高危型HPV基因型与宫颈癌的流行病学特征及防控策略
Epidemiological Characteristics and Prevention Strategies of High-Risk HPV Genotypes in Cervical Cancer
摘要: 高危型人乳头瘤病毒(HPV)感染是宫颈癌发生的主要致病因素,尤其是HPV16和HPV18型与宫颈癌的发生密切相关。本文综述了高危型HPV的流行病学特征,分析了不同地区和人群中HPV基因型的分布及其易感性差异。HPV疫苗接种和宫颈癌筛查是预防HPV感染、减少宫颈癌发生的主要策略。全球范围内HPV疫苗的推广显著降低了高危型HPV感染的流行率,对宫颈癌防治具有重要意义。此外,本文还强调了在高危人群中开展早期筛查和定期干预的重要性,突出了这些措施在促进早期诊断和减少疾病负担方面的积极作用。
Abstract: High-risk human papillomavirus (HPV) infection is the main cause of cervical cancer, with HPV types 16 and 18 being particularly closely linked to its development. This review explores the epidemiology of high-risk HPV, focusing on the distribution of HPV genotypes and variations in susceptibility across different regions and populations. HPV vaccination and cervical cancer screening are the primary strategies for preventing HPV infections and reducing the incidence of cervical cancer. The global expansion of HPV vaccination has significantly reduced the prevalence of high-risk HPV infections, with important implications for cervical cancer prevention and control. Furthermore, this review emphasizes the critical role of early screening and regular interventions in high-risk groups, highlighting their impact on improving early diagnosis and reducing the overall disease burden.
文章引用:丁红丽, 唐翌姝. 高危型HPV基因型与宫颈癌的流行病学特征及防控策略[J]. 临床医学进展, 2025, 15(1): 428-435. https://doi.org/10.12677/acm.2025.151059

1. 引言

宫颈癌是全球女性中发病率和死亡率排名第四的恶性肿瘤[1],主要归因于持续感染高危型人乳头瘤病毒(HPV) [2]。自20世纪70年代起,科学家们开始研究HPV与宫颈癌的关系[3]-[5]。Zur Hausen [6]的研究进一步证实了高危型HPV (如HPV16和HPV18)在宫颈癌及宫颈上皮内瘤变(CIN)发生中的关键作用,并阐明了HPV的致病机制。这些奠基性发现为后续HPV疫苗的研发及宫颈癌筛查措施的推广提供了科学依据。

高危型HPV16和HPV18导致了全球约70%的宫颈癌病例,在其他与HPV相关的癌症(如肛门癌和头颈癌)中,这两种类型的比例更高[7]。根据致癌潜力,HPV可分为低危型和高危型[8]。国际癌症研究机构(IARC)已将12种高危型HPV亚型(包括HPV16、18、31、33、35、39、45、51、52、56、58和59)明确归类为1类致癌物,这些高危型HPV感染具有较强的致癌潜力,可能导致癌前病变并最终进展为癌[9]。全球每年约69万例癌症归因于HPV感染,其中宫颈癌最为常见,而新发病例和相关死亡主要集中在低收入和中等收入国家[10] [11]

为应对全球宫颈癌防控需求,世界卫生组织(WHO)于2020年提出“90-70-90”战略,目标是到2030年实现:90%的女孩在15岁前完成HPV疫苗接种,70%的女性在35岁和45岁接受筛查,90%的宫颈病变患者得到及时治疗,从而系统性降低宫颈癌的全球负担和死亡率[12]。本综述旨在分析高危型HPV基因型的流行病学特征及其在不同地区的分布情况,并提出有效的预防和筛查措施,以助力全球范围内消除宫颈癌。

2. 流行病学特征

根据IARC 2022年的数据显示,全球每年新增宫颈癌病例超过66万例,死亡病例超过34万例[1]。这种疾病负担在低收入和中等收入国家中尤为突出,尤其是在撒哈拉以南非洲地区,其年龄标准化发病率高达每10万人年19.3例,居全球之首。宫颈癌发病率与经济收入水平呈负相关,低收入国家的发病率显著高于高收入国家[10]。这种差异主要归因于低收入国家卫生基础设施薄弱、筛查覆盖率和疫苗接种率不足,从而削弱了宫颈癌早期预防和治疗的效果[13]。在全球HPV疫苗推广前,细胞学正常女性的HPV流行率为11.7%,撒哈拉以南非洲、东欧和拉丁美洲的流行率最高,主要集中在HPV16、HPV18、HPV52、HPV31和HPV58类型[14]。这些基线数据为疫苗接种的效果评估提供了重要的流行病学基础,有助于识别不同地区的高危类型分布情况。

在中国女性中,高危型HPV感染表现出显著的年龄和类型特征。一项多中心横断面调查显示,15~59岁女性中的高危型HPV感染率约为14.3%,主要类型包括HPV16、HPV52、HPV58、HPV33和HPV18。该感染率呈双峰分布,分别在青春期和围绝经期达到高峰,提示不同年龄段女性对高危HPV的易感性存在显著差异[15]。这种双峰分布可能与性行为模式及免疫状态的年龄变化有关[16],例如,青春期女性在性行为开始后暴露于HPV的风险增加,而围绝经期免疫功能的下降也可能导致HPV感染的易感性增加[17] [18]。另一项由WHO/IARC和美国克利夫兰医学中心合作的研究揭示,在中国15~59岁女性中,高危型HPV感染率为17.7%。在农村女性中,高危型HPV感染的低峰出现在25~29岁,而城市女性则为35~39岁,CIN3+流行率高峰则集中在45~49岁。农村筛查不足可能导致中国宫颈癌负担被低估,而这种差异与生活方式、医疗资源获取和筛查覆盖率相关[19]。此外,中国的宫颈癌发病率和死亡率分别占全球的22.7%和16.0% [1] [20],凸显了加强宫颈癌防控措施的紧迫性。

3. 疫苗接种

HPV疫苗的推广被认为是预防宫颈癌的关键策略,为预防HPV感染及相关疾病,多个国家已推行HPV疫苗接种项目,并取得初步成效[21]。Stefanos等[22]研究发现,自2006年美国推广HPV疫苗以来,四价疫苗接种后显著降低了美国不同种族和族群年轻女性的HPV感染率,预计未来宫颈癌发病率将随之下降。HPV疫苗在降低疫苗型感染和高级别CIN的患病率方面表现出显著效果,尤其是在26岁之前接种效果更加显著[23]。此外,Palmer等[24]的研究显示,苏格兰地区12~13岁女性接种疫苗后,高级别CIN的发生率下降了90%。目前,HPV疫苗主要包括二价、四价和九价疫苗,所有疫苗均可预防HPV16和HPV18感染。九价疫苗Gardasil9还针对其他致癌型HPV31、HPV33、HPV45、HPV52和HPV58提供保护,这些类型的HPV约占宫颈癌病例的19% [7] [25]。De Martel等的研究表明,九价疫苗可以预防约90%的HPV相关癌症[7],可显著减少高危型HPV感染和癌前病变的进展。疫苗不仅有效覆盖了宫颈癌相关的主要致癌型别,而且在高危人群中发挥了长期保护作用。Schiller等[26]的研究发现,接种疫苗后产生的抗体滴度通常高于自然感染,接种初期抗体滴度会有所下降,但大约在2年后趋于平稳。目前尚无最低保护性抗体滴度的明确标准。Villa等[27]在一项对女性的四价HPV疫苗试验中发现,接种后具有持久的保护力,在5年随访中未见保护效力减弱。该研究表明HPV疫苗的持久性保护作用,为长期接种的可行性提供了科学支持。此外,九价疫苗的接种也显示出类似的长期保护效果[28]。尽管疫苗在预防新感染方面具有显著效果,但对于已存在感染的个体,HPV疫苗无法清除或阻止现有感染进展为疾病。然而,接种九价疫苗可预防其他类型的HPV感染,因此,接种疫苗前无需常规进行宫颈癌筛查[29] [30]。一项北美数据显示,HIV感染女性的宫颈癌发病率为每10万人年16例,显著高于未感染者的5例[31],另一项研究报道,HIV感染女性的HPV感染率大约是阴性患者的2倍[32]。在HIV感染的女性中,由于免疫抑制作用,HPV16的竞争优势降低,而其他高危HPV类型与宫颈高级别鳞状上皮内病变(HSIL)的细胞学表现关联较强[32]-[34]。对于免疫功能低下的HIV感染女性,九价HPV疫苗因覆盖更多高危HPV类型而具有优势,然而,仍有部分致癌性HPV类型未被涵盖,因此无论是否接种,HIV感染者仍需持续接受宫颈癌筛查[32]

在疫苗有效性方面,在所有涉及有性接触人群的HPV疫苗试验中,意向治疗人群的疫苗有效性较低,这一结果归因于之前感染过一种或多种疫苗型别的HPV [26]。WHO建议在性活动开始之前接种HPV疫苗,以最大限度地发挥其预防效果[12] [25]。此建议强调了在暴露前接种的重要性,进一步支持了疫苗在青春期接种的策略。多个国家的研究数据表明,在早期实施HPV疫苗接种计划并实现中高接种覆盖率(超过50%)的国家,如英国[23] [35]、瑞典[36]和丹麦[37],在经历15至20年后,开始观察到接种疫苗的年轻女性中宫颈癌发病率的下降。此外,研究还发现,女性在青春期前或青春期早期接种疫苗,其对宫颈癌的保护效果显著优于在青春期晚期或成年期接种者。一项国际随机对照试验的结果显示,HPV疫苗可预防少女和15至26岁之间接种疫苗的女性的宫颈癌前病变,其有效性至少达到96%,这一结果基于按方案人群分析,即在接种时未感染或暴露于特定HPV类型,并且已完成三剂疫苗接种的女性[26] [35] [36]。除有效性外,HPV疫苗的安全性也是其广泛推广时不可忽视的重要因素。研究表明,HPV疫苗在中国人群中的不良反应大多轻微且短暂,常见的反应包括注射部位的轻微疼痛、红肿以及轻度发热[37]-[39]。其他研究也指出,严重不良事件的发生率与对照组相似,但这些事件未被认为与疫苗接种相关[40]。大多数不良反应为自限性,且未发现与疫苗接种相关的严重不良事件或死亡[37]。因此,HPV疫苗在中国人群中的安全性良好,为疫苗的广泛接种提供了有力保障。除了女性,男性群体的HPV感染和相关疾病风险也不容忽视。据一项针对全球男性HPV感染的系统研究显示,男性总体HPV感染率为31%,高危型HPV感染率为21%,其中HPV16和HPV6最为常见,感染率在25至29岁男性中达到峰值,而东亚和东南亚地区的感染率约为其他地区的一半[41]。由于HPV通过性传播,女性的易感性与其男性伴侣的性行为特征密切相关。因此,在男性中实施预防性HPV疫苗接种不仅可以降低男性的肛门及生殖器疣和HPV相关癌症的发生率,还能通过群体免疫减轻年轻女性的HPV感染负担[41] [42]。鉴于HPV疫苗对男性的保护作用,建议在确保疫苗供应充足的前提下,将青少年男性的HPV疫苗接种纳入国家免疫规划,以增强对人群的整体保护效果。然而,疫苗接种的保护效果仍有其局限性,尤其对已感染人群和高危人群而言,宫颈癌筛查依然是早期发现和预防宫颈癌的核心手段。因此,优化筛查策略与接种规划的协同作用,对全面降低宫颈癌风险具有重要意义。

4. 宫颈癌筛查

WHO倡导在全球范围内普及宫颈癌筛查及早诊早治措施。在美国、英国和瑞典等高收入国家,广泛开展的筛查项目已显著降低了宫颈癌的发病率和死亡率[43] [44]。然而,许多发展中国家由于筛查和治疗缺乏标准化及筛查覆盖率不足,致使宫颈癌的发病率未能显著下降[45]。目前,低收入和中等收入国家的女性接受宫颈癌筛查的比例约为20%,而高收入国家的筛查覆盖率则超过60% [46]。2015年数据表明,中国宫颈癌筛查覆盖率为37%,远低于世界卫生组织70%的目标[47]。因此,开展有组织的全国性宫颈癌筛查,及时发现并干预HSIL及早期浸润性宫颈癌,可有效降低宫颈癌的死亡率。

目前,宫颈癌筛查方法主要包括传统巴氏涂片(Pap smear)、醋酸碘染肉眼观察法(VIA/VILI)、液基细胞学(LBC)以及HPV DNA检测。尽管基于细胞学的宫颈筛查已显著降低宫颈癌的发病率和死亡率,但由于巴氏涂片和LBC的敏感性较低(巴氏涂片约60%,LBC约70%),因此仍需定期筛查以提高早期发现率[48] [49]。鉴于HPV在宫颈癌发病机制中的关键作用,多数国际指南现已推荐将HPV DNA检测作为首选筛查手段[50]。此外,由于HPV感染通常无症状,且缺乏针对该病毒的特异性治疗,现阶段的治疗主要针对其所引发的病变[30]。由于HPV相关宫颈癌的癌前病变和癌症发生率较高,且现有治疗手段较为成熟,开展筛查具有重要的临床意义[11]。Curry等[29]的研究表明,单独进行宫颈细胞学检查、高危型HPV检测或两者联合检测均能有效识别高级别宫颈病变及宫颈癌。另一项基于德国2005至2012年间的大型随机前瞻性队列研究发现,单独的HPV筛查在敏感性和特异性方面与联合细胞学筛查相当[51]。与传统的细胞学筛查相比,初级HPV筛查在检测癌前病变方面表现出更高的敏感性和较高的阴性预测值,从而使筛查间隔可以适当延长[52] [53]。然而,由于HPV DNA检查的特异性较低,欧洲和美国指南推荐采用细胞学检查作为补充检测,以减少不必要的阴道镜检查和过度治疗的风险[50]。此外,美国预防服务工作组建议,针对21~29岁女性每3年进行一次单独细胞学筛查,30~65岁女性除每3年进行一次宫颈细胞学检查外,每5年还需进行一次高危型HPV检测,检测可以单独进行或者与细胞学联合进行[29]。这种针对不同年龄段的差异化筛查策略不仅提高了筛查的有效性,还减少了对低风险人群的过度干预。对于特定高危人群(如免疫功能低下者或既往有宫颈病变史的患者),可能需要个性化调整筛查频率,以确保及时发现和治疗。虽然疫苗接种能有效预防HPV感染,但不能完全取代筛查。无论患者是否接种过HPV疫苗,均应定期进行宫颈癌筛查[11],以充分发挥筛查和疫苗的双重保护作用。

5. 结论

综上所述,提高HPV疫苗接种率和宫颈癌筛查的覆盖率对于减轻全球HPV相关疾病负担至关重要[21]。为实现WHO提出的“2030年消除宫颈癌”目标,亟需政府、公共卫生机构、国际组织及社区的紧密合作。此外,高收入国家在疫苗接种、筛查和治疗方面的实践经验可为低收入国家提供重要的资源与技术支持。尽管现有研究已证明疫苗和筛查的有效性,但仍需更多来自发展中国家的本地数据,包括HPV流行病学、疫苗接种情况、筛查覆盖率等,以进一步优化政策。通过全球协作,有望显著降低宫颈癌发病率,减轻女性健康负担,助力实现2030年目标,并推动社会和经济的可持续发展。

NOTES

*通讯作者。

参考文献

[1] International Agency for Research on Cancer (2024) Globocan 2022: Cancer Today. International Agency for Research on Cancer.
https://gco.iarc.fr/today
[2] Walboomers, J.M.M., Jacobs, M.V., Manos, M.M., Bosch, F.X., Kummer, J.A., Shah, K.V., et al. (1999) Human Papillomavirus Is a Necessary Cause of Invasive Cervical Cancer Worldwide. The Journal of Pathology, 189, 12-19.
https://doi.org/10.1002/(sici)1096-9896(199909)189:1<12::aid-path431>3.0.co;2-f
[3] zur Hausen, H., Meinhof, W., Scheiber, W. and Bornkamm, G.W. (1974) Attempts to Detect Virus-Specific DNA in Human Tumors. I. Nucleic Acid Hybridizations with Complementary RNA of Human Wart Virus. International Journal of Cancer, 13, 650-656.
https://doi.org/10.1002/ijc.2910130509
[4] zur Hausen, H. (1976) Condylomata Acuminata and Human Genital Cancer. Cancer Research, 36, Article 794.
[5] Schwarz, E., Freese, U.K., Gissmann, L., Mayer, W., Roggenbuck, B., Stremlau, A., et al. (1985) Structure and Transcription of Human Papillomavirus Sequences in Cervical Carcinoma Cells. Nature, 314, 111-114.
https://doi.org/10.1038/314111a0
[6] zur Hausen, H. (1988) Papillomaviruses in Human Cancers. Molecular Carcinogenesis, 1, 147-150.
https://doi.org/10.1002/mc.2940010302
[7] de Martel, C., Plummer, M., Vignat, J. and Franceschi, S. (2017) Worldwide Burden of Cancer Attributable to HPV by Site, Country and HPV Type. International Journal of Cancer, 141, 664-670.
https://doi.org/10.1002/ijc.30716
[8] Muñoz, N., Bosch, F.X., de Sanjosé, S., Herrero, R., Castellsagué, X., Shah, K.V., et al. (2003) Epidemiologic Classification of Human Papillomavirus Types Associated with Cervical Cancer. New England Journal of Medicine, 348, 518-527.
https://doi.org/10.1056/nejmoa021641
[9] Yang, X., Li, Y., Tang, Y., Li, Z., Wang, S., Luo, X., et al. (2023) Cervical HPV Infection in Guangzhou, China: An Epidemiological Study of 198,111 Women from 2015 to 2021. Emerging Microbes & Infections, 12, e21760009.
https://doi.org/10.1080/22221751.2023.2176009
[10] de Martel, C., Georges, D., Bray, F., Ferlay, J. and Clifford, G.M. (2020) Global Burden of Cancer Attributable to Infections in 2018: A Worldwide Incidence Analysis. The Lancet Global Health, 8, e180-e190.
https://doi.org/10.1016/s2214-109x(19)30488-7
[11] Markowitz, L.E. and Unger, E.R. (2023) Human Papillomavirus Vaccination. New England Journal of Medicine, 388, 1790-1798.
https://doi.org/10.1056/nejmcp2108502
[12] World Health Organization (2020) Global Strategy to Accelerate the Elimination of Cervical Cancer as a Public Health Problem.
https://www.who.int/publications/i/item/9789240014107
[13] Zhang, J., Zha, T., Wang, X. and He, W. (2024) Prevalence and Genotype Distribution of HPV Infections among Women in Chengdu, China. Virology Journal, 21, Article No. 52.
https://doi.org/10.1186/s12985-024-02317-x
[14] Bruni, L., Diaz, M., Castellsagué, X., Ferrer, E., Bosch, F.X. and de Sanjosé, S. (2010) Cervical Human Papillomavirus Prevalence in 5 Continents: Meta-Analysis of 1 Million Women with Normal Cytological Findings. The Journal of Infectious Diseases, 202, 1789-1799.
https://doi.org/10.1086/657321
[15] Wu, E., Liu, B., Cui, J., Chen, W., Wang, J., Lu, L., et al. (2013) Prevalence of Type-Specific Human Papillomavirus and Pap Results in Chinese Women: A Multi-Center, Population-Based Cross-Sectional Study. Cancer Causes & Control, 24, 795-803.
https://doi.org/10.1007/s10552-013-0162-8
[16] Tota, J.E., Chevarie-Davis, M., Richardson, L.A., de Vries, M. and Franco, E.L. (2011) Epidemiology and Burden of HPV Infection and Related Diseases: Implications for Prevention Strategies. Preventive Medicine, 53, S12-S21.
https://doi.org/10.1016/j.ypmed.2011.08.017
[17] González, P., Hildesheim, A., Rodríguez, A.C., Schiffman, M., Porras, C., Wacholder, S., et al. (2010) Behavioral/Lifestyle and Immunologic Factors Associated with HPV Infection among Women Older Than 45 Years. Cancer Epidemiology, Biomarkers & Prevention, 19, 3044-3054.
https://doi.org/10.1158/1055-9965.epi-10-0645
[18] Moscicki, A. (2001) Risks for Incident Human Papillomavirus Infection and Low-Grade Squamous Intraepithelial Lesion Development in Young Females. Journal of the American Medical Association, 285, Article 2995.
https://doi.org/10.1001/jama.285.23.2995
[19] Zhao, F., Lewkowitz, A.K., Hu, S., Chen, F., Li, L., Zhang, Q., et al. (2012) Prevalence of Human Papillomavirus and Cervical Intraepithelial Neoplasia in China: A Pooled Analysis of 17 Population-Based Studies. International Journal of Cancer, 131, 2929-2938.
https://doi.org/10.1002/ijc.27571
[20] Han, B., Zheng, R., Zeng, H., Wang, S., Sun, K., Chen, R., et al. (2024) Cancer Incidence and Mortality in China, 2022. Journal of the National Cancer Center, 4, 47-53.
https://doi.org/10.1016/j.jncc.2024.01.006
[21] Wolf, J., Kist, L.F., Pereira, S.B., Quessada, M.A., Petek, H., Pille, A., et al. (2024) Human Papillomavirus Infection: Epidemiology, Biology, Host Interactions, Cancer Development, Prevention, and Therapeutics. Reviews in Medical Virology, 34, e2537.
https://doi.org/10.1002/rmv.2537
[22] Stefanos, R., Lewis, R.M., Querec, T.D., Gargano, J.W., Unger, E.R. and Markowitz, L.E. (2024) High Impact of Quadrivalent Human Papillomavirus Vaccine across Racial/Ethnic Groups: National Health and Nutrition Examination Survey, 2003-2006 and 2015-2018. Human Vaccines & Immunotherapeutics, 20, Article 2308378.
https://doi.org/10.1080/21645515.2024.2308378
[23] Palmer, T.J., Kavanagh, K., Cuschieri, K., Cameron, R., Graham, C., Wilson, A., et al. (2024) Invasive Cervical Cancer Incidence Following Bivalent Human Papillomavirus Vaccination: A Population-Based Observational Study of Age at Immunization, Dose, and Deprivation. Journal of the National Cancer Institute, 116, 857-865.
https://doi.org/10.1093/jnci/djad263
[24] Palmer, T., Wallace, L., Pollock, K.G., Cuschieri, K., Robertson, C., Kavanagh, K., et al. (2019) Prevalence of Cervical Disease at Age 20 after Immunisation with Bivalent HPV Vaccine at Age 12-13 in Scotland: Retrospective Population Study. British Medical Journal, 365, Article 11161.
https://doi.org/10.1136/bmj.l1161
[25] Malagón, T., Franco, E.L., Tejada, R. and Vaccarella, S. (2024) Epidemiology of HPV-Associated Cancers Past, Present and Future: Towards Prevention and Elimination. Nature Reviews Clinical Oncology, 21, 522-538.
https://doi.org/10.1038/s41571-024-00904-z
[26] Schiller, J.T., Castellsagué, X. and Garland, S.M. (2012) A Review of Clinical Trials of Human Papillomavirus Prophylactic Vaccines. Vaccine, 30, F123-F138.
https://doi.org/10.1016/j.vaccine.2012.04.108
[27] Villa, L.L., Costa, R.L.R., Petta, C.A., Andrade, R.P., Paavonen, J., Iversen, O., et al. (2006) High Sustained Efficacy of a Prophylactic Quadrivalent Human Papillomavirus Types 6/11/16/18 L1 Virus-Like Particle Vaccine through 5 Years of Follow-Up. British Journal of Cancer, 95, 1459-1466.
https://doi.org/10.1038/sj.bjc.6603469
[28] Kjaer, S.K., Nygård, M., Sundström, K., Munk, C., Berger, S., Dzabic, M., et al. (2020) Long-Term Effectiveness of the Nine-Valent Human Papillomavirus Vaccine in Scandinavian Women: Interim Analysis after 8 Years of Follow-Up. Human Vaccines & Immunotherapeutics, 17, 943-949.
https://doi.org/10.1080/21645515.2020.1839292
[29] Curry, S.J., Krist, A.H., Owens, D.K., Barry, M.J., Caughey, A.B., Davidson, K.W., et al. (2018) Screening for Cervical Cancer. Journal of the American Medical Association, 320, 674-686.
https://doi.org/10.1001/jama.2018.10897
[30] Workowski, K.A., Bachmann, L.H., Chan, P.A., Johnston, C.M., Muzny, C.A., Park, I., et al. (2021) Sexually Transmitted Infections Treatment Guidelines, 2021. MMWR. Recommendations and Reports, 70, 1-187.
https://doi.org/10.15585/mmwr.rr7004a1
[31] Abraham, A.G., D’Souza, G., Jing, Y., Gange, S.J., Sterling, T.R., Silverberg, M.J., et al. (2013) Invasive Cervical Cancer Risk among HIV-Infected Women. JAIDS Journal of Acquired Immune Deficiency Syndromes, 62, 405-413.
https://doi.org/10.1097/qai.0b013e31828177d7
[32] McClymont, E., Lee, M., Raboud, J., Coutlée, F., Walmsley, S., Lipsky, N., et al. (2020) Prevalent and Persistent Oncogenic HPV Types in a Cohort of Women Living with HIV Prior to HPV Vaccination. International Journal of Gynecology & Obstetrics, 150, 108-115.
https://doi.org/10.1002/ijgo.13185
[33] Massad, L.S., Xie, X., Burk, R.D., D’Souza, G., Darragh, T.M., Minkoff, H., et al. (2016) Association of Cervical Precancer with Human Papillomavirus Types Other than 16 among HIV Co-Infected Women. American Journal of Obstetrics and Gynecology, 214, 354.e1-354.e6.
https://doi.org/10.1016/j.ajog.2015.09.086
[34] Clifford, G.M., Gonçalves, M.A.G. and Franceschi, S. (2006) Human Papillomavirus Types among Women Infected with HIV: A Meta-Analysis. AIDS, 20, 2337-2344.
https://doi.org/10.1097/01.aids.0000253361.63578.14
[35] Paavonen, J., Naud, P., Salmerón, J., et al. (2009) Efficacy of Human Papillomavirus (HPV)-16/18 AS04-Adjuvanted Vaccine against Cervical Infection and Precancer Caused by Oncogenic HPV Types (Patricia): Final Analysis of a Double-Blind, Randomized Study in Young Women. Lancet (London, England), 374, 301-314.
https://doi.org/10.1016/s0140-6736(09)61248-4
[36] Garland, S.M., Hernandez-Avila, M., Wheeler, C.M., Perez, G., Harper, D.M., Leodolter, S., et al. (2007) Quadrivalent Vaccine against Human Papillomavirus to Prevent Anogenital Diseases. New England Journal of Medicine, 356, 1928-1943.
https://doi.org/10.1056/nejmoa061760
[37] Lv, H., Wang, S., Liang, Z., Yu, W., Yan, C., Chen, Y., et al. (2022) Immunogenicity and Safety of the 9-Valent Human Papillomavirus Vaccine in Chinese Females 9-45 Years of Age: A Phase 3 Open-Label Study. Vaccine, 40, 3263-3271.
https://doi.org/10.1016/j.vaccine.2022.02.061
[38] Qiao, Y., Wu, T., Li, R., Hu, Y., Wei, L., Li, C., et al. (2019) Efficacy, Safety, and Immunogenicity of an Escherichia Coli-Produced Bivalent Human Papillomavirus Vaccine: An Interim Analysis of a Randomized Clinical Trial. Journal of the National Cancer Institute, 112, 145-153.
https://doi.org/10.1093/jnci/djz074
[39] Zhu, F., Li, C., Pan, H., Zhang, Y., Bi, D., Tang, H., et al. (2011) Safety and Immunogenicity of Human Papillomavirus-16/18 As04-Adjuvanted Vaccine in Healthy Chinese Females Aged 15 to 45 Years: A Phase I Trial. Chinese Journal of Cancer, 30, 559-564.
https://doi.org/10.5732/cjc.010.10564
[40] Zhao, F., Wu, T., Hu, Y., Wei, L., Li, M., Huang, W., et al. (2022) Efficacy, Safety, and Immunogenicity of an Escherichia coli-Produced Human Papillomavirus (16 and 18) L1 Virus-Like-Particle Vaccine: End-of-Study Analysis of a Phase 3, Double-Blind, Randomized, Controlled Trial. The Lancet Infectious Diseases, 22, 1756-1768.
https://doi.org/10.1016/s1473-3099(22)00435-2
[41] Bruni, L., Albero, G., Rowley, J., Alemany, L., Arbyn, M., Giuliano, A.R., et al. (2023) Global and Regional Estimates of Genital Human Papillomavirus Prevalence among Men: A Systematic Review and Meta-Analysis. The Lancet Global Health, 11, e1345-e1362.
https://doi.org/10.1016/s2214-109x(23)00305-4
[42] Giuliano, A.R., Palefsky, J.M., Goldstone, S., Moreira, E.D., Penny, M.E., Aranda, C., et al. (2011) Efficacy of Quadrivalent HPV Vaccine against HPV Infection and Disease in Males. New England Journal of Medicine, 364, 401-411.
https://doi.org/10.1056/nejmoa0909537
[43] Arbyn, M., Castellsagué, X., de Sanjosé, S., Bruni, L., Saraiya, M., Bray, F., et al. (2011) Worldwide Burden of Cervical Cancer in 2008. Annals of Oncology, 22, 2675-2686.
https://doi.org/10.1093/annonc/mdr015
[44] Andrae, B., Kemetli, L., Sparen, P., Silfverdal, L., Strander, B., Ryd, W., et al. (2008) Screening-Preventable Cervical Cancer Risks: Evidence from a Nationwide Audit in Sweden. Journal of the National Cancer Institute, 100, 622-629.
https://doi.org/10.1093/jnci/djn099
[45] Canfell, K., Kim, J.J., Brisson, M., Keane, A., Simms, K.T., Caruana, M., et al. (2020) Mortality Impact of Achieving WHO Cervical Cancer Elimination Targets: A Comparative Modelling Analysis in 78 Low-Income and Lower-Middle-Income Countries. The Lancet, 395, 591-603.
https://doi.org/10.1016/s0140-6736(20)30157-4
[46] Brisson, M., Kim, J.J., Canfell, K., Drolet, M., Gingras, G., Burger, E.A., et al. (2020) Impact of HPV Vaccination and Cervical Screening on Cervical Cancer Elimination: A Comparative Modelling Analysis in 78 Low-Income and Lower-Middle-Income Countries. The Lancet, 395, 575-590.
https://doi.org/10.1016/s0140-6736(20)30068-4
[47] Ji, X., Hao, M., Wang, Y., Pan, Z., Yang, R., Wang, X., et al. (2024) HPV Self-Sampling for Cervical Cancer Screening in China: A Multi-Center Study. Heliyon, 10, e39544.
https://doi.org/10.1016/j.heliyon.2024.e39544
[48] Koliopoulos, G., Nyaga, V.N., Santesso, N., Bryant, A., Martin-Hirsch, P.P., Mustafa, R.A., et al. (2017) Cytology versus HPV Testing for Cervical Cancer Screening in the General Population. Cochrane Database of Systematic Reviews, 2018, CD008587.
https://doi.org/10.1002/14651858.cd008587.pub2
[49] Cuzick, J., Clavel, C., Petry, K., Meijer, C.J.L.M., Hoyer, H., Ratnam, S., et al. (2006) Overview of the European and North American Studies on HPV Testing in Primary Cervical Cancer Screening. International Journal of Cancer, 119, 1095-1101.
https://doi.org/10.1002/ijc.21955
[50] Benevolo, M., Ronco, G., Mancuso, P., et al. (2024) Comparison of HPV-Positive Triage Strategies Combining Extended Genotyping with Cytology or P16/KI67 Dual Staining in the Italian NTCC2 Study. E BioMedicine, 104, Article 105149.
https://doi.org/10.1016/j.ebiom.2024.105149
[51] Liang, L.A., Einzmann, T., Franzen, A., Schwarzer, K., Schauberger, G., Schriefer, D., et al. (2021) Cervical Cancer Screening: Comparison of Conventional Pap Smear Test, Liquid-Based Cytology, and Human Papillomavirus Testing as Stand-Alone or Cotesting Strategies. Cancer Epidemiology, Biomarkers & Prevention, 30, 474-484.
https://doi.org/10.1158/1055-9965.epi-20-1003
[52] Wright, T.C., Stoler, M.H., Behrens, C.M., Sharma, A., Zhang, G. and Wright, T.L. (2015) Primary Cervical Cancer Screening with Human Papillomavirus: End of Study Results from the ATHENA Study Using HPV as the First-Line Screening Test. Gynecologic Oncology, 136, 189-197.
https://doi.org/10.1016/j.ygyno.2014.11.076
[53] Bulkmans, N., Berkhof, J., Rozendaal, L., van Kemenade, F., Boeke, A., Bulk, S., et al. (2007) Human Papillomavirus DNA Testing for the Detection of Cervical Intraepithelial Neoplasia Grade 3 and Cancer: 5-Year Follow-Up of a Randomized Controlled Implementation Trial. The Lancet, 370, 1764-1772.
https://doi.org/10.1016/s0140-6736(07)61450-0