[1]
|
Novais, E.A., Baumal, C.R., Sarraf, D., Freund, K.B. and Duker, J.S. (2016) Multimodal Imaging in Retinal Disease: A Consensus Definition. Ophthalmic Surgery, Lasers and Imaging Retina, 47, 201-205. https://doi.org/10.3928/23258160-20160229-01
|
[2]
|
Acar, N. (2018) Clinical Use of OCT in the Management of Epiretinal Membranes. In: Lanza, M., Ed., OCT—Applications in Ophthalmology, InTech, 65-81. https://doi.org/10.5772/intechopen.79770
|
[3]
|
Govetto, A., Lalane, R.A., Sarraf, D., Figueroa, M.S. and Hubschman, J.P. (2017) Insights into Epiretinal Membranes: Presence of Ectopic Inner Foveal Layers and a New Optical Coherence Tomography Staging Scheme. American Journal of Ophthalmology, 175, 99-113. https://doi.org/10.1016/j.ajo.2016.12.006
|
[4]
|
Doguizi, S., Sekeroglu, M.A., Ozkoyuncu, D., Omay, A.E. and Yilmazbas, P. (2018) Clinical Significance of Ectopic Inner Foveal Layers in Patients with Idiopathic Epiretinal Membranes. Eye, 32, 1652-1660. https://doi.org/10.1038/s41433-018-0153-9
|
[5]
|
Tsuda, K., Miyata, M., Kawai, K., Nakao, S., Yamamoto, A., Suda, K., et al. (2024) Relationship between Binocular Vision and Govetto’s Stage in Monocular Idiopathic Epiretinal Membrane. Scientific Reports, 14, Article No. 20442. https://doi.org/10.1038/s41598-024-71594-x
|
[6]
|
Alkabes, M., Fogagnolo, P., Vujosevic, S., Rossetti, L., Casini, G. and De Cillà, S. (2020) Correlation between New OCT Parameters and Metamorphopsia in Advanced Stages of Epiretinal Membranes. Acta Ophthalmologica, 98, 780-786. https://doi.org/10.1111/aos.14336
|
[7]
|
González-Saldivar, G., Berger, A., Wong, D., Juncal, V. and Chow, D.R. (2020) Ectopic Inner Foveal Layer Classification Scheme Predicts Visual Outcomes after Epiretinal Membrane Surgery. Retina, 40, 710-717. https://doi.org/10.1097/iae.0000000000002486
|
[8]
|
Cho, K.H., Park, S.J., Cho, J.H., Woo, S.J. and Park, K.H. (2016) Inner-Retinal Irregularity Index Predicts Postoperative Visual Prognosis in Idiopathic Epiretinal Membrane. American Journal of Ophthalmology, 168, 139-149. https://doi.org/10.1016/j.ajo.2016.05.011
|
[9]
|
Ehlers, J.P., Dupps, W.J., Kaiser, P.K., Goshe, J., Singh, R.P., Petkovsek, D., et al. (2014) The Prospective Intraoperative and Perioperative Ophthalmic Imaging with Optical Coherence Tomography (PIONEER) Study: 2-Year Results. American Journal of Ophthalmology, 158, 999-1007.e1. https://doi.org/10.1016/j.ajo.2014.07.034
|
[10]
|
Weschta, M., Klaas, J.E., Feucht, N., Lohmann, C.P. and Maier, M. (2023) Microstructural Morphology and Visual Acuity Outcome in Eyes with Epiretinal Membrane Before, During, and after Membrane Peeling in Intraoperative Optical Coherence Tomography Assisted Macular Surgery. International Journal of Ophthalmology, 16, 748-754. https://doi.org/10.18240/ijo.2023.05.12
|
[11]
|
Ehlers, J.P., McNutt, S., Dar, S., Tao, Y.K. and Srivastava, S.K. (2014) Visualisation of Contrast-Enhanced Intraoperative Optical Coherence Tomography with Indocyanine Green. British Journal of Ophthalmology, 98, 1588-1591. https://doi.org/10.1136/bjophthalmol-2014-305295
|
[12]
|
Fung, A.T., Galvin, J. and Tran, T. (2021) Epiretinal Membrane: A Review. Clinical & Experimental Ophthalmology, 49, 289-308. https://doi.org/10.1111/ceo.13914
|
[13]
|
Muller, Y.-G. and Lenoble, P. (2023) Clinical and Pathophysiological Contribution of OCT-Angiography to Epiretinal Membranes. Journal Français d’Ophtalmologie, 46, 776-790. https://doi.org/10.1016/j.jfo.2023.01.028
|
[14]
|
Bacherini, D., Dragotto, F., Caporossi, T., Lenzetti, C., Finocchio, L., Savastano, A., et al. (2021) The Role of OCT Angiography in the Assessment of Epiretinal Macular Membrane. Journal of Ophthalmology, 2021, Article 8866407. https://doi.org/10.1155/2021/8866407
|
[15]
|
Shao, E., Liu, C., Wang, L., Song, D., Guo, L., Yao, X., et al. (2021) Artificial Intelligence-Based Detection of Epimacular Membrane from Color Fundus Photographs. Scientific Reports, 11, Article No. 19291. https://doi.org/10.1038/s41598-021-98510-x
|
[16]
|
Chen, K., Mao, J., Liu, H., Wang, X., Dou, P., Lu, Y., et al. (2022) Screening of Idiopathic Epiretinal Membrane Using Fundus Images Combined with Blood Oxygen Saturation and Vascular Morphological Features. International Ophthalmology, 43, 1215-1228. https://doi.org/10.1007/s10792-022-02520-1
|
[17]
|
Yang, Y., Yan, Y.N., Wang, Y.X., Xu, J., Ren, J., Xu, L., et al. (2018) Ten-Year Cumulative Incidence of Epiretinal Membranes Assessed on Fundus Photographs. The Beijing Eye Study 2001/2011. PLOS ONE, 13, e0195768. https://doi.org/10.1371/journal.pone.0195768
|
[18]
|
Song, J.H., Moon, K.Y., Jang, S. and Moon, Y. (2018) Comparison of Multicolor Fundus Imaging and Colour Fundus Photography in the Evaluation of Epiretinal Membrane. Acta Ophthalmologica, 97, e533-e539. https://doi.org/10.1111/aos.13978
|
[19]
|
Savastano, A., Ripa, M., Savastano, M.C., Caporossi, T., Bacherini, D., Kilian, R., et al. (2022) Retromode Imaging Modality of Epiretinal Membranes. Journal of Clinical Medicine, 11, Article 3936. https://doi.org/10.3390/jcm11143936
|
[20]
|
Brito, P.N., Gomes, N.L., Vieira, M.P., Faria, P.A., Fernandes, A.V., Rocha-Sousa, A., et al. (2014) Possible Role for Fundus Autofluorescence as a Predictive Factor for Visual Acuity Recovery after Epiretinal Membrane Surgery. Retina, 34, 273-280. https://doi.org/10.1097/iae.0b013e3182999a02
|
[21]
|
Scheerlinck, L.M.E., van der Valk, R. and van Leeuwen, R. (2014) Predictive Factors for Postoperative Visual Acuity in Idiopathic Epiretinal Membrane: A Systematic Review. Acta Ophthalmologica, 93, 203-212. https://doi.org/10.1111/aos.12537
|
[22]
|
Frampton, G.K., Kalita, N., Payne, L., Colquitt, J.L., Loveman, E., Downes, S.M., et al. (2017) Fundus Autofluorescence Imaging: Systematic Review of Test Accuracy for the Diagnosis and Monitoring of Retinal Conditions. Eye, 31, 995-1007. https://doi.org/10.1038/eye.2017.19
|
[23]
|
Mao, J., Lao, J., Liu, C., Zhang, C., Chen, Y., Tao, J., et al. (2020) A Study Analyzing Macular Microvasculature Features after Vitrectomy Using OCT Angiography in Patients with Idiopathic Macular Epiretinal Membrane. BMC Ophthalmology, 20, Article No. 165. https://doi.org/10.1186/s12886-020-01429-6
|
[24]
|
Kwon, H.J., Park, S.W., Lee, J.E. and Byon, I. (2021) Microvascular Leakage Is a Poor Prognostic Factor for Idiopathic Epiretinal Membrane: A Fluorescein Angiography Study. Retina, 41, 2515-2522. https://doi.org/10.1097/iae.0000000000003223
|
[25]
|
Schechet, S.A., DeVience, E. and Thompson, J.T. (2017) The Effect of Internal Limiting Membrane Peeling on Idiopathic Epiretinal Membrane Surgery, with a Review of the Literature. Retina, 37, 873-880. https://doi.org/10.1097/iae.0000000000001263
|
[26]
|
Tang, Y., Gao, X., Wang, W., Dan, Y., Zhou, L., Su, S., et al. (2022) Automated Detection of Epiretinal Membranes in OCT Images Using Deep Learning. Ophthalmic Research, 66, 238-246. https://doi.org/10.1159/000525929
|
[27]
|
Choi, J.Y., Ryu, I.H., Kim, J.K., Lee, I.S. and Yoo, T.K. (2024) Development of a Generative Deep Learning Model to Improve Epiretinal Membrane Detection in Fundus Photography. BMC Medical Informatics and Decision Making, 24, Article No. 25. https://doi.org/10.1186/s12911-024-02431-4
|
[28]
|
Wen, D., Yu, Z., Yang, Z., Zheng, C., Ren, X., Shao, Y., et al. (2023) Deep Learning-Based Postoperative Visual Acuity Prediction in Idiopathic Epiretinal Membrane. BMC Ophthalmology, 23, Article No. 361. https://doi.org/10.1186/s12886-023-03079-w
|
[29]
|
Grzybowski, A., Jin, K., Zhou, J., Pan, X., Wang, M., Ye, J., et al. (2024) Retina Fundus Photograph-Based Artificial Intelligence Algorithms in Medicine: A Systematic Review. Ophthalmology and Therapy, 13, 2125-2149. https://doi.org/10.1007/s40123-024-00981-4
|
[30]
|
Osorio-Landa, H.K., Oliver-Aguirre, P., Henaine-Berra, A. and Garcia-Aguirre, G. (2024) Multimodal Imaging of an Idiopathic Vascularized Epiretinal Membrane: A Case Report. American Journal of Case Reports, 25, e943391. https://doi.org/10.12659/ajcr.943391
|
[31]
|
Philippakis, E., Thouvenin, R., Gattoussi, S., Couturier, A. and Tadayoni, R. (2021) Preoperative Imaging Optimized for Epiretinal Membrane Surgery. International Journal of Retina and Vitreous, 7, Article No. 32. https://doi.org/10.1186/s40942-021-00304-w
|