外周血CD8+T细胞对肝细胞癌术后预后的价值研究
Study on the Prognostic Value of Peripheral Blood CD8+T Cells in Hepatocellular Carcinoma after Curative Hepatectomy
摘要: 目的:外周免疫景观可能在肝细胞癌(HCC)的识别和控制中起关键作用。本研究旨在探讨外周血CD8+T细胞数量在预测肝细胞癌根治性肝切除术后预后中的价值。方法:选取2018年8月至2023年7月79例于我院行根治性肝切除术的初诊HCC患者作为研究对象,分析外周血CD8+T细胞数量对患者预后的预测价值。流式细胞术检测CD8+T细胞数量。结果:CD8+T细胞数量在早期复发和死亡患者中明显减少(p < 0.050)。多因素Cox回归分析显示CD8+T细胞数量是术后预后的独立影响因素(p < 0.050)。CD8+T细胞数量减少组的无复发生存期(RFS)和总生存期(OS)明显短于非减少组。结果经亚组分析证实。结论:外周血CD8+T细胞数量与HCC患者根治性肝切除术术后预后不良相关,可作为HCC患者术后新的预后指标。
Abstract: Objective: The peripheral immune landscape may play a key role in determining hepatocellular carcinoma (HCC) recognition and control. This study aimed to examine the utility of peripheral blood CD8+T cells in predicting prognosis in HCC after curative hepatectomy. Methods: 79 newly diagnosed HCC patients from August 2018 to July 2023 were selected as research objects, we analyzed the prognostic value of peripheral blood CD8+T cells of HCC patients who underwent curative hepatectomy. The number of CD8+T cells was detected by flow cytometry. Results: The number of CD8+T cells was significantly decreased in patients who developed recurrence and death (all p < 0.050). Cox regression demonstrated that the number of CD8+T cells was an independent indicator for poor prognosis after hepatectomy (both p < 0.050). The recurrence-free survival (RFS) and overall survival (OS) in decrease group were significantly shorter than non-decrease group. The results were confirmed by the subgroup analysis. Conclusion: The number of CD8+T cells in peripheral blood is associated with dismal outcomes in HCC patients and can serve as a novel prognostic indicator for HCC patients after curative hepatectomy.
文章引用:孙浩然, 曹泽鹏, 赵宝晨, 万得晨, 周大臣, 陈忠彪, 张彬. 外周血CD8+T细胞对肝细胞癌术后预后的价值研究[J]. 临床医学进展, 2025, 15(1): 507-516. https://doi.org/10.12677/acm.2025.151069

1. 引言

肝细胞癌(HCC)是一种高度致命的肿瘤,构成了影响全球健康的主要问题[1]。中国HCC发病率较高,占世界发病率的50%以上。根治性肝切除术是HCC最重要的治疗手段,但由于肝切除术后复发率高,早期预测复发对患者预后具有重要意义。

然而,随着肝癌免疫治疗研究的逐步深入,尤其是对免疫检查点抑制剂(ICIs)和抗血管生成药物的研究,发现ICIs诱导的临床获益存在明显的异质性,这表明对ICIs活性和临床反应变化的决定因素的认识仍然是有限的[2]-[4]。此外,肿瘤组织中肿瘤浸润淋巴细胞(TILs)的数量和活性与PD-1 (程序性死亡受体1)抗体/CTLA4 (细胞毒性T淋巴细胞相关蛋白4)抗体的疗效相关,TILs越多,疗效越好[5]

细胞毒性CD8+T淋巴细胞是HCC特异性适应性免疫应答的关键细胞[6]。持续抑制肿瘤微环境可导致CD8+T细胞的低表达,这与肿瘤的免疫逃逸有关[7]。更重要的是,随着外周免疫景观研究的深入,我们越来越清楚外周免疫景观可能在决定肿瘤识别和控制方面发挥关键作用[8]。研究发现,患者外周血中对免疫治疗有效的T细胞与肿瘤组织中的CD8+T细胞一致,可能成为预测患者疗效和预后的生物学指标[9]。因此,本研究采用流式细胞术检测HCC患者初诊时外周血CD8+T细胞数量,旨在探讨CD8+T细胞数量对HCC患者术后预后的临床意义,为更方便、快捷地筛选免疫治疗患者的潜在获益群体提供新的途径。

2. 材料和方法

2.1. 患者纳入标准及特点

回顾性分析2018年8月至2023年7月在我院诊断为HCC并常规行外周血细胞免疫功能测定的175例患者的相关临床资料。相关研究获得安徽医科大学第二附属医院伦理委员会的批准(编号:YX2024-201),符合《赫尔辛基宣言》。该研究中使用的资料均得到相关患者或其家属的书面知情同意。

纳入标准:(1) 同一手术团队行根治性肝切除术;(2) 术前未接受肿瘤相关治疗。

排除标准:(1) 经组织学诊断后肿瘤非肝细胞癌;(2) 围术期死亡(术后3个月内死亡);(3) 临床病理资料不完整或随访缺失。

经术前评估,115例患者行根治性肝切除术,36例患者因纳入和排除标准被排除。最终,79名患者(66名男性,13名女性)被纳入研究,流程可见于图1。纳入患者的临床病理资料包括:CD8+T细胞数量、B细胞数量、NK细胞数量性别、年龄、谷丙转氨酶(ALT)、凝血酶原时间(PT)、白蛋白(ALB)、总胆红素(TBIL)、甲胎蛋白(AFP)、乙肝病毒表面抗原(HBsAg)、肿瘤直径、肿瘤侵犯包膜、肿瘤分化程度、肿瘤微血管浸润(MVI)。

Figure 1. Flow schematic of patients’ inclusion and exclusion

1. 患者纳入与排除流程图

2.2. 患者随访

随访检查包括超声、增强CT或MRI及血液检查(肿瘤标志物等),前2年每3~6个月1次,此后每6~12个月1次。随访的主要终点是无复发生存期(RFS)和总生存期(OS)。从手术日期至死亡日期或最后一次随访日期计算OS。RFS定义为从手术日期到肿瘤第一次复发的时间,而复发定义为根据影像学或组织学检查可疑或确诊的病变。复发后,患者接受适当的治疗方式,并继续进行相同的监测。

2.3. 实验方法

分别采集患者的外周静脉血2 mL,收集至肝素钠抗凝管内。采用直接荧光法标记细胞膜表面各个抗原(包括CD3、CD4、CD8、B以及NK),检测不同T淋巴细胞亚群比:识别总T淋巴细胞(CD3+T细胞)、辅助性T淋巴细胞(CD3+CD4+T细胞)、细胞毒性T淋巴细胞(CD3+CD8+T细胞);以及B淋巴细胞和NK细胞。具体方法如下:取2个试管分别加入抗凝全血100 μl,其中一管加入检测抗体各10 μl,另一管加入相应的同型对照抗体各10 μl,混匀后室温下避光反应15 min;加溶血剂1000 μl混匀,室温下放置10 min;立即上流式细胞仪检测。CD8+T细胞数量反映CD8+T细胞水平,参考范围220~1129 (/μl)。所有试剂和仪器均购自美国贝克曼公司。

2.4. 统计分析

计数资料用(n)表示,对于符合正态分布的计量资料采用均数 ± 标准差来进行统计描述,采用独立样本t检验对其进行统计推断。如果不符合正态分布的计量资料,采用中位数(四分位间距)进行统计描述,采用非参数检验来进行组间差异的统计推断。分类变量以数字(%)表示,两组差异采用χ2检验或fisher精确概率检验分析。通过Kaplan-Meier生存曲线、log-rank检验和Cox回归分析来评估CD8+T细胞预测预后的价值。所有统计分析均使用R 4.4.1和GraphPad Prism 9.0进行。以p < 0.05表示差异有统计学意义。

3. 结果

3.1. 临床病理特征

本研究共纳入了79例接受根治性肝切除术的HCC患者。这些患者的中位年龄为57岁,以男性为主(n = 66, 83.5%)。初诊时,CD8+T细胞数量中位数为363个/μl (范围:113~1394个)。约五分之四的患者合并HBsAg阳性,近30%患者AFP > 400 ng/ml。相关肝功能指标的中位数和平均值多数在正常范围内。肿瘤直径大于5 cm者占半数以上,多数为中分化至高分化,合并有微血管浸润者不足半数。表1提供了这些特征的详细总结。

Table 1. Clinicopathological characteristics of HCC patients

1. HCC患者的临床病理特征

总计(N = 79)

CD8+T细胞数量分组

减少组

19 (24.1%)

非减少组

60 (75.9%)

性别

女性

13 (16.5%)

男性

66 (83.5%)

年龄(Years)

57.0 [22.0, 81.0]

乙肝病毒表面抗原

13 (16.5%)

66 (83.5%)

甲胎蛋白

<400 ng/ml

53 (67.1%)

>400 ng/ml

26 (32.9%)

谷丙转氨酶(U/l)

33.0 [11.0, 553]

总胆红素(μmol/L)

15.3 [6.50, 141]

白蛋白(cm)

38.6 [28.4, 50.3]

血浆凝血酶原时间(s)

11.9 [1.10, 24.9]

肿瘤直径

<5 cm

38 (48.1%)

>5 cm

41 (51.9%)

肿瘤侵犯包膜

68 (86.1%)

11 (13.9%)

肿瘤微血管浸润

0 (0%)

0 (0%)

Missing

79 (100%)

肿瘤分化程度

中高分化

47 (59.5%)

低分化

32 (40.5%)

3.2. 外周血CD8+T细胞数量在评估预后中的价值

本研究中,我们观察到在预后不同的患者之间CD8+T细胞数量是存在差异的:在复发和死亡的患者中,CD8+T细胞明显减少(p < 0.05,图2)。而B细胞和NK细胞的数量在预后不同的患者之间无显著差异,见图2

我们将复发模式定义为早期复发(根治性肝切除术后24个月内复发)。采用Cox回归分析探讨肝细胞癌根治性肝切除后RFS和OS的独立影响因素。经过单因素和多因素分析,结果显示,外周血CD8+T细胞数量是RFS (HR: 0.19, 95%CI: 0.08~0.44, p < 0.001)和OS (HR: 0.37, 95%CI: 0.16~0.85, p = 0.020)的独立影响因素,见表2表3。合并有MVI是RFS的独立危险因素(HR: 3.61, 95%CI: 1.36~9.62, p = 0.01),见表2。并且CD8+T细胞减少组的RFS和OS持续时间均明显短于CD8+T细胞未减少组(log-rank检验,p < 0.05) (图3(a)图3(b))。接下来,我们进一步将影响因素分层发现,无论是否合并有MVI,外周血CD8+T细胞数量减少的患者RFS均明显缩短(图3(c)图3(d))。总的来说,我们的数据有效地证实了外周血中CD8+T细胞数量对HCC患者术后预后的预测价值。

Figure 2. The number of CD8+T cells (a), B cells (b) and NK cells (c) in peripheral blood were compared according to the prognosis of HCC patients after hepatectomy

2. 根据HCC患者肝切除术后的预后情况比较术前外周血CD8+T细胞(a)、B细胞(b)、NK细胞(c)数量水平

Table 2. Univariate and multivariate Cox regression analyses of risk factors for early recurrence in 79 HCC patients after curative hepatectomy

2. 79例肝癌根治性肝切除术后早期复发危险因素的单因素和多因素Cox回归分析

因素

总计

HR (单因素)

HR (多因素)

CD8.T细胞数量分组

减少组

19 (24.1%)

非减少组

60 (75.9%)

0.20 (0.10~0.40, p < 0.001)

0.19 (0.08~0.44, p < 0.001)

性别

女性

13 (16.5%)

男性

66 (83.5%)

1.41 (0.49~4.02, p = 0.521)

年龄

Mean ± SD

57.6 ± 10.9

1.00 (0.97~1.03, p = 0.758)

乙肝病毒表面抗原

13 (16.5%)

66 (83.5%)

3.74 (0.89~15.68, p = 0.071)

甲胎蛋白

<400 ng/ml

53 (67.1%)

>400 ng/ml

26 (32.9%)

2.10 (1.04~4.24, p = 0.039)

1.74 (0.81~3.76, p = 0.159)

谷丙转氨酶

Mean ± SD

57.3 ± 77.6

1.00 (1.00~1.00, p = 0.630)

总胆红素

Mean ± SD

18.6 ± 16.1

1.01 (1.00~1.03, p = 0.052)

白蛋白

Mean ± SD

38.9 ± 4.5

0.91 (0.84~0.98, p = 0.015)

1.02 (0.92~1.13, p = 0.720)

血浆凝血酶原时间

Mean ± SD

12.3 ± 2.3

1.04 (0.92~1.18, p = 0.553)

肿瘤直径

<5 cm

38 (48.1%)

>5 cm

41 (51.9%)

2.30 (1.11~4.78, p = 0.026)

1.55 (0.68~3.57, p = 0.300)

肿瘤侵犯包膜

68 (86.1%)

11 (13.9%)

1.84 (0.76~4.47, p = 0.179)

肿瘤微血管浸润

45 (57.0%)

34 (43.0%)

2.73 (1.33~5.60, p = 0.006)

2.46 (1.18~5.14, p = 0.017)

肿瘤分化程度

中高分化

47 (59.5%)

低分化

32 (40.5%)

1.89 (0.94~3.80, p = 0.072)

n = 79, events = 32, Likelihood ratio test = 29.2 on 5 df(p < 0.001).

Table 3. Univariate and multivariate Cox regression analyses of risk factors for overall survival in 79 HCC patients after curative hepatectomy

3. 79例肝癌根治性肝切除术后总生存期危险因素的单因素和多因素Cox回归分析

因素

总计

HR (单因素)

HR (多因素)

CD8.T细胞数量分组

减少组

19 (24.1%)

非减少组

60 (75.9%)

0.25 (0.12~0.53, p < 0.001)

0.37 (0.16~0.85, p = 0.020)

性别

女性

13 (16.5%)

男性

66 (83.5%)

2.89 (0.68~12.23, p = 0.149)

年龄

Mean ± SD

57.6 ± 10.9

0.99 (0.96~1.02, p = 0.615)

乙肝病毒表面抗原

13 (16.5%)

66 (83.5%)

3.55 (0.84~15.04, p = 0.086)

甲胎蛋白

<400 ng/ml

53 (67.1%)

>400 ng/ml

26 (32.9%)

2.06 (0.97~4.40, p = 0.061)

谷丙转氨酶

Mean ± SD

57.3 ± 77.6

1.00 (1.00~1.01, p = 0.082)

总胆红素

Mean ± SD

18.6 ± 16.1

1.01 (1.00~1.03, p = 0.114)

白蛋白

Mean ± SD

38.9 ± 4.5

0.86 (0.78~0.94, p = 0.001)

0.92 (0.82~1.03, p = 0.147)

血浆凝血酶原时间

Mean ± SD

12.3 ± 2.3

1.04 (0.92~1.18, p = 0.523)

肿瘤直径

<5 cm

38 (48.1%)

>5 cm

41 (51.9%)

3.35 (1.41~7.93, p = 0.006)

2.34 (0.93~5.88, p = 0.070)

肿瘤侵犯包膜

68 (86.1%)

11 (13.9%)

1.91 (0.71~5.10, p = 0.197)

肿瘤微血管浸润

45 (57.0%)

34 (43.0%)

3.00 (1.37~6.60, p = 0.006)

2.18 (0.97~4.90, p = 0.061)

肿瘤分化程度

中高分化

47 (59.5%)

低分化

32 (40.5%)

1.80 (0.85~3.85, p = 0.127)

n = 79, events = 27, Likelihood ratio test = 25.75 on 4 df(p < 0.001).

Figure 3. Kaplan-Meier analysis of (a) overall survival (OS) and (b) recurrence free survival (RFS) for HCC patients stratified by CD8+T Cells numbers. And CD8+T Cells retained its prognostic value in subgroups: (c) Kaplan-Meier analysis of HCC patients without MVI according to CD8+T Cells numbers. (d) Kaplan-Meier analysis of HCC patients with MVI according to CD8+T Cells numbers

3. 根据CD8+T细胞数量分组的HCC患者的Kaplan-Meier分析(a)总生存期(OS)和(b)无复发生存期(RFS)。CD8+T细胞在亚组分析中保留了其预后价值:(c) 根据CD8+T细胞数量对无MVI的HCC患者的无复发生存时间进行Kaplan-Meier分析。(d) 根据CD8+T细胞数量对有MVI的HCC患者的无复发生存时间进行Kaplan-Meier分析

4. 讨论

HCC的预后受多种因素影响,根治性肝切除术后复发是一个特别具有挑战性的问题,据报道复发率高达50%~70% [10]。因此,越来越多的生物标志物被发现并运用于预测HCC的临床预后[11] [12]。有研究表明外周血CD8+T细胞水平升高与HCC的低复发率密切相关,也有研究表明外周血CD8+T细胞水平对评价晚期肺癌患者ICB (免疫检查点阻断)的疗效具有重要价值[13] [14]。在本团队既往的研究中我们发现肝细胞癌患者外周血CD8+T细胞表达与多种因素相关,并且HCC患者人群中仅有一部分患者外周血CD8+T细胞低表达,因此我们考虑其是否与HCC患者的预后相关[15]。在本研究中,我们论证了外周血CD8+T细胞在HCC预后中的临床意义。我们的研究结果表明,在预后不良的HCC患者中,外周血CD8+T细胞数量明显降低。此外,CD8+T细胞数量被发现是HCC患者根治性切除后早期复发和生存状态的独立影响因素。更重要的是,CD8+T细胞水平在亚组分析中保持其预后价值,突出了其在预测HCC预后方面的临床相关性。

一般来说,HCC的复发与肿瘤细胞逃避免疫监视有关[16]。具有高侵袭力的肿瘤细胞即使在肿瘤早期也能进入血流并扩散到非肿瘤肝组织。这些细胞随后进入静止状态,在根治性切除后很容易触发形成复发性病变,CD8+T细胞在这一过程中起着至关重要的作用[9] [17] [18]

CD8+T细胞在HCC免疫应答中也起着重要作用[19] [20],CD8+T细胞的减少与HCC患者预后不良相关,目前研究多集中在TIL (肿瘤浸润性淋巴细胞) [21] [22]。然而,近年来人们越来越关注外周免疫景观,检测外周血CD8+T细胞水平可能是一种有希望区分复发或死亡等高危患者的方法。CD8+T细胞数量的测定以患者外周血为基础,具有操作简单、有效、重复性高的优点。我们的研究结果表明,外周血CD8+T细胞数量是预测肝切除术后预后的一个新的、可靠的参数。对于外周血CD8+T细胞数量减少的患者应给予更多的关注,并应使用更精确的影像学等检查来更早的发现早期复发。

5. 结论

综上所述,我们的研究结果有效地证实了外周血CD8+T细胞数量对HCC根治性肝切除术术后预后的预测价值,可作为预测预后的新指标。

NOTES

*通讯作者。

参考文献

[1] Vogel, A., Cervantes, A., Chau, I., Daniele, B., Llovet, J.M., Meyer, T., et al. (2018) Hepatocellular Carcinoma: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 29, iv238-iv255.
https://doi.org/10.1093/annonc/mdy308
[2] Llovet, J.M., Castet, F., Heikenwalder, M., Maini, M.K., Mazzaferro, V., Pinato, D.J., et al. (2021) Immunotherapies for Hepatocellular Carcinoma. Nature Reviews Clinical Oncology, 19, 151-172.
https://doi.org/10.1038/s41571-021-00573-2
[3] Chan, T.A., Yarchoan, M., Jaffee, E., Swanton, C., Quezada, S.A., Stenzinger, A., et al. (2019) Development of Tumor Mutation Burden as an Immunotherapy Biomarker: Utility for the Oncology Clinic. Annals of Oncology, 30, 44-56.
https://doi.org/10.1093/annonc/mdy495
[4] Goodman, A.M., Kato, S., Bazhenova, L., Patel, S.P., Frampton, G.M., Miller, V., et al. (2017) Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Molecular Cancer Therapeutics, 16, 2598-2608.
https://doi.org/10.1158/1535-7163.mct-17-0386
[5] Shang, B., Liu, Y., Jiang, S. and Liu, Y. (2015) Prognostic Value of Tumor-Infiltrating FoxP3+ Regulatory T Cells in Cancers: A Systematic Review and Meta-Analysis. Scientific Reports, 5, Article No. 15179.
https://doi.org/10.1038/srep15179
[6] Huang, A.C., Postow, M.A., Orlowski, R.J., Mick, R., Bengsch, B., Manne, S., et al. (2017) T-Cell Invigoration to Tumour Burden Ratio Associated with Anti-PD-1 Response. Nature, 545, 60-65.
https://doi.org/10.1038/nature22079
[7] Blackburn, S.D., Shin, H., Haining, W.N., Zou, T., Workman, C.J., Polley, A., et al. (2008) Coregulation of CD8+ T Cell Exhaustion by Multiple Inhibitory Receptors during Chronic Viral Infection. Nature Immunology, 10, 29-37.
https://doi.org/10.1038/ni.1679
[8] Postow, M.A., Callahan, M.K. and Wolchok, J.D. (2015) Immune Checkpoint Blockade in Cancer Therapy. Journal of Clinical Oncology, 33, 1974-1982.
https://doi.org/10.1200/jco.2014.59.4358
[9] Watson, R.A., Tong, O., Cooper, R., Taylor, C.A., Sharma, P.K., de los Aires, A.V., et al. (2021) Immune Checkpoint Blockade Sensitivity and Progression-Free Survival Associates with Baseline CD8+ T Cell Clone Size and Cytotoxicity. Science Immunology, 6, eabj8825.
https://doi.org/10.1126/sciimmunol.abj8825
[10] Tsilimigras, D.I., Bagante, F., Sahara, K., Moris, D., Hyer, J.M., Wu, L., et al. (2019) Prognosis after Resection of Barcelona Clinic Liver Cancer (BCLC) Stage 0, A, and B Hepatocellular Carcinoma: A Comprehensive Assessment of the Current BCLC Classification. Annals of Surgical Oncology, 26, 3693-3700.
https://doi.org/10.1245/s10434-019-07580-9
[11] Zhang, J., Qin, S.D., Li, Y., Lu, F., Gong, W.F., Zhong, J.H., et al. (2022) Prognostic Significance of Combined α-Fetoprotein and CA19-9 for Hepatocellular Carcinoma after Hepatectomy. World Journal of Surgical Oncology, 20, Article No. 346.
https://doi.org/10.1186/s12957-022-02806-9
[12] Xing, H., Jiang, X., Yang, C., Tan, B., Hu, J. and Zhang, M. (2023) High Expression of RPL27A Predicts Poor Prognosis in Patients with Hepatocellular Carcinoma. World Journal of Surgical Oncology, 21, Article No. 209.
https://doi.org/10.1186/s12957-023-03102-w
[13] Tang, K., Seo, J., Tiu, B.C., Le, T.K., Pahalyants, V., Raval, N.S., et al. (2022) Association of Cutaneous Immune-Related Adverse Events with Increased Survival in Patients Treated with Anti-Programmed Cell Death 1 and Anti-Programmed Cell Death Ligand 1 Therapy. JAMA Dermatology, 158, 189-193.
https://doi.org/10.1001/jamadermatol.2021.5476
[14] Sendi, H., Yazdimamaghani, M., Hu, M., Sultanpuram, N., Wang, J., Moody, A.S., et al. (2022) Nanoparticle Delivery of miR-122 Inhibits Colorectal Cancer Liver Metastasis. Cancer Research, 82, 105-113.
https://doi.org/10.1158/0008-5472.can-21-2269
[15] Lu, M., Wu, J., Hao, Z., Shang, Y., Xu, J., Nan, G., et al. (2018) Basolateral CD147 Induces Hepatocyte Polarity Loss by E‐Cadherin Ubiquitination and Degradation in Hepatocellular Carcinoma Progress. Hepatology, 68, 317-332.
https://doi.org/10.1002/hep.29798
[16] Zheng, C., Zheng, L., Yoo, J., Guo, H., Zhang, Y., Guo, X., et al. (2017) Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell, 169, 1342-1356.e16.
https://doi.org/10.1016/j.cell.2017.05.035
[17] Huang, Y., Jia, A., Wang, Y. and Liu, G. (2022) CD8+ T Cell Exhaustion in Anti‐Tumour Immunity: The New Insights for Cancer Immunotherapy. Immunology, 168, 30-48.
https://doi.org/10.1111/imm.13588
[18] Dolina, J.S., Van Braeckel-Budimir, N., Thomas, G.D. and Salek-Ardakani, S. (2021) CD8+ T Cell Exhaustion in Cancer. Frontiers in Immunology, 12, Article 715234.
https://doi.org/10.3389/fimmu.2021.715234
[19] Sun, R., Li, J., Lin, X., Yang, Y., Liu, B., Lan, T., et al. (2023) Peripheral Immune Characteristics of Hepatitis B Virus-Related Hepatocellular Carcinoma. Frontiers in Immunology, 14, Article 1079495.
https://doi.org/10.3389/fimmu.2023.1079495
[20] Tumeh, P.C., Harview, C.L., Yearley, J.H., Shintaku, I.P., Taylor, E.J.M., Robert, L., et al. (2014) PD-1 Blockade Induces Responses by Inhibiting Adaptive Immune Resistance. Nature, 515, 568-571.
https://doi.org/10.1038/nature13954
[21] Barsch, M., Salié, H., Schlaak, A.E., Zhang, Z., Hess, M., Mayer, L.S., et al. (2022) T-Cell Exhaustion and Residency Dynamics Inform Clinical Outcomes in Hepatocellular Carcinoma. Journal of Hepatology, 77, 397-409.
https://doi.org/10.1016/j.jhep.2022.02.032
[22] Wang, X., He, Q., Shen, H., Xia, A., Tian, W., Yu, W., et al. (2019) TOX Promotes the Exhaustion of Antitumor CD8+ T Cells by Preventing PD1 Degradation in Hepatocellular Carcinoma. Journal of Hepatology, 71, 731-741.
https://doi.org/10.1016/j.jhep.2019.05.015