[1]
|
Lee, C.M. and Afshari, N.A. (2017) The Global State of Cataract Blindness. Current Opinion in Ophthalmology, 28, 98-103. https://doi.org/10.1097/icu.0000000000000340
|
[2]
|
俞阿勇. 屈光性白内障手术的若干挑战[J]. 中华眼视光学与视觉科学杂志, 2017, 19(2): 65-70.
|
[3]
|
Koch, D.D., Hill, W., Abulafia, A. and Wang, L. (2017) Pursuing Perfection in Intraocular Lens Calculations: I. Logical Approach for Classifying IOL Calculation Formulas. Journal of Cataract and Refractive Surgery, 43, 717-718. https://doi.org/10.1016/j.jcrs.2017.06.006
|
[4]
|
Olsen, T. (2007) Calculation of Intraocular Lens Power: A Review. Acta Ophthalmologica Scandinavica, 85, 472-485. https://doi.org/10.1111/j.1755-3768.2007.00879.x
|
[5]
|
Sanders, D.R., Retzlaff, J. and Kraff, M.C. (1988) Comparison of the SRK II™ Formula and Other Second Generation Formulas. Journal of Cataract and Refractive Surgery, 14, 136-141. https://doi.org/10.1016/s0886-3350(88)80087-7
|
[6]
|
Holladay, J.T. (1993) Refractive Power Calculations for Intraocular Lenses in the Phakic Eye. American Journal of Ophthalmology, 116, 63-66. https://doi.org/10.1016/s0002-9394(14)71745-3
|
[7]
|
Zhao, J. (2020) Accuracy of Eight Intraocular Lens Power Calculation Formulas for Segmented Multifocal Intraocular Lens. International Journal of Ophthalmology, 13, 1378-1384. https://doi.org/10.18240/ijo.2020.09.07
|
[8]
|
Xia, T., Martinez, C.E. and Tsai, L.M. (2020) Update on Intraocular Lens Formulas and Calculations. Asia-Pacific Journal of Ophthalmology, 9, 186-193. https://doi.org/10.1097/apo.0000000000000293
|
[9]
|
谭倩, 王勇. 六种人工晶状体计算公式预测三焦点人工晶状体屈光度准确性的比较[J]. 中华眼视光学与视觉科学杂志, 2020, 22(2): 136-142.
|
[10]
|
Einighammer, J., Oltrup, T., Bende, T. and Jean, B. (2009) The Individual Virtual Eye: A Computer Model for Advanced Intraocular Lens Calculation. Journal of Optometry, 2, 70-82. https://doi.org/10.3921/joptom.2009.70
|
[11]
|
Abulafia, A., Barrett, G.D., Rotenberg, M., Kleinmann, G., Levy, A., Reitblat, O., et al. (2015) Intraocular Lens Power Calculation for Eyes with an Axial Length Greater than 26.0 Mm: Comparison of Formulas and Methods. Journal of Cataract and Refractive Surgery, 41, 548-556. https://doi.org/10.1016/j.jcrs.2014.06.033
|
[12]
|
许泽鹏, 田妮, 李松调, 等. Olsen公式对高度近视合并白内障患者术后屈光力的预测性[J]. 国际眼科杂志, 2020, 20(8): 1388-1392.
|
[13]
|
Carmona-González, D., Castillo-Gómez, A., Palomino-Bautista, C., Romero-Domínguez, M. and Gutiérrez-Moreno, M.Á. (2020) Comparison of the Accuracy of 11 Intraocular Lens Power Calculation Formulas. European Journal of Ophthalmology, 31, 2370-2376. https://doi.org/10.1177/1120672120962030
|
[14]
|
Tsessler, M., Cohen, S., Wang, L., Koch, D.D., Zadok, D. and Abulafia, A. (2022) Evaluating the Prediction Accuracy of the Hill-RBF 3.0 Formula Using a Heteroscedastic Statistical Method. Journal of Cataract and Refractive Surgery, 48, 37-43. https://doi.org/10.1097/j.jcrs.0000000000000702
|
[15]
|
Savini, G., Di Maita, M., Hoffer, K.J., Næser, K., Schiano-Lomoriello, D., Vagge, A., et al. (2020) Comparison of 13 Formulas for IOL Power Calculation with Measurements from Partial Coherence Interferometry. British Journal of Ophthalmology, 105, 484-489. https://doi.org/10.1136/bjophthalmol-2020-316193
|
[16]
|
Carmona González, D. and Palomino Bautista, C. (2020) Accuracy of a New Intraocular Lens Power Calculation Method Based on Artificial Intelligence. Eye, 35, 517-522. https://doi.org/10.1038/s41433-020-0883-3
|
[17]
|
Melles, R.B., Kane, J.X., Olsen, T. and Chang, W.J. (2019) Update on Intraocular Lens Calculation Formulas. Ophthalmology, 126, 1334-1335. https://doi.org/10.1016/j.ophtha.2019.04.011
|
[18]
|
朱珂珂, 王欣, 穆红梅. 角膜曲率对正常眼轴白内障患者屈光度计算准确性的影响[J]. 国际眼科杂志, 2022, 22(4): 633-636.
|
[19]
|
Rampat, R. and Gatinel, D. (2021) Multifocal and Extended Depth-Of-Focus Intraocular Lenses in 2020. Ophthalmology, 128, e164-e185. https://doi.org/10.1016/j.ophtha.2020.09.026
|
[20]
|
Kawamorita, T., Uozato, H., Aizawa, D., Kamiya, K. and Shimizu, K. (2009) Optical Performance in Rezoom and Array Multifocal Intraocular Lenses in Vitro. Journal of Refractive Surgery, 25, 467-469. https://doi.org/10.3928/1081597x-20090422-10
|
[21]
|
Cillino, S., Casuccio, A., Di Pace, F., Morreale, R., Pillitteri, F., Cillino, G., et al. (2008) One-Year Outcomes with New-Generation Multifocal Intraocular Lenses. Ophthalmology, 115, 1508-1516. https://doi.org/10.1016/j.ophtha.2008.04.017
|
[22]
|
Alio, J.L., Plaza-Puche, A.B., Javaloy, J., Ayala, M.J., Moreno, L.J. and Piñero, D.P. (2012) Comparison of a New Refractive Multifocal Intraocular Lens with an Inferior Segmental near Add and a Diffractive Multifocal Intraocular Lens. Ophthalmology, 119, 555-563. https://doi.org/10.1016/j.ophtha.2011.08.036
|
[23]
|
Alio, J.L., Plaza-Puche, A.B., Férnandez-Buenaga, R., Pikkel, J. and Maldonado, M. (2017) Multifocal Intraocular Lenses: An Overview. Survey of Ophthalmology, 62, 611-634. https://doi.org/10.1016/j.survophthal.2017.03.005
|
[24]
|
Akella, S.S. and Juthani, V.V. (2018) Extended Depth of Focus Intraocular Lenses for Presbyopia. Current Opinion in Ophthalmology, 29, 318-322. https://doi.org/10.1097/icu.0000000000000490
|
[25]
|
Cochener, B. (2016) Clinical Outcomes of a New Extended Range of Vision Intraocular Lens: International Multicenter Concerto Study. Journal of Cataract and Refractive Surgery, 42, 1268-1275. https://doi.org/10.1016/j.jcrs.2016.06.033
|
[26]
|
Schallhorn, J.M., Pantanelli, S.M., Lin, C.C., Al-Mohtaseb, Z.N., Steigleman, W.A., Santhiago, M.R., et al. (2021) Multifocal and Accommodating Intraocular Lenses for the Treatment of Presbyopia. Ophthalmology, 128, 1469-1482. https://doi.org/10.1016/j.ophtha.2021.03.013
|
[27]
|
Mendicute, J., Kapp, A., Lévy, P., Krommes, G., Arias-Puente, A., Tomalla, M., et al. (2016) Evaluation of Visual Outcomes and Patient Satisfaction after Implantation of a Diffractive Trifocal Intraocular Lens. Journal of Cataract and Refractive Surgery, 42, 203-210. https://doi.org/10.1016/j.jcrs.2015.11.037
|
[28]
|
Mojzis, P., Majerova, K., Hrckova, L. and Piñero, D.P. (2015) Implantation of a Diffractive Trifocal Intraocular Lens: One-Year Follow-Up. Journal of Cataract and Refractive Surgery, 41, 1623-1630. https://doi.org/10.1016/j.jcrs.2014.11.050
|
[29]
|
Jonker, S.M.R., Bauer, N.J.C., Makhotkina, N.Y., Berendschot, T.T.J.M., van den Biggelaar, F.J.H.M. and Nuijts, R.M.M.A. (2015) Comparison of a Trifocal Intraocular Lens with a +3.0 D Bifocal IOL: Results of a Prospective Randomized Clinical Trial. Journal of Cataract and Refractive Surgery, 41, 1631-1640. https://doi.org/10.1016/j.jcrs.2015.08.011
|
[30]
|
Pedrotti, E., Bruni, E., Bonacci, E., Badalamenti, R., Mastropasqua, R. and Marchini, G. (2016) Comparative Analysis of the Clinical Outcomes with a Monofocal and an Extended Range of Vision Intraocular Lens. Journal of Refractive Surgery, 32, 436-442. https://doi.org/10.3928/1081597x-20160428-06
|
[31]
|
Tavassoli, S., Ziaei, H., Yadegarfar, M.E., Gokul, A., Kernohan, A., Evans, J.R., et al. (2024) Trifocal versus Extended Depth of Focus (EDOF) Intraocular Lenses after Cataract Extraction. Cochrane Database of Systematic Reviews, No. 7, CD014891. https://doi.org/10.1002/14651858.cd014891.pub2
|
[32]
|
de Carneros-Llorente, A.M., de Carneros, A.M., de Carneros-Llorente, P.M. and Jiménez-Alfaro, I. (2019) Comparison of Visual Quality and Subjective Outcomes among 3 Trifocal Intraocular Lenses and 1 Bifocal Intraocular Lens. Journal of Cataract and Refractive Surgery, 45, 587-594. https://doi.org/10.1016/j.jcrs.2018.12.005
|
[33]
|
王君慧, 管怀进, 季敏. 多焦点人工晶状体研究进展[J]. 眼科新进展, 2023, 43(8): 651-655.
|
[34]
|
Kansal, V., Schlenker, M. and Ahmed, I.I.K. (2018) Interocular Axial Length and Corneal Power Differences as Predictors of Postoperative Refractive Outcomes after Cataract Surgery. Ophthalmology, 125, 972-981. https://doi.org/10.1016/j.ophtha.2018.01.021
|
[35]
|
Venkataraman, A.P., Domínguez-Vicent, A., Selin, P., Brautaset, R. and Montés-Micó, R. (2024) Precision of a New SS-OCT Biometer to Measure Anterior Segment Parameters and Agreement with 3 Instruments with Different Measurement Principles. Journal of Cataract & Refractive Surgery, 50, 486-491. https://doi.org/10.1097/j.jcrs.0000000000001380
|
[36]
|
杨帅, 邵杰, 张君. 人工智能在人工晶状体屈光度计算中的应用[J]. 国际眼科杂志, 2022, 22(5): 716-720.
|