Spectroscopy. Advanced Energy Materials, 5, Article 1500589.
https://doi.org/10.1002/aenm.201500589
[17] Shao, H., Xu, K., Wu, Y., Iadecola, A., Liu, L., Ma, H., et al. (2020) Unraveling the Charge Storage Mechanism of Ti3C2Tx Mxene Electrode in Acidic Electrolyte. ACS Energy Letters, 5, 2873-2880.
https://doi.org/10.1021/acsenergylett.0c01290
[18] Ghidiu, M., Lukatskaya, M.R., Zhao, M., Gogotsi, Y. and Barsoum, M.W. (2014) Conductive Two-Dimensional Titanium Carbide ‘Clay’ with High Volumetric Capacitance. Nature, 516, 78-81.
https://doi.org/10.1038/nature13970
[19] Xu, J., You, J., Wang, L., Wang, Z. and Zhang, H. (2022) MXenes Serving Aqueous Supercapacitors: Preparation, Energy Storage Mechanism and Electrochemical Performance Enhancement. Sustainable Materials and Technologies, 33, e00490.
https://doi.org/10.1016/j.susmat.2022.e00490
[20] Ren, S., Xu, J., Cheng, L., Gao, X. and Wang, S. (2021) Amine-Assisted Delaminated 2D Ti3C2Tx MXenes for High Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Interfaces, 13, 35878-35888.
https://doi.org/10.1021/acsami.1c06161
[21] Zhang, L., Wang, Z., Chen, W., Yuan, R., Zhan, K., Zhu, M., et al. (2021) Fe3O4 Nanoplates Anchored on Ti3C2Tx MXene with Enhanced Pseudocapacitive and Electrocatalytic Properties. Nanoscale, 13, 15343-15351.
https://doi.org/10.1039/d1nr04383h
[22] Sun, N., Guan, Z., Zhu, Q., Anasori, B., Gogotsi, Y. and Xu, B. (2020) Enhanced Ionic Accessibility of Flexible MXene Electrodes Produced by Natural Sedimentation. Nano-Micro Letters, 12, Article No. 89.
https://doi.org/10.1007/s40820-020-00426-0
[23] Li, K., Li, J., Zhu, Q. and Xu, B. (2022) Three‐Dimensional MXenes for Supercapacitors: A Review. Small Methods, 6, Article 2101537.
https://doi.org/10.1002/smtd.202101537
[24] Nasrin, K., Sudharshan, V., Subramani, K. and Sathish, M. (2022) Insights into 2D/2D MXene Heterostructures for Improved Synergy in Structure toward Next‐Generation Supercapacitors: A Review. Advanced Functional Materials, 32, Article 2110267.
https://doi.org/10.1002/adfm.202110267
[25] Li, L., Zhang, M., Zhang, X. and Zhang, Z. (2017) New Ti3C2 Aerogel as Promising Negative Electrode Materials for Asymmetric Supercapacitors. Journal of Power Sources, 364, 234-241.
https://doi.org/10.1016/j.jpowsour.2017.08.029
[26] Song, Y., Hu, L. and Xin, Y. (2022) Nanosized V2CTx with Boosting Super Capacitance via Engineering Alkalization Assisted K+ Interlayer Coordination. Journal of The Electrochemical Society, 169, Article 072510.
https://doi.org/10.1149/1945-7111/ac82cb
[27] Li, Z., Jiang, M., Wu, F., Wu, L., Zhang, X. and Li, L. (2024) Synergistic in-situ Intercalation and Surface Modification Strategy for Ti3C2Tx MXene-Based Supercapacitors with Enhanced Electrochemical Energy Storage. Journal of Energy Storage, 84, Article 110772.
https://doi.org/10.1016/j.est.2024.110772
[28] Zhan, C., Naguib, M., Lukatskaya, M., Kent, P.R.C., Gogotsi, Y. and Jiang, D. (2018) Understanding the MXene Pseudocapacitance. The Journal of Physical Chemistry Letters, 9, 1223-1228.
https://doi.org/10.1021/acs.jpclett.8b00200
[29] Wang, C., Wei, S., Zhang, P., Zhu, K., Song, P., Chen, S., et al. (2020) Cation-Intercalated Engineering and X-Ray Absorption Spectroscopic Characterizations of Two Dimensional MXenes. Chinese Chemical Letters, 31, 969-979.
https://doi.org/10.1016/j.cclet.2019.08.045
[30] Fang, R., Lu, C., Chen, A., Wang, K., Huang, H., Gan, Y., et al. (2019) 2D MXene‐Based Energy Storage Materials: Interfacial Structure Design and Functionalization. ChemSusChem, 13, 1409-1419.
https://doi.org/10.1002/cssc.201902537
[31] Mashtalir, O., Naguib, M., Mochalin, V.N., Dall’Agnese, Y., Heon, M., Barsoum, M.W., et al. (2013) Intercalation and Delamination of Layered Carbides and Carbonitrides. Nature Communications, 4, Article No. 1716.
https://doi.org/10.1038/ncomms2664