|
[1]
|
Cook, T.R., Dogutan, D.K., Reece, S.Y., Surendranath, Y., Teets, T.S. and Nocera, D.G. (2010) Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chemical Reviews, 110, 6474-6502. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Rui, X., Tan, H. and Yan, Q. (2014) Nanostructured Metal Sulfides for Energy Storage. Nanoscale, 6, 9889-9924. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Tan, C., Lai, Z. and Zhang, H. (2017) Ultrathin Two‐Dimensional Multinary Layered Metal Chalcogenide Nanomaterials. Advanced Materials, 29, Article 1701392. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Chen, K. and Xue, D. (2016) Materials Chemistry toward Electrochemical Energy Storage. Journal of Materials Chemistry A, 4, 7522-7537. [Google Scholar] [CrossRef]
|
|
[5]
|
Kumar, R., Joanni, E., Sahoo, S., Shim, J., Tan, W.K., Matsuda, A., et al. (2022) An Overview of Recent Progress in Nanostructured Carbon-Based Supercapacitor Electrodes: From Zero to Bi-Dimensional Materials. Carbon, 193, 298-338. [Google Scholar] [CrossRef]
|
|
[6]
|
Dubey, P., Shrivastav, V., Maheshwari, P.H. and Sundriyal, S. (2020) Recent Advances in Biomass Derived Activated Carbon Electrodes for Hybrid Electrochemical Capacitor Applications: Challenges and Opportunities. Carbon, 170, 1-29. [Google Scholar] [CrossRef]
|
|
[7]
|
Theerthagiri, J., Durai, G., Karuppasamy, K., Arunachalam, P., Elakkiya, V., Kuppusami, P., et al. (2018) Recent Advances in 2-D Nanostructured Metal Nitrides, Carbides, and Phosphides Electrodes for Electrochemical Supercapacitors—A Brief Review. Journal of Industrial and Engineering Chemistry, 67, 12-27. [Google Scholar] [CrossRef]
|
|
[8]
|
Peng, X., Peng, L., Wu, C. and Xie, Y. (2014) Two Dimensional Nanomaterials for Flexible Supercapacitors. Chemical Society Reviews, 43, 3303-3323. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Guo, Y., Xu, K., Wu, C., Zhao, J. and Xie, Y. (2015) Surface Chemical-Modification for Engineering the Intrinsic Physical Properties of Inorganic Two-Dimensional Nanomaterials. Chemical Society Reviews, 44, 637-646. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Chen, P., Tong, Y., Wu, C. and Xie, Y. (2018) Surface/Interfacial Engineering of Inorganic Low-Dimensional Electrode Materials for Electrocatalysis. Accounts of Chemical Research, 51, 2857-2866. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Hong Ng, V.M., Huang, H., Zhou, K., Lee, P.S., Que, W., Xu, J.Z., et al. (2017) Recent Progress in Layered Transition Metal Carbides and/or Nitrides (MXenes) and Their Composites: Synthesis and Applications. Journal of Materials Chemistry A, 5, 3039-3068. [Google Scholar] [CrossRef]
|
|
[12]
|
Sun, S., Liao, C., Hafez, A.M., Zhu, H. and Wu, S. (2018) Two-Dimensional MXenes for Energy Storage. Chemical Engineering Journal, 338, 27-45. [Google Scholar] [CrossRef]
|
|
[13]
|
Zhang, X., Zhang, Z. and Zhou, Z. (2018) MXene-Based Materials for Electrochemical Energy Storage. Journal of Energy Chemistry, 27, 73-85. [Google Scholar] [CrossRef]
|
|
[14]
|
Li, X., Huang, Z., Shuck, C.E., Liang, G., Gogotsi, Y. and Zhi, C. (2022) MXene Chemistry, Electrochemistry and Energy Storage Applications. Nature Reviews Chemistry, 6, 389-404. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Xu, X., Zhang, Y., Sun, H., Zhou, J., Yang, F., Li, H., et al. (2021) Progress and Perspective: MXene and MXene‐Based Nanomaterials for High‐Performance Energy Storage Devices. Advanced Electronic Materials, 7, Article 2000967. [Google Scholar] [CrossRef]
|
|
[16]
|
Lukatskaya, M.R., Bak, S., Yu, X., Yang, X., Barsoum, M.W. and Gogotsi, Y. (2015) Probing the Mechanism of High Capacitance in 2D Titanium Carbide Using in Situ X‐Ray Absorption Spectroscopy. Advanced Energy Materials, 5, Article 1500589. [Google Scholar] [CrossRef]
|
|
[17]
|
Shao, H., Xu, K., Wu, Y., Iadecola, A., Liu, L., Ma, H., et al. (2020) Unraveling the Charge Storage Mechanism of Ti3C2Tx Mxene Electrode in Acidic Electrolyte. ACS Energy Letters, 5, 2873-2880. [Google Scholar] [CrossRef]
|
|
[18]
|
Ghidiu, M., Lukatskaya, M.R., Zhao, M., Gogotsi, Y. and Barsoum, M.W. (2014) Conductive Two-Dimensional Titanium Carbide ‘Clay’ with High Volumetric Capacitance. Nature, 516, 78-81. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Xu, J., You, J., Wang, L., Wang, Z. and Zhang, H. (2022) MXenes Serving Aqueous Supercapacitors: Preparation, Energy Storage Mechanism and Electrochemical Performance Enhancement. Sustainable Materials and Technologies, 33, e00490. [Google Scholar] [CrossRef]
|
|
[20]
|
Ren, S., Xu, J., Cheng, L., Gao, X. and Wang, S. (2021) Amine-Assisted Delaminated 2D Ti3C2Tx MXenes for High Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Interfaces, 13, 35878-35888. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhang, L., Wang, Z., Chen, W., Yuan, R., Zhan, K., Zhu, M., et al. (2021) Fe3O4 Nanoplates Anchored on Ti3C2Tx MXene with Enhanced Pseudocapacitive and Electrocatalytic Properties. Nanoscale, 13, 15343-15351. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Sun, N., Guan, Z., Zhu, Q., Anasori, B., Gogotsi, Y. and Xu, B. (2020) Enhanced Ionic Accessibility of Flexible MXene Electrodes Produced by Natural Sedimentation. Nano-Micro Letters, 12, Article No. 89. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Li, K., Li, J., Zhu, Q. and Xu, B. (2022) Three‐Dimensional MXenes for Supercapacitors: A Review. Small Methods, 6, Article 2101537. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Nasrin, K., Sudharshan, V., Subramani, K. and Sathish, M. (2022) Insights into 2D/2D MXene Heterostructures for Improved Synergy in Structure toward Next‐Generation Supercapacitors: A Review. Advanced Functional Materials, 32, Article 2110267. [Google Scholar] [CrossRef]
|
|
[25]
|
Li, L., Zhang, M., Zhang, X. and Zhang, Z. (2017) New Ti3C2 Aerogel as Promising Negative Electrode Materials for Asymmetric Supercapacitors. Journal of Power Sources, 364, 234-241. [Google Scholar] [CrossRef]
|
|
[26]
|
Song, Y., Hu, L. and Xin, Y. (2022) Nanosized V2CTx with Boosting Super Capacitance via Engineering Alkalization Assisted K+ Interlayer Coordination. Journal of The Electrochemical Society, 169, Article 072510. [Google Scholar] [CrossRef]
|
|
[27]
|
Li, Z., Jiang, M., Wu, F., Wu, L., Zhang, X. and Li, L. (2024) Synergistic in-situ Intercalation and Surface Modification Strategy for Ti3C2Tx MXene-Based Supercapacitors with Enhanced Electrochemical Energy Storage. Journal of Energy Storage, 84, Article 110772. [Google Scholar] [CrossRef]
|
|
[28]
|
Zhan, C., Naguib, M., Lukatskaya, M., Kent, P.R.C., Gogotsi, Y. and Jiang, D. (2018) Understanding the MXene Pseudocapacitance. The Journal of Physical Chemistry Letters, 9, 1223-1228. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, C., Wei, S., Zhang, P., Zhu, K., Song, P., Chen, S., et al. (2020) Cation-Intercalated Engineering and X-Ray Absorption Spectroscopic Characterizations of Two Dimensional MXenes. Chinese Chemical Letters, 31, 969-979. [Google Scholar] [CrossRef]
|
|
[30]
|
Fang, R., Lu, C., Chen, A., Wang, K., Huang, H., Gan, Y., et al. (2019) 2D MXene‐Based Energy Storage Materials: Interfacial Structure Design and Functionalization. ChemSusChem, 13, 1409-1419. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Mashtalir, O., Naguib, M., Mochalin, V.N., Dall’Agnese, Y., Heon, M., Barsoum, M.W., et al. (2013) Intercalation and Delamination of Layered Carbides and Carbonitrides. Nature Communications, 4, Article No. 1716. [Google Scholar] [CrossRef] [PubMed]
|