|
[1]
|
Novais, E.A., Baumal, C.R., Sarraf, D., Freund, K.B. and Duker, J.S. (2016) Multimodal Imaging in Retinal Disease: A Consensus Definition. Ophthalmic Surgery, Lasers and Imaging Retina, 47, 201-205. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Acar, N. (2018) Clinical Use of OCT in the Management of Epiretinal Membranes. In: Lanza, M., Ed., OCT—Applications in Ophthalmology, InTech, 65-81. [Google Scholar] [CrossRef]
|
|
[3]
|
Govetto, A., Lalane, R.A., Sarraf, D., Figueroa, M.S. and Hubschman, J.P. (2017) Insights into Epiretinal Membranes: Presence of Ectopic Inner Foveal Layers and a New Optical Coherence Tomography Staging Scheme. American Journal of Ophthalmology, 175, 99-113. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Doguizi, S., Sekeroglu, M.A., Ozkoyuncu, D., Omay, A.E. and Yilmazbas, P. (2018) Clinical Significance of Ectopic Inner Foveal Layers in Patients with Idiopathic Epiretinal Membranes. Eye, 32, 1652-1660. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Tsuda, K., Miyata, M., Kawai, K., Nakao, S., Yamamoto, A., Suda, K., et al. (2024) Relationship between Binocular Vision and Govetto’s Stage in Monocular Idiopathic Epiretinal Membrane. Scientific Reports, 14, Article No. 20442. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Alkabes, M., Fogagnolo, P., Vujosevic, S., Rossetti, L., Casini, G. and De Cillà, S. (2020) Correlation between New OCT Parameters and Metamorphopsia in Advanced Stages of Epiretinal Membranes. Acta Ophthalmologica, 98, 780-786. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
González-Saldivar, G., Berger, A., Wong, D., Juncal, V. and Chow, D.R. (2020) Ectopic Inner Foveal Layer Classification Scheme Predicts Visual Outcomes after Epiretinal Membrane Surgery. Retina, 40, 710-717. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Cho, K.H., Park, S.J., Cho, J.H., Woo, S.J. and Park, K.H. (2016) Inner-Retinal Irregularity Index Predicts Postoperative Visual Prognosis in Idiopathic Epiretinal Membrane. American Journal of Ophthalmology, 168, 139-149. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ehlers, J.P., Dupps, W.J., Kaiser, P.K., Goshe, J., Singh, R.P., Petkovsek, D., et al. (2014) The Prospective Intraoperative and Perioperative Ophthalmic Imaging with Optical Coherence Tomography (PIONEER) Study: 2-Year Results. American Journal of Ophthalmology, 158, 999-1007.e1. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Weschta, M., Klaas, J.E., Feucht, N., Lohmann, C.P. and Maier, M. (2023) Microstructural Morphology and Visual Acuity Outcome in Eyes with Epiretinal Membrane Before, During, and after Membrane Peeling in Intraoperative Optical Coherence Tomography Assisted Macular Surgery. International Journal of Ophthalmology, 16, 748-754. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ehlers, J.P., McNutt, S., Dar, S., Tao, Y.K. and Srivastava, S.K. (2014) Visualisation of Contrast-Enhanced Intraoperative Optical Coherence Tomography with Indocyanine Green. British Journal of Ophthalmology, 98, 1588-1591. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Fung, A.T., Galvin, J. and Tran, T. (2021) Epiretinal Membrane: A Review. Clinical & Experimental Ophthalmology, 49, 289-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Muller, Y.-G. and Lenoble, P. (2023) Clinical and Pathophysiological Contribution of OCT-Angiography to Epiretinal Membranes. Journal Français d’Ophtalmologie, 46, 776-790. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Bacherini, D., Dragotto, F., Caporossi, T., Lenzetti, C., Finocchio, L., Savastano, A., et al. (2021) The Role of OCT Angiography in the Assessment of Epiretinal Macular Membrane. Journal of Ophthalmology, 2021, Article 8866407. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Shao, E., Liu, C., Wang, L., Song, D., Guo, L., Yao, X., et al. (2021) Artificial Intelligence-Based Detection of Epimacular Membrane from Color Fundus Photographs. Scientific Reports, 11, Article No. 19291. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Chen, K., Mao, J., Liu, H., Wang, X., Dou, P., Lu, Y., et al. (2022) Screening of Idiopathic Epiretinal Membrane Using Fundus Images Combined with Blood Oxygen Saturation and Vascular Morphological Features. International Ophthalmology, 43, 1215-1228. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Yang, Y., Yan, Y.N., Wang, Y.X., Xu, J., Ren, J., Xu, L., et al. (2018) Ten-Year Cumulative Incidence of Epiretinal Membranes Assessed on Fundus Photographs. The Beijing Eye Study 2001/2011. PLOS ONE, 13, e0195768. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Song, J.H., Moon, K.Y., Jang, S. and Moon, Y. (2018) Comparison of Multicolor Fundus Imaging and Colour Fundus Photography in the Evaluation of Epiretinal Membrane. Acta Ophthalmologica, 97, e533-e539. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Savastano, A., Ripa, M., Savastano, M.C., Caporossi, T., Bacherini, D., Kilian, R., et al. (2022) Retromode Imaging Modality of Epiretinal Membranes. Journal of Clinical Medicine, 11, Article 3936. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Brito, P.N., Gomes, N.L., Vieira, M.P., Faria, P.A., Fernandes, A.V., Rocha-Sousa, A., et al. (2014) Possible Role for Fundus Autofluorescence as a Predictive Factor for Visual Acuity Recovery after Epiretinal Membrane Surgery. Retina, 34, 273-280. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Scheerlinck, L.M.E., van der Valk, R. and van Leeuwen, R. (2014) Predictive Factors for Postoperative Visual Acuity in Idiopathic Epiretinal Membrane: A Systematic Review. Acta Ophthalmologica, 93, 203-212. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Frampton, G.K., Kalita, N., Payne, L., Colquitt, J.L., Loveman, E., Downes, S.M., et al. (2017) Fundus Autofluorescence Imaging: Systematic Review of Test Accuracy for the Diagnosis and Monitoring of Retinal Conditions. Eye, 31, 995-1007. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Mao, J., Lao, J., Liu, C., Zhang, C., Chen, Y., Tao, J., et al. (2020) A Study Analyzing Macular Microvasculature Features after Vitrectomy Using OCT Angiography in Patients with Idiopathic Macular Epiretinal Membrane. BMC Ophthalmology, 20, Article No. 165. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kwon, H.J., Park, S.W., Lee, J.E. and Byon, I. (2021) Microvascular Leakage Is a Poor Prognostic Factor for Idiopathic Epiretinal Membrane: A Fluorescein Angiography Study. Retina, 41, 2515-2522. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Schechet, S.A., DeVience, E. and Thompson, J.T. (2017) The Effect of Internal Limiting Membrane Peeling on Idiopathic Epiretinal Membrane Surgery, with a Review of the Literature. Retina, 37, 873-880. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Tang, Y., Gao, X., Wang, W., Dan, Y., Zhou, L., Su, S., et al. (2022) Automated Detection of Epiretinal Membranes in OCT Images Using Deep Learning. Ophthalmic Research, 66, 238-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Choi, J.Y., Ryu, I.H., Kim, J.K., Lee, I.S. and Yoo, T.K. (2024) Development of a Generative Deep Learning Model to Improve Epiretinal Membrane Detection in Fundus Photography. BMC Medical Informatics and Decision Making, 24, Article No. 25. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wen, D., Yu, Z., Yang, Z., Zheng, C., Ren, X., Shao, Y., et al. (2023) Deep Learning-Based Postoperative Visual Acuity Prediction in Idiopathic Epiretinal Membrane. BMC Ophthalmology, 23, Article No. 361. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Grzybowski, A., Jin, K., Zhou, J., Pan, X., Wang, M., Ye, J., et al. (2024) Retina Fundus Photograph-Based Artificial Intelligence Algorithms in Medicine: A Systematic Review. Ophthalmology and Therapy, 13, 2125-2149. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Osorio-Landa, H.K., Oliver-Aguirre, P., Henaine-Berra, A. and Garcia-Aguirre, G. (2024) Multimodal Imaging of an Idiopathic Vascularized Epiretinal Membrane: A Case Report. American Journal of Case Reports, 25, e943391. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Philippakis, E., Thouvenin, R., Gattoussi, S., Couturier, A. and Tadayoni, R. (2021) Preoperative Imaging Optimized for Epiretinal Membrane Surgery. International Journal of Retina and Vitreous, 7, Article No. 32. [Google Scholar] [CrossRef] [PubMed]
|