|
[1]
|
鲍萍萍, 吴春晓, 张敏璐, 等. 上海市白血病主要亚型发病特征和趋势分析[J]. 诊断学理论与实践, 2017, 16(5): 484-491.
|
|
[2]
|
杜晓亮, 温凯丽, 孟月, 等. 799例急性淋巴细胞白血病流行病学研究[J]. 中国病案, 2021, 22(6): 101-104.
|
|
[3]
|
Villanueva, L., Álvarez-Errico, D. and Esteller, M. (2020) The Contribution of Epigenetics to Cancer Immunotherapy. Trends in Immunology, 41, 676-691. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Li, Y., Chen, X. and Lu, C. (2021) The Interplay between DNA and Histone Methylation: Molecular Mechanisms and Disease Implications. EMBO Reports, 22, e51803. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Mani, D.R., Krug, K., Zhang, B., Satpathy, S., Clauser, K.R., Ding, L., et al. (2022) Cancer Proteogenomics: Current Impact and Future Prospects. Nature Reviews Cancer, 22, 298-313. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Paulsson, K., Lilljebjörn, H., Biloglav, A., Olsson, L., Rissler, M., Castor, A., et al. (2015) The Genomic Landscape of High Hyperdiploid Childhood Acute Lymphoblastic Leukemia. Nature Genetics, 47, 672-676. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Iacobucci, I., Kimura, S. and Mullighan, C.G. (2021) Biologic and Therapeutic Implications of Genomic Alterations in Acute Lymphoblastic Leukemia. Journal of Clinical Medicine, 10, Article 3792. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Chen, Y., Miao, L., Lin, H., Zhuo, Z. and He, J. (2022) The Role of M6a Modification in Pediatric Cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1877, Article 188691. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Parry, A., Rulands, S. and Reik, W. (2020) Active Turnover of DNA Methylation during Cell Fate Decisions. Nature Reviews Genetics, 22, 59-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kim, J., Guermah, M., McGinty, R.K., Lee, J., Tang, Z., Milne, T.A., et al. (2009) RAD6-Mediated Transcription-Coupled H2B Ubiquitylation Directly Stimulates H3K4 Methylation in Human Cells. Cell, 137, 459-471. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Higo, T., Suzuki, Y., Sato, M., Koya, J., Mizuno, H., Miyauchi, M., et al. (2022) Heterozygous Dnmt3a R878C Induces Expansion of Quiescent Hematopoietic Stem Cell Pool. Experimental Hematology, 109, 45-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Firtina, S., Erbilgin, Y., Hatirnaz Ng, O., Karaman, S., Karakas, Z., Celkan, T.T., et al. (2023) Impact of TP53 Gene Variants on Prognosis and Survival of Childhood Acute Lymphoblastic Leukemia. Scandinavian Journal of Clinical and Laboratory Investigation, 83, 187-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Pogribny, I.P., Miller, B.J. and James, S.J. (1997) Alterations in Hepatic P53 Gene Methylation Patterns during Tumor Progression with Folate/Methyl Deficiency in the Rat. Cancer Letters, 115, 31-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Dalmizrak, A. and Dalmizrak, O. (2022) Mesenchymal Stem Cell-Derived Exosomes as New Tools for Delivery of miRNAs in the Treatment of Cancer. Frontiers in Bioengineering and Biotechnology, 10, Article 956563. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Chatterjee, A., Paul, S., Bisht, B., Bhattacharya, S., Sivasubramaniam, S. and Paul, M.K. (2022) Advances in Targeting the Wnt/β-Catenin Signaling Pathway in Cancer. Drug Discovery Today, 27, 82-101. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
韩伟, 王文鹏, 颜静, 等. 儿童急性淋巴细胞白血病中Wnt通路抑制因子-1基因甲基化研究[J]. 中国医药导报, 2023, 20(11): 119-122.
|
|
[17]
|
Cassaro, A., Grillo, G., Notaro, M., Gliozzo, J., Esposito, I., Reda, G., et al. (2021) FZD6 Triggers Wnt-Signalling Driven by WNT10BIVS1 Expression and Highlights New Targets in T‐Cell Acute Lymphoblastic Leukemia. Hematological Oncology, 39, 364-379. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Arber, D.A., Orazi, A., Hasserjian, R.P., Borowitz, M.J., Calvo, K.R., Kvasnicka, H., et al. (2022) International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating Morphologic, Clinical, and Genomic Data. Blood, 140, 1200-1228. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Stergiou, I.E., Papadakos, S.P., Karyda, A., Tsitsilonis, O.E., Dimopoulos, M. and Theocharis, S. (2023) EPH/Ephrin Signaling in Normal Hematopoiesis and Hematologic Malignancies: Deciphering Their Intricate Role and Unraveling Possible New Therapeutic Targets. Cancers, 15, Article 3963. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kuang, S., Bai, H., Fang, Z., Lopez, G., Yang, H., Tong, W., et al. (2010) Aberrant DNA Methylation and Epigenetic Inactivation of Eph Receptor Tyrosine Kinases and Ephrin Ligands in Acute Lymphoblastic Leukemia. Blood, 115, 2412-2419. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wu, Q., Schapira, M., Arrowsmith, C.H. and Barsyte-Lovejoy, D. (2021) Protein Arginine Methylation: From Enigmatic Functions to Therapeutic Targeting. Nature Reviews Drug Discovery, 20, 509-530. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
de Barrios, O. and Parra, M. (2021) Epigenetic Control of Infant B Cell Precursor Acute Lymphoblastic Leukemia. International Journal of Molecular Sciences, 22, Article 3127. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Szewczyk, M.M., Luciani, G.M., Vu, V., Murison, A., Dilworth, D., Barghout, S.H., et al. (2022) PRMT5 Regulates ATF4 Transcript Splicing and Oxidative Stress Response. Redox Biology, 51, Article 102282. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Neganova, M.E., Klochkov, S.G., Aleksandrova, Y.R. and Aliev, G. (2022) Histone Modifications in Epigenetic Regulation of Cancer: Perspectives and Achieved Progress. Seminars in Cancer Biology, 83, 452-471. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Yang, L., Jin, M. and Jeong, K.W. (2021) Histone H3K4 Methyltransferases as Targets for Drug-Resistant Cancers. Biology, 10, Article 581. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhao, S., Allis, C.D. and Wang, G.G. (2021) The Language of Chromatin Modification in Human Cancers. Nature Reviews Cancer, 21, 413-430. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhang, Y., Sun, Z., Jia, J., Du, T., Zhang, N., Tang, Y., et al. (2020) Overview of Histone Modification. In: Fang, D., Han, J., Eds., Histone Mutations and Cancer, Springer, 1-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Xu, H., Yu, H., Jin, R., Wu, X. and Chen, H. (2021) Genetic and Epigenetic Targeting Therapy for Pediatric Acute Lymphoblastic Leukemia. Cells, 10, Article 3349. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Sonnemann, J., Gruhn, B., Wittig, S., Becker, S. and Beck, J.F. (2012) Increased Activity of Histone Deacetylases in Childhood Acute Lymphoblastic Leukaemia and Acute Myeloid Leukaemia: Support for Histone Deacetylase Inhibitors as Antileukaemic Agents. British Journal of Haematology, 158, 664-666. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhou, S., Cai, Y., Liu, X., Jin, L., Wang, X., Ma, W., et al. (2021) Role of H2B Mono-Ubiquitination in the Initiation and Progression of Cancer. Bulletin du Cancer, 108, 385-398. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ryu, H. and Hochstrasser, M. (2021) Histone Sumoylation and Chromatin Dynamics. Nucleic Acids Research, 49, 6043-6052. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Chatterjee, C., McGinty, R.K., Fierz, B. and Muir, T.W. (2010) Disulfide-Directed Histone Ubiquitylation Reveals Plasticity in hDot1L Activation. Nature Chemical Biology, 6, 267-269. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Jarome, T.J., Perez, G.A., Webb, W.M., Hatch, K.M., Navabpour, S., Musaus, M., et al. (2021) Ubiquitination of Histone H2B by Proteasome Subunit RPT6 Controls Histone Methylation Chromatin Dynamics during Memory Formation. Biological Psychiatry, 89, 1176-1187. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Doghish, A.S., Ismail, A., El-Mahdy, H.A., Elkady, M.A., Elrebehy, M.A. and Sallam, A.M. (2022) A Review of the Biological Role of miRNAs in Prostate Cancer Suppression and Progression. International Journal of Biological Macromolecules, 197, 141-156. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Forterre, A., Komuro, H., Aminova, S. and Harada, M. (2020) A Comprehensive Review of Cancer MicroRNA Therapeutic Delivery Strategies. Cancers, 12, Article 1852. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Anelli, L., Zagaria, A., Specchia, G., Musto, P. and Albano, F. (2021) Dysregulation of Mirna in Leukemia: Exploiting Mirna Expression Profiles as Biomarkers. International Journal of Molecular Sciences, 22, Article 7156. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Gao, Y., Wu, P., Ma, Y., Xue, Y., Liu, Y., Zheng, J., et al. (2019) Circular RNA USP1 Regulates the Permeability of Blood‐Tumour Barrier via MiR‐194‐5p/FLI1 Axis. Journal of Cellular and Molecular Medicine, 24, 342-355. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Erkeland, S.J. (2023) Computational Analysis of a MicroRNA Signature for Poor Prognosis Suggests a MicroRNA‐Controlled Stemness Pathway in Paediatric Acute Leukaemia. British Journal of Haematology, 202, 11-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhi, Y., Xie, X., Wang, R., Wang, B., Gu, W., Ling, Y., et al. (2015) Serum Level of miR-10-5p as a Prognostic Biomarker for Acute Myeloid Leukemia. International Journal of Hematology, 102, 296-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Favero, A., Segatto, I., Perin, T. and Belletti, B. (2021) The Many Facets of miR‐223 in Cancer: Oncosuppressor, Oncogenic Driver, Therapeutic Target, and Biomarker of Response. WIREs RNA, 12, e1659. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Ranieri, R., Pianigiani, G., Sciabolacci, S., Perriello, V.M., Marra, A., Cardinali, V., et al. (2022) Current Status and Future Perspectives in Targeted Therapy of NPM1-Mutated AML. Leukemia, 36, 2351-2367. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Cordo', V., van der Zwet, J.C.G., Canté-Barrett, K., Pieters, R. and Meijerink, J.P.P. (2021) T-Cell Acute Lymphoblastic Leukemia: A Roadmap to Targeted Therapies. Blood Cancer Discovery, 2, 19-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Sahakian, E., Chen, J., Powers, J.J., Chen, X., Maharaj, K., Deng, S.L., et al. (2017) Essential Role for Histone Deacetylase 11 (HDAC11) in Neutrophil Biology. Journal of Leukocyte Biology, 102, 475-486. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Marks, P.A. and Breslow, R. (2007) Dimethyl Sulfoxide to Vorinostat: Development of This Histone Deacetylase Inhibitor as an Anticancer Drug. Nature Biotechnology, 25, 84-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Ganai, S.A. (2018) Histone Deacetylase Inhibitors Modulating Non-Epigenetic Players: The Novel Mechanism for Small Molecule Based Therapeutic Intervention. Current Drug Targets, 19, 593-601. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
West, A.C. and Johnstone, R.W. (2014) New and Emerging HDAC Inhibitors for Cancer Treatment. Journal of Clinical Investigation, 124, 30-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Tran, T.H. and Hunger, S.P. (2022) The Genomic Landscape of Pediatric Acute Lymphoblastic Leukemia and Precision Medicine Opportunities. Seminars in Cancer Biology, 84, 144-152. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Stomper, J., Rotondo, J.C., Greve, G. and Lübbert, M. (2021) Hypomethylating Agents (HMA) for the Treatment of Acute Myeloid Leukemia and Myelodysplastic Syndromes: Mechanisms of Resistance and Novel HMA-Based Therapies. Leukemia, 35, 1873-1889. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Liu, J., Huang, C., Cheng, H., et al. (2015) Effects of Decitabine against Acute T Lymphoblastic Leukemia Cell Line MOLT4. Chinese Journal of Hematology, 36, 230-234.
|
|
[50]
|
Swerev, T.M., Wirth, T. and Ushmorov, A. (2016) Activation of Oncogenic Pathways in Classical Hodgkin Lymphoma by Decitabine: A Rationale for Combination with Small Molecular Weight Inhibitors. International Journal of Oncology, 50, 555-566. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Jain, S., Washington, A.J., Leaf, R.K., Bhargava, P., Clark, R., Kupper, T.S., et al. (2016) Decitabine Priming Enhances Mucin 1 Inhibition Mediated Disruption of Redox Homeostasis in Cutaneous T-Cell Lymphoma. Blood, 128, 4175-4175. [Google Scholar] [CrossRef]
|
|
[52]
|
Li, S., Xue, L., Wang, M., Qiang, P., Xu, H., Zhang, X., et al. (2019) decitabine Enhances Cytotoxic Effect of T Cells with an Anti-CD19 Chimeric Antigen Receptor in Treatment of Lymphoma. OncoTargets and Therapy, 12, 5627-5638. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Nieto, Y., Valdez, B.C., Thall, P.F., Jones, R.B., Wei, W., Myers, A., et al. (2016) Double Epigenetic Modulation of High‐Dose Chemotherapy with Azacitidine and Vorinostat for Patients with Refractory or Poor‐Risk Relapsed Lymphoma. Cancer, 122, 2680-2688. [Google Scholar] [CrossRef] [PubMed]
|