[1]
|
鲍萍萍, 吴春晓, 张敏璐, 等. 上海市白血病主要亚型发病特征和趋势分析[J]. 诊断学理论与实践, 2017, 16(5): 484-491.
|
[2]
|
杜晓亮, 温凯丽, 孟月, 等. 799例急性淋巴细胞白血病流行病学研究[J]. 中国病案, 2021, 22(6): 101-104.
|
[3]
|
Villanueva, L., Álvarez-Errico, D. and Esteller, M. (2020) The Contribution of Epigenetics to Cancer Immunotherapy. Trends in Immunology, 41, 676-691. https://doi.org/10.1016/j.it.2020.06.002
|
[4]
|
Li, Y., Chen, X. and Lu, C. (2021) The Interplay between DNA and Histone Methylation: Molecular Mechanisms and Disease Implications. EMBO Reports, 22, e51803. https://doi.org/10.15252/embr.202051803
|
[5]
|
Mani, D.R., Krug, K., Zhang, B., Satpathy, S., Clauser, K.R., Ding, L., et al. (2022) Cancer Proteogenomics: Current Impact and Future Prospects. Nature Reviews Cancer, 22, 298-313. https://doi.org/10.1038/s41568-022-00446-5
|
[6]
|
Paulsson, K., Lilljebjörn, H., Biloglav, A., Olsson, L., Rissler, M., Castor, A., et al. (2015) The Genomic Landscape of High Hyperdiploid Childhood Acute Lymphoblastic Leukemia. Nature Genetics, 47, 672-676. https://doi.org/10.1038/ng.3301
|
[7]
|
Iacobucci, I., Kimura, S. and Mullighan, C.G. (2021) Biologic and Therapeutic Implications of Genomic Alterations in Acute Lymphoblastic Leukemia. Journal of Clinical Medicine, 10, Article 3792. https://doi.org/10.3390/jcm10173792
|
[8]
|
Chen, Y., Miao, L., Lin, H., Zhuo, Z. and He, J. (2022) The Role of M6a Modification in Pediatric Cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1877, Article 188691. https://doi.org/10.1016/j.bbcan.2022.188691
|
[9]
|
Parry, A., Rulands, S. and Reik, W. (2020) Active Turnover of DNA Methylation during Cell Fate Decisions. Nature Reviews Genetics, 22, 59-66. https://doi.org/10.1038/s41576-020-00287-8
|
[10]
|
Kim, J., Guermah, M., McGinty, R.K., Lee, J., Tang, Z., Milne, T.A., et al. (2009) RAD6-Mediated Transcription-Coupled H2B Ubiquitylation Directly Stimulates H3K4 Methylation in Human Cells. Cell, 137, 459-471. https://doi.org/10.1016/j.cell.2009.02.027
|
[11]
|
Higo, T., Suzuki, Y., Sato, M., Koya, J., Mizuno, H., Miyauchi, M., et al. (2022) Heterozygous Dnmt3a R878C Induces Expansion of Quiescent Hematopoietic Stem Cell Pool. Experimental Hematology, 109, 45-54. https://doi.org/10.1016/j.exphem.2022.02.006
|
[12]
|
Firtina, S., Erbilgin, Y., Hatirnaz Ng, O., Karaman, S., Karakas, Z., Celkan, T.T., et al. (2023) Impact of TP53 Gene Variants on Prognosis and Survival of Childhood Acute Lymphoblastic Leukemia. Scandinavian Journal of Clinical and Laboratory Investigation, 83, 187-193. https://doi.org/10.1080/00365513.2023.2195682
|
[13]
|
Pogribny, I.P., Miller, B.J. and James, S.J. (1997) Alterations in Hepatic P53 Gene Methylation Patterns during Tumor Progression with Folate/Methyl Deficiency in the Rat. Cancer Letters, 115, 31-38. https://doi.org/10.1016/s0304-3835(97)04708-3
|
[14]
|
Dalmizrak, A. and Dalmizrak, O. (2022) Mesenchymal Stem Cell-Derived Exosomes as New Tools for Delivery of miRNAs in the Treatment of Cancer. Frontiers in Bioengineering and Biotechnology, 10, Article 956563. https://doi.org/10.3389/fbioe.2022.956563
|
[15]
|
Chatterjee, A., Paul, S., Bisht, B., Bhattacharya, S., Sivasubramaniam, S. and Paul, M.K. (2022) Advances in Targeting the Wnt/β-Catenin Signaling Pathway in Cancer. Drug Discovery Today, 27, 82-101. https://doi.org/10.1016/j.drudis.2021.07.007
|
[16]
|
韩伟, 王文鹏, 颜静, 等. 儿童急性淋巴细胞白血病中Wnt通路抑制因子-1基因甲基化研究[J]. 中国医药导报, 2023, 20(11): 119-122.
|
[17]
|
Cassaro, A., Grillo, G., Notaro, M., Gliozzo, J., Esposito, I., Reda, G., et al. (2021) FZD6 Triggers Wnt-Signalling Driven by WNT10BIVS1 Expression and Highlights New Targets in T‐Cell Acute Lymphoblastic Leukemia. Hematological Oncology, 39, 364-379. https://doi.org/10.1002/hon.2840
|
[18]
|
Arber, D.A., Orazi, A., Hasserjian, R.P., Borowitz, M.J., Calvo, K.R., Kvasnicka, H., et al. (2022) International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating Morphologic, Clinical, and Genomic Data. Blood, 140, 1200-1228. https://doi.org/10.1182/blood.2022015850
|
[19]
|
Stergiou, I.E., Papadakos, S.P., Karyda, A., Tsitsilonis, O.E., Dimopoulos, M. and Theocharis, S. (2023) EPH/Ephrin Signaling in Normal Hematopoiesis and Hematologic Malignancies: Deciphering Their Intricate Role and Unraveling Possible New Therapeutic Targets. Cancers, 15, Article 3963. https://doi.org/10.3390/cancers15153963
|
[20]
|
Kuang, S., Bai, H., Fang, Z., Lopez, G., Yang, H., Tong, W., et al. (2010) Aberrant DNA Methylation and Epigenetic Inactivation of Eph Receptor Tyrosine Kinases and Ephrin Ligands in Acute Lymphoblastic Leukemia. Blood, 115, 2412-2419. https://doi.org/10.1182/blood-2009-05-222208
|
[21]
|
Wu, Q., Schapira, M., Arrowsmith, C.H. and Barsyte-Lovejoy, D. (2021) Protein Arginine Methylation: From Enigmatic Functions to Therapeutic Targeting. Nature Reviews Drug Discovery, 20, 509-530. https://doi.org/10.1038/s41573-021-00159-8
|
[22]
|
de Barrios, O. and Parra, M. (2021) Epigenetic Control of Infant B Cell Precursor Acute Lymphoblastic Leukemia. International Journal of Molecular Sciences, 22, Article 3127. https://doi.org/10.3390/ijms22063127
|
[23]
|
Szewczyk, M.M., Luciani, G.M., Vu, V., Murison, A., Dilworth, D., Barghout, S.H., et al. (2022) PRMT5 Regulates ATF4 Transcript Splicing and Oxidative Stress Response. Redox Biology, 51, Article 102282. https://doi.org/10.1016/j.redox.2022.102282
|
[24]
|
Neganova, M.E., Klochkov, S.G., Aleksandrova, Y.R. and Aliev, G. (2022) Histone Modifications in Epigenetic Regulation of Cancer: Perspectives and Achieved Progress. Seminars in Cancer Biology, 83, 452-471. https://doi.org/10.1016/j.semcancer.2020.07.015
|
[25]
|
Yang, L., Jin, M. and Jeong, K.W. (2021) Histone H3K4 Methyltransferases as Targets for Drug-Resistant Cancers. Biology, 10, Article 581. https://doi.org/10.3390/biology10070581
|
[26]
|
Zhao, S., Allis, C.D. and Wang, G.G. (2021) The Language of Chromatin Modification in Human Cancers. Nature Reviews Cancer, 21, 413-430. https://doi.org/10.1038/s41568-021-00357-x
|
[27]
|
Zhang, Y., Sun, Z., Jia, J., Du, T., Zhang, N., Tang, Y., et al. (2020) Overview of Histone Modification. In: Fang, D., Han, J., Eds., Histone Mutations and Cancer, Springer, 1-16. https://doi.org/10.1007/978-981-15-8104-5_1
|
[28]
|
Xu, H., Yu, H., Jin, R., Wu, X. and Chen, H. (2021) Genetic and Epigenetic Targeting Therapy for Pediatric Acute Lymphoblastic Leukemia. Cells, 10, Article 3349. https://doi.org/10.3390/cells10123349
|
[29]
|
Sonnemann, J., Gruhn, B., Wittig, S., Becker, S. and Beck, J.F. (2012) Increased Activity of Histone Deacetylases in Childhood Acute Lymphoblastic Leukaemia and Acute Myeloid Leukaemia: Support for Histone Deacetylase Inhibitors as Antileukaemic Agents. British Journal of Haematology, 158, 664-666. https://doi.org/10.1111/j.1365-2141.2012.09187.x
|
[30]
|
Zhou, S., Cai, Y., Liu, X., Jin, L., Wang, X., Ma, W., et al. (2021) Role of H2B Mono-Ubiquitination in the Initiation and Progression of Cancer. Bulletin du Cancer, 108, 385-398. https://doi.org/10.1016/j.bulcan.2020.12.007
|
[31]
|
Ryu, H. and Hochstrasser, M. (2021) Histone Sumoylation and Chromatin Dynamics. Nucleic Acids Research, 49, 6043-6052. https://doi.org/10.1093/nar/gkab280
|
[32]
|
Chatterjee, C., McGinty, R.K., Fierz, B. and Muir, T.W. (2010) Disulfide-Directed Histone Ubiquitylation Reveals Plasticity in hDot1L Activation. Nature Chemical Biology, 6, 267-269. https://doi.org/10.1038/nchembio.315
|
[33]
|
Jarome, T.J., Perez, G.A., Webb, W.M., Hatch, K.M., Navabpour, S., Musaus, M., et al. (2021) Ubiquitination of Histone H2B by Proteasome Subunit RPT6 Controls Histone Methylation Chromatin Dynamics during Memory Formation. Biological Psychiatry, 89, 1176-1187. https://doi.org/10.1016/j.biopsych.2020.12.029
|
[34]
|
Doghish, A.S., Ismail, A., El-Mahdy, H.A., Elkady, M.A., Elrebehy, M.A. and Sallam, A.M. (2022) A Review of the Biological Role of miRNAs in Prostate Cancer Suppression and Progression. International Journal of Biological Macromolecules, 197, 141-156. https://doi.org/10.1016/j.ijbiomac.2021.12.141
|
[35]
|
Forterre, A., Komuro, H., Aminova, S. and Harada, M. (2020) A Comprehensive Review of Cancer MicroRNA Therapeutic Delivery Strategies. Cancers, 12, Article 1852. https://doi.org/10.3390/cancers12071852
|
[36]
|
Anelli, L., Zagaria, A., Specchia, G., Musto, P. and Albano, F. (2021) Dysregulation of Mirna in Leukemia: Exploiting Mirna Expression Profiles as Biomarkers. International Journal of Molecular Sciences, 22, Article 7156. https://doi.org/10.3390/ijms22137156
|
[37]
|
Gao, Y., Wu, P., Ma, Y., Xue, Y., Liu, Y., Zheng, J., et al. (2019) Circular RNA USP1 Regulates the Permeability of Blood‐Tumour Barrier via MiR‐194‐5p/FLI1 Axis. Journal of Cellular and Molecular Medicine, 24, 342-355. https://doi.org/10.1111/jcmm.14735
|
[38]
|
Erkeland, S.J. (2023) Computational Analysis of a MicroRNA Signature for Poor Prognosis Suggests a MicroRNA‐Controlled Stemness Pathway in Paediatric Acute Leukaemia. British Journal of Haematology, 202, 11-12. https://doi.org/10.1111/bjh.18780
|
[39]
|
Zhi, Y., Xie, X., Wang, R., Wang, B., Gu, W., Ling, Y., et al. (2015) Serum Level of miR-10-5p as a Prognostic Biomarker for Acute Myeloid Leukemia. International Journal of Hematology, 102, 296-303. https://doi.org/10.1007/s12185-015-1829-6
|
[40]
|
Favero, A., Segatto, I., Perin, T. and Belletti, B. (2021) The Many Facets of miR‐223 in Cancer: Oncosuppressor, Oncogenic Driver, Therapeutic Target, and Biomarker of Response. WIREs RNA, 12, e1659. https://doi.org/10.1002/wrna.1659
|
[41]
|
Ranieri, R., Pianigiani, G., Sciabolacci, S., Perriello, V.M., Marra, A., Cardinali, V., et al. (2022) Current Status and Future Perspectives in Targeted Therapy of NPM1-Mutated AML. Leukemia, 36, 2351-2367. https://doi.org/10.1038/s41375-022-01666-2
|
[42]
|
Cordo', V., van der Zwet, J.C.G., Canté-Barrett, K., Pieters, R. and Meijerink, J.P.P. (2021) T-Cell Acute Lymphoblastic Leukemia: A Roadmap to Targeted Therapies. Blood Cancer Discovery, 2, 19-31. https://doi.org/10.1158/2643-3230.bcd-20-0093
|
[43]
|
Sahakian, E., Chen, J., Powers, J.J., Chen, X., Maharaj, K., Deng, S.L., et al. (2017) Essential Role for Histone Deacetylase 11 (HDAC11) in Neutrophil Biology. Journal of Leukocyte Biology, 102, 475-486. https://doi.org/10.1189/jlb.1a0415-176rrr
|
[44]
|
Marks, P.A. and Breslow, R. (2007) Dimethyl Sulfoxide to Vorinostat: Development of This Histone Deacetylase Inhibitor as an Anticancer Drug. Nature Biotechnology, 25, 84-90. https://doi.org/10.1038/nbt1272
|
[45]
|
Ganai, S.A. (2018) Histone Deacetylase Inhibitors Modulating Non-Epigenetic Players: The Novel Mechanism for Small Molecule Based Therapeutic Intervention. Current Drug Targets, 19, 593-601. https://doi.org/10.2174/1389450117666160527143257
|
[46]
|
West, A.C. and Johnstone, R.W. (2014) New and Emerging HDAC Inhibitors for Cancer Treatment. Journal of Clinical Investigation, 124, 30-39. https://doi.org/10.1172/jci69738
|
[47]
|
Tran, T.H. and Hunger, S.P. (2022) The Genomic Landscape of Pediatric Acute Lymphoblastic Leukemia and Precision Medicine Opportunities. Seminars in Cancer Biology, 84, 144-152. https://doi.org/10.1016/j.semcancer.2020.10.013
|
[48]
|
Stomper, J., Rotondo, J.C., Greve, G. and Lübbert, M. (2021) Hypomethylating Agents (HMA) for the Treatment of Acute Myeloid Leukemia and Myelodysplastic Syndromes: Mechanisms of Resistance and Novel HMA-Based Therapies. Leukemia, 35, 1873-1889. https://doi.org/10.1038/s41375-021-01218-0
|
[49]
|
Liu, J., Huang, C., Cheng, H., et al. (2015) Effects of Decitabine against Acute T Lymphoblastic Leukemia Cell Line MOLT4. Chinese Journal of Hematology, 36, 230-234.
|
[50]
|
Swerev, T.M., Wirth, T. and Ushmorov, A. (2016) Activation of Oncogenic Pathways in Classical Hodgkin Lymphoma by Decitabine: A Rationale for Combination with Small Molecular Weight Inhibitors. International Journal of Oncology, 50, 555-566. https://doi.org/10.3892/ijo.2016.3827
|
[51]
|
Jain, S., Washington, A.J., Leaf, R.K., Bhargava, P., Clark, R., Kupper, T.S., et al. (2016) Decitabine Priming Enhances Mucin 1 Inhibition Mediated Disruption of Redox Homeostasis in Cutaneous T-Cell Lymphoma. Blood, 128, 4175-4175. https://doi.org/10.1182/blood.v128.22.4175.4175
|
[52]
|
Li, S., Xue, L., Wang, M., Qiang, P., Xu, H., Zhang, X., et al. (2019) decitabine Enhances Cytotoxic Effect of T Cells with an Anti-CD19 Chimeric Antigen Receptor in Treatment of Lymphoma. OncoTargets and Therapy, 12, 5627-5638. https://doi.org/10.2147/ott.s198567
|
[53]
|
Nieto, Y., Valdez, B.C., Thall, P.F., Jones, R.B., Wei, W., Myers, A., et al. (2016) Double Epigenetic Modulation of High‐Dose Chemotherapy with Azacitidine and Vorinostat for Patients with Refractory or Poor‐Risk Relapsed Lymphoma. Cancer, 122, 2680-2688. https://doi.org/10.1002/cncr.30100
|