环磷酸腺苷反应元件结合蛋白CREB相关信号通路研究进展
Research Progress of Signal Pathways Related to Cyclic Adenosine Phosphate Reaction Element Binding Protein CREB
DOI: 10.12677/acm.2025.151104, PDF, HTML, XML,    科研立项经费支持
作者: 胡可鑫*, 李珮荣*, 杨泽睿, 杨雨佳, 张顺禹:内蒙古医科大学第一临床医学院,内蒙古 呼和浩特;杨光路#:内蒙古医科大学附属医院儿科,内蒙古 呼和浩特
关键词: CREB信号通路神经系统肿瘤疼痛CREB Signaling Pathways Nervous System Tumors Pain
摘要: 本研究旨在剖析环磷酸腺苷反应元件结合蛋白(CAMP Response Element Binding protein, CREB)相关的三种信号通路在疾病中的作用机制,以期为疾病治疗提供创新性的策略。我们采用综述的形式,通过计算机检索PubMed数据库、中国知网等权威资源,筛选并整理与CREB信号通路相关的文献资料,进行了系统的分析和探讨。在ERK/CREB信号通路的研究中,我们发现该通路对长期记忆的形成具有破坏作用以及加速抑郁症的发展。在cAMP-PKA-CREB信号通路的研究中,我们发现这一通路对乳腺癌、肺癌等多种肿瘤疾病的进展具有重要影响。同时,在CaMKII/CREB/BDNF信号通路的研究中,我们发现该通路在疼痛的维持和产生过程中起到关键作用。综上所述,我们认为CREB及其信号通路在神经系统疾病、肿瘤疾病等多种疾病中发挥着至关重要的作用。
Abstract: The aim of this study is to analyze the mechanism of action of three signaling pathways related to CAMP Response Element Binding protein (CREB) in diseases, with a view to providing innovative strategies for disease treatment. In the form of a review, we searched authoritative resources such as PubMed database and CNKI by computer, screened and sorted out literature related to CREB signaling pathway, and carried out a systematic analysis and discussion. In our study of the ERK/CREB signaling pathway, we found that this pathway has a destructive effect on long-term memory formation and accelerates the development of depression. In the study of cAMP-PKA-CREB signaling pathway, we found that this pathway has an important impact on the progression of breast cancer, lung cancer and other tumor diseases. At the same time, in the study of CaMKII/CREB/BDNF signaling pathway, we found that this pathway plays a key role in the maintenance and production of pain. In summary, we believe that CREB and its signaling pathway play a crucial role in a variety of diseases, such as neurological diseases and tumor diseases.
文章引用:胡可鑫, 李珮荣, 杨泽睿, 杨雨佳, 张顺禹, 杨光路. 环磷酸腺苷反应元件结合蛋白CREB相关信号通路研究进展[J]. 临床医学进展, 2025, 15(1): 771-776. https://doi.org/10.12677/acm.2025.151104

1. 引言

当今医学研究揭示,某些疾病的发生与基因表达的异常调控密切相关。转录因子在基因表达调控方面起到了决定性作用。环磷酸腺苷反应元件结合蛋白CREB作为众多转录因子中的一种,其所形成的相关信号通路在疾病的发病机制研究中具有显著的重要性,这些发现为疾病的治疗提供了新的视角和思路,有望为未来的临床实践带来突破性的进展。

2. CREB概述

2.1. CREB结构特点

CREB是位于细胞核内的一种转录因子,相对分子量为43,000,由341个氨基酸残基构成,氨基酸序列从N端的天冬氨酸开始,至C端的亮氨酸结束[1] [2]。通过对CREB一级结构的研究发现,其序列可以细分为以下四个功能域,即一是Q1域,负责基础转录活性;二是激酶诱导结构域(KID);三是富含谷氨酰胺的Q2结构域,该域用于组成型激活;四是碱性区域/亮氨酸拉链结构域,它负责形成同型二聚体并与DNA结合[2]

2.2. CREB磷酸化

CREB发挥其信号传导或基因表达调控作用,需要先经历活化过程,而CREB的磷酸化是其活化和功能实现的关键步骤。CREB中的KID区域,这个区域含有9个丝氨酸残基。这些丝氨酸残基能够被不同的激酶磷酸化,从而激活CREB。该区域的中心是Ser133,多种蛋白激酶对Ser133的磷酸化是CREB激活所必需的[3]。以Ser133为例,Ser133的磷酸化主要由cAMP依赖的蛋白激酶(PKA)催化,当细胞内cAMP水平升高时,PKA被激活,进而磷酸化CREB的Ser133。磷酸化的Ser133促进CREB吸引并招募共激活因子,比如CREB结合蛋白(CREB-binding protein, CBP),以增强其转录活性[4]。换句话说,CREB通过其特定区域内的磷酸化作用被激活,进而召集协同因子来调节基因表达。CREB活性受氨基酸(amino acids, aa)残基磷酸化的调控,氨基酸(aa)残基主要位于KID区域,从而影响CREB的二聚化及其与CRE (cAMP Response Element)序列的结合[5]。CREB在Ser133残基处的磷酸化高频率发生,而CREB的其他丝氨酸酪氨酸和苏氨酸残基的磷酸化频率较低[3]。有趣的是,CREB的不同磷酸化模式与不同的细胞功能相关,一种丝氨酸的磷酸化与多种细胞功能相关,而在这多种细胞功能中,可能会产生相同或相反的效果:例如CREBSer111型和CREBSer121系列起到相同的抑制转录作用,为A组;CREBSer129系列和CREBSer133系列起到相同的转录诱导作用,为B组。可看到A,B两组起到相反的作用效果[6]。由此可见,CREB不同的磷酸化模式与不同的细胞功能相关。

3. CREB相关信号通路

3.1. ERK/CREB信号通路

通过Western blot、Coinmunoprecipitation、生物素开关组装、免疫荧光等实验,Zhang等发现,nNOS-CAPON的相互作用可能导致阿尔茨海默病小鼠模型中下游ERK-CREB通路的抑制,引起兴奋性毒性和树突状棘发育异常,影响认知功能,触发阿尔茨海默病的进展[7]。早老素1 (Presenilin 1, PS1)中PS1缺陷敲除基于CRISPR/Cas9系统的人神经干细胞(Neural Stem Cells, NSC)也可以通过下调ERK/CREB信号通路导致人神经干细胞自噬损伤,从而加剧阿尔茨海默病的进程[8]。在用Aβ1-42和APP/PS1小鼠处理的皮层神经元中,富含纹状体的磷酸酶61 (Striatal-Enriched Protein tyrosine phosphatase, STEP61)也通过抑制ERK/CREB通路破坏了长期记忆的形成[9]

此外,精神病与ERK/CREB通路密切相关,尤其是抑郁症[10]。在研究与产前应激和子代抑郁症发生相关的分子机制中,子代抑郁症小鼠ERK/CREB的激活受到抑制,揭示了ERK/CREB通路与抑郁症发生的密切关系[11]。进一步的研究表明,糖原合成酶激酶-3 (Glycogen Synthase Kinase-3, GSK-3)可以通过阻断ERK/CREB通路来加速抑郁症的进展[12]。我们可以看到CREB所介导的ERK/CREB信号通路可影响长期记忆形成,同时该通路也在精神疾病发展过程中起着重要作用,所以我们认为CREB与神经系统有着密切联系。

3.2. cAMP-PKA-CREB信号通路

据研究表明,cAMP-PKA-CREB通路与乳腺癌进展有密切关系。在乳腺癌细胞中,5-羟色胺通过AC-PKA途径增加线粒体生物合成[13]。细胞质G蛋白偶联的雌激素受体通过cAMP-PKA-CREB通路增加有氧糖酵解[14]。线粒体生物合成的增加,在对癌细胞能量代谢方面有着促进作用,而有氧糖酵解也叫做Warburg效应,此效应是癌细胞一个典型代谢标志。由此可见,cAMP-PKA-CREB通路在对乳腺癌进展方面会起到促进作用。但并不是绝对促进的,还需要与实际情况相结合。

cAMP-PKA-CREB通路在不同类型的癌症中作用有所不同。在乳腺癌方面,通过此信号通路可能起到促进作用,可是在肺癌方面,cAMP-PKA-CREB通路在放疗中似乎起到抗癌作用。用毛喉素预处理BALB/c小鼠可以通过PKA (Protein kinase A)诱导的PP2A (Protein Phosphatase 2A)磷酸化抑制ATM (Ataxia-Telangiectasia Mutated)和NF-κB (Nuclear Factor-κB),导致放疗诱导的细胞凋亡增加[15]。在肺癌细胞系H1299中,Gs蛋白通过PKA-CREB-AP1通路促进Bak (Bcl-2 homologous antagonist/killer)表达,并增加放疗诱导的细胞凋亡[16]。由此可见,cAMP-PKA-CREB在不同类型的癌症中,所起到的作用也有所不同。难道在同一种类型的癌症,cAMP-PKA-CREB通路起到的作用就是一样的吗?答案为不是。据研究表明,在同一类型癌症中,比如肺癌,此通路在不同情况下起到相反的作用。

3.3. CaMKII/CREB/BDNF信号通路

中枢敏化是神经根型颈椎病(Cervical Spondylotic Radiculopathy, CSR)引起的神经性和神经根性疼痛的重要机制之一。最近的研究表明,钙/钙调蛋白依赖性蛋白激酶II (Calcium/Calmodulin-dependent Protein Kinase II, Ca2+/CaMKII)/cAMP反应元件结合蛋白(CREB)/脑源性神经营养因子(Brain-Derived Neurotrophic Factor, BDNF)信号通路通过参与脊髓突触可塑性介导中枢敏化。Ca2+/CaMKII是中枢疼痛增敏的调节因子[17]。它通过调节神经元兴奋性和有害感觉通路中的突触传递来诱导伤害性敏感[18]。BDNF及其受体在神经系统中广泛表达,主要在中枢神经系统中[19]。BDNF与其特异性受体酪氨酸激酶受体B (Tyrosine kinase receptor B, TrkB)结合并激活下游信号磷脂酶-γ (Phospholipase C-gamma, PLC-γ),从而诱导Ca2+/CaMKII结合并激活CaMKII [17]。p-CaMKII直接激活突触相关分子即CREB [20]。P-CREB/CREB结合蛋白(CBP)与靶基因上的CRE特定序列结合,并募集RNA聚合酶II形成转录复合物,从而调节靶基因的转录[17]。P-CREB调节BDNF和c-fos (cellular homolog of the oncogene v-fos)的转录,并影响细胞骨架相关蛋白和突触蛋白的合成,导致脊髓神经元的长期可塑性变化并诱导疼痛维持和产生[21]。总结以上,BDNF通过某种方式激活CaMKII,p-CaMKII激活CREB,CREB调节转录BDNF,这一系列过程诱导疼痛的维持和产生。

4. 信号通路共同调控网络

据研究表明,慢性不可预测的轻度应激(CUMS)主要通过激活海马神经元cAMP/PKA-CREB-BDNF信号通路增加环氧合酶2 (COX2)表达,从而导致学习和记忆障碍[22]。此外,在大鼠海马区的糖皮质激素受体在形成长期抑制性回避记忆时,与CaMKII、TrkB、ERK、Akt、PLC和CREB的激活相关,同时也与BDNF的显著诱导相关。这表明在记忆巩固过程中,这些信号通路之间存在相互作用[23]。这些研究显示ERK/CREB、cAMP-PKA-CREB和CaMKII/CREB/BDNF信号通路在细胞内存在复杂的相互作用和共同调控网络。

5. 总结与展望

研究表明,CREB在生物医学领域的多个方面扮演着越来越关键的角色。它不仅在神经系统中发挥着不可或缺的作用,而且在肿瘤的发展过程中也显示出显著的影响。CREB在人体健康中的双重性质——既有益处也有潜在的危害——揭示了其功能的复杂性和多面性。在肿瘤研究领域,CREB的作用尤为引人注目。例如,在乳腺癌的发展中,CREB可能起到促进作用,而在肺癌的放疗过程中,它则展现出抗癌潜力。这种角色的转换提示我们,CREB的功能可能因疾病类型和治疗方法的不同而异。为了更好地理解CREB在人体健康中的影响,我们应当深入探究其在有害方面的运行机制。通过揭示CREB在这些病理过程中的作用机理,我们可以寻找到更为精准的治疗靶点,从而为疾病的干预提供科学依据。这一研究方向对于神经系统和肿瘤学领域具有深远的指导意义。它不仅能够帮助我们更好地理解这些疾病的本质,而且有望引领我们开发出新的治疗策略,以实现对CREB功能的精确调控,最终达到治疗的目的。因此,继续深入研究CREB的复杂作用机制,对于推动未来医学的发展和治疗策略的创新具有不可估量的价值。

基金项目

1. 《癫痫大鼠模型中Sema3F与VEGF相关性研究》,国家自然科学基金项目,项目编号:8226050455;

2. 《蒙药朝伦雄胡-5对难治性癫痫大鼠模型干预作用机制研究》,内蒙古医科大学面上项目,项目编号:YKD2022MS032;

3. 《周细胞调控血脑屏障通透性参与细菌性脑膜炎的机制研究》,项目编号:2024SGGZ076;

4. 《原代大鼠海马神经元中Sema3F通过Npn-2受体介导CREBBP改变的研究》,项目编号:202410132006。

NOTES

*共同第一作者。

#通讯作者。

参考文献

[1] Ichiki, T. (2006) Role of cAMP Response Element Binding Protein in Cardiovascular Remodeling: Good, Bad, or Both? Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 449-455.
https://doi.org/10.1161/01.atv.0000196747.79349.d1
[2] Xu, W., Kasper, L.H., Lerach, S., Jeevan, T. and Brindle, P.K. (2007) Individual CREB-Target Genes Dictate Usage of Distinct cAMP-Responsive Coactivation Mechanisms. The EMBO Journal, 26, 2890-2903.
https://doi.org/10.1038/sj.emboj.7601734
[3] Sun, L., Zhao, R., Zhang, L., Zhang, W., He, G., Yang, S., et al. (2016) Prevention of Vascular Smooth Muscle Cell Proliferation and Injury-Induced Neointimal Hyperplasia by CREB-Mediated P21 Induction: An Insight from a Plant Polyphenol. Biochemical Pharmacology, 103, 40-52.
https://doi.org/10.1016/j.bcp.2016.01.015
[4] Naqvi, S., Martin, K.J. and Arthur, J.S.C. (2014) CREB Phosphorylation at Ser133 Regulates Transcription via Distinct Mechanisms Downstream of cAMP and MAPK Signalling. Biochemical Journal, 458, 469-479.
https://doi.org/10.1042/bj20131115
[5] Johannessen, M., Delghandi, M.P. and Moens, U. (2004) What Turns CREB on? Cellular Signalling, 16, 1211-1227.
https://doi.org/10.1016/j.cellsig.2004.05.001
[6] Steven, A., Friedrich, M., Jank, P., Heimer, N., Budczies, J., Denkert, C., et al. (2020) What Turns CREB on? and off? and Why Does It Matter? Cellular and Molecular Life Sciences, 77, 4049-4067.
https://doi.org/10.1007/s00018-020-03525-8
[7] Zhang, Y., Zhu, Z., Liang, H., Zhang, L., Zhou, Q., Ni, H., et al. (2018) nNOS-CAPON Interaction Mediates Amyloid‐β‐Induced Neurotoxicity, Especially in the Early Stages. Aging Cell, 17, e12754.
https://doi.org/10.1111/acel.12754
[8] Chong, C., Ke, M., Tan, Y., Huang, Z., Zhang, K., Ai, N., et al. (2018) Presenilin 1 Deficiency Suppresses Autophagy in Human Neural Stem Cells through Reducing Γ-Secretase-Independent ERK/CREB Signaling. Cell Death & Disease, 9, Article No. 879.
https://doi.org/10.1038/s41419-018-0945-7
[9] Zhang, L., Xie, J., Yang, J. and Cao, Y. (2013) Tyrosine Phosphatase STEP61 Negatively Regulates Amyloid β‐Mediated ERK/CREB Signaling Pathways via α7 Nicotinic Acetylcholine Receptors. Journal of Neuroscience Research, 91, 1581-1590.
https://doi.org/10.1002/jnr.23263
[10] Liu, X., Hou, Z., Han, M., Chen, K., Wang, Y., Qing, J., et al. (2022) Salvianolic Acid B Alleviates Comorbid Pain in Depression Induced by Chronic Restraint Stress through Inhibiting GABAergic Neuron Excitation via an ERK-CREB-BDNF Axis-Dependent Mechanism. Journal of Psychiatric Research, 151, 205-216.
https://doi.org/10.1016/j.jpsychires.2022.04.014
[11] Guan, L., Jia, N., Zhao, X., Zhang, X., Tang, G., Yang, L., et al. (2013) The Involvement of ERK/CREB/Bcl-2 in Depression-Like Behavior in Prenatally Stressed Offspring Rats. Brain Research Bulletin, 99, 1-8.
https://doi.org/10.1016/j.brainresbull.2013.08.003
[12] Peng, H., Wang, H.B., Wang, L., Zhou, B., Li, X.Y. and Tan, J. (2018) Gsk3β Aggravates the Depression Symptoms in Chronic Stress Mouse Model. Journal of Integrative Neuroscience, 17, 169-175.
https://doi.org/10.31083/JIN-170050
[13] Sola-Penna, M., Paixão, L.P., Branco, J.R., Ochioni, A.C., Albanese, J.M., Mundim, D.M., et al. (2019) Serotonin Activates Glycolysis and Mitochondria Biogenesis in Human Breast Cancer Cells through Activation of the Jak1/STAT3/ERK1/2 and Adenylate Cyclase/PKA, Respectively. British Journal of Cancer, 122, 194-208.
https://doi.org/10.1038/s41416-019-0640-1
[14] Yu, T., Yang, G., Hou, Y., Tang, X., Wu, C., Wu, X., et al. (2016) Cytoplasmic GPER Translocation in Cancer-Associated Fibroblasts Mediates cAMP/PKA/CREB/Glycolytic Axis to Confer Tumor Cells with Multidrug Resistance. Oncogene, 36, 2131-2145.
https://doi.org/10.1038/onc.2016.370
[15] Cho, E., Kim, E., Kwak, S. and Juhnn, Y. (2014) cAMP Signaling Inhibits Radiation-Induced ATM Phosphorylation Leading to the Augmentation of Apoptosis in Human Lung Cancer Cells. Molecular Cancer, 13, Article No. 36.
https://doi.org/10.1186/1476-4598-13-36
[16] Choi, Y.J., Kim, S., Oh, J. and Juhnn, Y. (2009) Stimulatory Heterotrimeric G Protein Augments Gamma Ray-Induced Apoptosis by Up-Regulation of Bak Expression via CREB and AP-1 in H1299 Human Lung Cancer Cells. Experimental and Molecular Medicine, 41, 592-600.
https://doi.org/10.3858/emm.2009.41.8.065
[17] Su, H., Chen, H., Zhang, X., Su, S., Li, J., Guo, Y., et al. (2023) Electroacupuncture Ameliorates Pain in Cervical Spondylotic Radiculopathy Rat by Inhibiting the CaMKII/CREB/BDNF Signaling Pathway and Regulating Spinal Synaptic Plasticity. Brain and Behavior, 13, e3177.
https://doi.org/10.1002/brb3.3177
[18] Fang, L., Wu, J., Lin, Q. and Willis, W.D. (2002) Calcium-Calmodulin-Dependent Protein Kinase II Contributes to Spinal Cord Central Sensitization. The Journal of Neuroscience, 22, 4196-4204.
https://doi.org/10.1523/jneurosci.22-10-04196.2002
[19] He, R., Fan, J., Qian, F., He, Y., Du, X. and Lu, H. (2023) Repetitive Transcranial Magnetic Stimulation Promotes Neurological Functional Recovery in Rats with Traumatic Brain Injury by Upregulating Synaptic Plasticity-Related Proteins. Neural Regeneration Research, 18, 368-374.
https://doi.org/10.4103/1673-5374.346548
[20] Zhang, X., Lun, M., Du, W., Ma, F. and Huang, Z. (2022) The κ-Opioid Receptor Agonist U50488H Ameliorates Neuropathic Pain through the Ca2+/CaMKII/CREB Pathway in Rats. Journal of Inflammation Research, 15, 3039-3051.
https://doi.org/10.2147/jir.s327234
[21] Wang, Y., Cheng, X., Xu, J., Liu, Z., Wan, Y. and Ma, D. (2010) Anti-Hyperalgesic Effect of CaMKII Inhibitor Is Associated with Downregulation of Phosphorylated CREB in Rat Spinal Cord. Journal of Anesthesia, 25, 87-92.
https://doi.org/10.1007/s00540-010-1068-1
[22] Luo, Y., Kuang, S., Li, H., Ran, D. and Yang, J. (2017) cAMP/PKA-CREB-BDNF Signaling Pathway in Hippocampus Mediates Cyclooxygenase 2-Induced Learning/Memory Deficits of Rats Subjected to Chronic Unpredictable Mild Stress. Oncotarget, 8, 35558-35572.
https://doi.org/10.18632/oncotarget.16009
[23] Chen, D.Y., Bambah-Mukku, D., Pollonini, G. and Alberini, C.M. (2012) Glucocorticoid Receptors Recruit the CaMKII α-BDNF-CREB Pathways to Mediate Memory Consolidation. Nature Neuroscience, 15, 1707-1714.
https://doi.org/10.1038/nn.3266