[1]
|
Lazarus, J.V., Mark, H.E., Villota-Rivas, M., Palayew, A., Carrieri, P., Colombo, M., et al. (2022) The Global NAFLD Policy Review and Preparedness Index: Are Countries Ready to Address This Silent Public Health Challenge? Journal of Hepatology, 76, 771-780. https://doi.org/10.1016/j.jhep.2021.10.025
|
[2]
|
Powell, E.E., Wong, V.W. and Rinella, M. (2021) Non-Alcoholic Fatty Liver Disease. The Lancet, 397, 2212-2224. https://doi.org/10.1016/s0140-6736(20)32511-3
|
[3]
|
White, L., Fishman, P., Basu, A., Crane, P.K., Larson, E.B. and Coe, N.B. (2019) Medicare Expenditures Attributable to Dementia. Health Services Research, 54, 773-781. https://doi.org/10.1111/1475-6773.13134
|
[4]
|
Eslam, M., Newsome, P.N., Sarin, S.K., Anstee, Q.M., Targher, G., Romero-Gomez, M., et al. (2020) A New Definition for Metabolic Dysfunction-Associated Fatty Liver Disease: An International Expert Consensus Statement. Journal of Hepatology, 73, 202-209. https://doi.org/10.1016/j.jhep.2020.03.039
|
[5]
|
Lindenmeyer, C.C. and McCullough, A.J. (2018) The Natural History of Nonalcoholic Fatty Liver Disease—An Evolving View. Clinics in Liver Disease, 22, 11-21. https://doi.org/10.1016/j.cld.2017.08.003
|
[6]
|
Huang, D.Q., El-Serag, H.B. and Loomba, R. (2020) Global Epidemiology of NAFLD-Related HCC: Trends, Predictions, Risk Factors and Prevention. Nature Reviews Gastroenterology & Hepatology, 18, 223-238. https://doi.org/10.1038/s41575-020-00381-6
|
[7]
|
Younossi, Z.M., Otgonsuren, M., Henry, L., Venkatesan, C., Mishra, A., Erario, M., et al. (2015) Association of Nonalcoholic Fatty Liver Disease (NAFLD) with Hepatocellular Carcinoma (HCC) in the United States from 2004 to 2009. Hepatology, 62, 1723-1730. https://doi.org/10.1002/hep.28123
|
[8]
|
Vuppalanchi, R., Noureddin, M., Alkhouri, N. and Sanyal, A.J. (2021) Therapeutic Pipeline in Nonalcoholic Steatohepatitis. Nature Reviews Gastroenterology & Hepatology, 18, 373-392. https://doi.org/10.1038/s41575-020-00408-y
|
[9]
|
Narayanan, S., Surette, F.A. and Hahn, Y.S. (2016) The Immune Landscape in Nonalcoholic Steatohepatitis. Immune Network, 16, 147-158. https://doi.org/10.4110/in.2016.16.3.147
|
[10]
|
Day, C.P. and James, O.F.W. (1998) Steatohepatitis: A Tale of Two “Hits”? Gastroenterology, 114, 842-845. https://doi.org/10.1016/s0016-5085(98)70599-2
|
[11]
|
Vonghia, L., Michielsen, P. and Francque, S. (2013) Immunological Mechanisms in the Pathophysiology of Non-Alcoholic Steatohepatitis. International Journal of Molecular Sciences, 14, 19867-19890. https://doi.org/10.3390/ijms141019867
|
[12]
|
Davies, L.C., Jenkins, S.J., Allen, J.E. and Taylor, P.R. (2013) Tissue-Resident Macrophages. Nature Immunology, 14, 986-995. https://doi.org/10.1038/ni.2705
|
[13]
|
Viret, C. and Janeway Jr., C.A. (1999) MHC and T Cell Development. Reviews in immunogenetics, 1, 91-104.
|
[14]
|
Rossjohn, J., Gras, S., Miles, J.J., Turner, S.J., Godfrey, D.I. and McCluskey, J. (2015) T Cell Antigen Receptor Recognition of Antigen-Presenting Molecules. Annual Review of Immunology, 33, 169-200. https://doi.org/10.1146/annurev-immunol-032414-112334
|
[15]
|
Scaviner, D. and Lefranc, M. (2000) The Human T Cell Receptor Alpha Variable (TRAV) Genes. Experimental and Clinical Immunogenetics, 17, 83-96. https://doi.org/10.1159/000019128
|
[16]
|
Bhati, M., Cole, D.K., McCluskey, J., Sewell, A.K. and Rossjohn, J. (2014) The Versatility of the αβ T‐cell Antigen Receptor. Protein Science, 23, 260-272. https://doi.org/10.1002/pro.2412
|
[17]
|
Hayday, A.C. (2000) γδ Cells: A Right Time and a Right Place for a Conserved Third Way of Protection. Annual Review of Immunology, 18, 975-1026. https://doi.org/10.1146/annurev.immunol.18.1.975
|
[18]
|
Kenna, T., Golden-Mason, L., Norris, S., Hegarty, J.E., O’Farrelly, C. and Doherty, D.G. (2004) Distinct Subpopulations of γδ T Cells Are Present in Normal and Tumor-Bearing Human Liver. Clinical Immunology, 113, 56-63. https://doi.org/10.1016/j.clim.2004.05.003
|
[19]
|
Gao, B., Jeong, W. and Tian, Z. (2008) Liver: An Organ with Predominant Innate Immunity. Hepatology, 47, 729-736. https://doi.org/10.1002/hep.22034
|
[20]
|
Torres‐Hernandez, A., Wang, W., Nikiforov, Y., Tejada, K., Torres, L., Kalabin, A., et al. (2019) γδ T Cells Promote Steatohepatitis by Orchestrating Innate and Adaptive Immune Programming. Hepatology, 71, 477-494. https://doi.org/10.1002/hep.30952
|
[21]
|
Castaño-Rodríguez, N., Mitchell, H.M. and Kaakoush, N.O. (2017) NAFLD, Helicobacter Species and the Intestinal Microbiome. Best Practice & Research Clinical Gastroenterology, 31, 657-668. https://doi.org/10.1016/j.bpg.2017.09.008
|
[22]
|
Ribeiro, S.T., Ribot, J.C. and Silva-Santos, B. (2015) Five Layers of Receptor Signaling in γδ T-Cell Differentiation and Activation. Frontiers in Immunology, 6, Article 15. https://doi.org/10.3389/fimmu.2015.00015
|
[23]
|
Lombes, A., Durand, A., Charvet, C., Rivière, M., Bonilla, N., Auffray, C., et al. (2015) Adaptive Immune-Like γ/δ T Lymphocytes Share Many Common Features with Their α/β T Cell Counterparts. The Journal of Immunology, 195, 1449-1458. https://doi.org/10.4049/jimmunol.1500375
|
[24]
|
Her, Z., Tan, J.H.L., Lim, Y., Tan, S.Y., Chan, X.Y., Tan, W.W.S., et al. (2020) CD4+ T Cells Mediate the Development of Liver Fibrosis in High Fat Diet-Induced NAFLD in Humanized Mice. Frontiers in Immunology, 11, Article 580968. https://doi.org/10.3389/fimmu.2020.580968
|
[25]
|
Li, C., Du, X., Shen, Z., Wei, Y., Wang, Y., Han, X., et al. (2022) The Critical and Diverse Roles of CD4–CD8– Double Negative T Cells in Nonalcoholic Fatty Liver Disease. Cellular and Molecular Gastroenterology and Hepatology, 13, 1805-1827. https://doi.org/10.1016/j.jcmgh.2022.02.019
|
[26]
|
Li, F., Hao, X., Chen, Y., Bai, L., Gao, X., Lian, Z., et al. (2017) The Microbiota Maintain Homeostasis of Liver-Resident γδT-17 Cells in a Lipid Antigen/CD1D-Dependent Manner. Nature Communications, 8, Article No. 13839. https://doi.org/10.1038/ncomms13839
|
[27]
|
Han, Y., Ling, Q., Wu, L., Wang, X., Wang, Z., Chen, J., et al. (2023) Akkermansia muciniphila Inhibits Nonalcoholic Steatohepatitis by Orchestrating TLR2-Activated γδt17 Cell and Macrophage Polarization. Gut Microbes, 15, Article ID: 2221485. https://doi.org/10.1080/19490976.2023.2221485
|
[28]
|
Dutton, R.W., Bradley, L.M. and Swain, S.L. (1998) T CELL Memory. Annual Review of Immunology, 16, 201-223. https://doi.org/10.1146/annurev.immunol.16.1.201
|
[29]
|
Raphael, I., Nalawade, S., Eagar, T.N. and Forsthuber, T.G. (2015) T Cell Subsets and Their Signature Cytokines in Autoimmune and Inflammatory Diseases. Cytokine, 74, 5-17. https://doi.org/10.1016/j.cyto.2014.09.011
|
[30]
|
Shinkai, K., Mohrs, M. and Locksley, R.M. (2002) Helper T Cells Regulate Type-2 Innate Immunity in Vivo. Nature, 420, 825-829. https://doi.org/10.1038/nature01202
|
[31]
|
Ouyang, W., Kolls, J.K. and Zheng, Y. (2008) The Biological Functions of T Helper 17 Cell Effector Cytokines in Inflammation. Immunity, 28, 454-467. https://doi.org/10.1016/j.immuni.2008.03.004
|
[32]
|
Ma, C., Kesarwala, A.H., Eggert, T., Medina-Echeverz, J., Kleiner, D.E., Jin, P., et al. (2016) NAFLD Causes Selective CD4+ T Lymphocyte Loss and Promotes Hepatocarcinogenesis. Nature, 531, 253-257. https://doi.org/10.1038/nature16969
|
[33]
|
Grover, P., Goel, P.N. and Greene, M.I. (2021) Regulatory T Cells: Regulation of Identity and Function. Frontiers in Immunology, 12, Article 750542. https://doi.org/10.3389/fimmu.2021.750542
|
[34]
|
Arce-Sillas, A., Álvarez-Luquín, D.D., Tamaya-Domínguez, B., Gomez-Fuentes, S., Trejo-García, A., Melo-Salas, M., et al. (2016) Regulatory T Cells: Molecular Actions on Effector Cells in Immune Regulation. Journal of Immunology Research, 2016, Article ID: 1720827. https://doi.org/10.1155/2016/1720827
|
[35]
|
Ma, X., Hua, J., Mohamood, A.R., Hamad, A.R.A., Ravi, R. and Li, Z. (2007) A High-Fat Diet and Regulatory T Cells Influence Susceptibility to Endotoxin-Induced Liver Injury. Hepatology, 46, 1519-1529. https://doi.org/10.1002/hep.21823
|
[36]
|
He, B., Wu, L., Xie, W., Shao, Y., Jiang, J., Zhao, Z., et al. (2017) The Imbalance of Th17/Treg Cells Is Involved in the Progression of Nonalcoholic Fatty Liver Disease in Mice. BMC Immunology, 18, Article No. 33. https://doi.org/10.1186/s12865-017-0215-y
|
[37]
|
Roh, Y.S., Kim, J.W., Park, S., Shon, C., Kim, S., Eo, S.K., et al. (2018) Toll-like Receptor-7 Signaling Promotes Nonalcoholic Steatohepatitis by Inhibiting Regulatory T Cells in Mice. The American Journal of Pathology, 188, 2574-2588. https://doi.org/10.1016/j.ajpath.2018.07.011
|
[38]
|
Ilan, Y., Maron, R., Tukpah, A., Maioli, T.U., Murugaiyan, G., Yang, K., et al. (2010) Induction of Regulatory T Cells Decreases Adipose Inflammation and Alleviates Insulin Resistance in Ob/Ob Mice. Proceedings of the National Academy of Sciences of the United States of America, 107, 9765-9770. https://doi.org/10.1073/pnas.0908771107
|
[39]
|
Rau, M., Schilling, A., Meertens, J., Hering, I., Weiss, J., Jurowich, C., et al. (2016) Progression from Nonalcoholic Fatty Liver to Nonalcoholic Steatohepatitis Is Marked by a Higher Frequency of Th17 Cells in the Liver and an Increased Th17/resting Regulatory T Cell Ratio in Peripheral Blood and in the Liver. The Journal of Immunology, 196, 97-105. https://doi.org/10.4049/jimmunol.1501175
|
[40]
|
Zhang, C., Li, L., Feng, K., Fan, D., Xue, W. and Lu, J. (2017) ‘Repair’ Treg Cells in Tissue Injury. Cellular Physiology and Biochemistry, 43, 2155-2169. https://doi.org/10.1159/000484295
|
[41]
|
Dywicki, J., Buitrago‐Molina, L.E., Noyan, F., Davalos‐Misslitz, A.C., Hupa‐Breier, K.L., Lieber, M., et al. (2021) The Detrimental Role of Regulatory T Cells in Nonalcoholic Steatohepatitis. Hepatology Communications, 6, 320-333. https://doi.org/10.1002/hep4.1807
|
[42]
|
Fabregat, I., Moreno‐Càceres, J., Sánchez, A., Dooley, S., Dewidar, B., Giannelli, G., et al. (2016) TGF‐β Signalling and Liver Disease. The FEBS Journal, 283, 2219-2232. https://doi.org/10.1111/febs.13665
|
[43]
|
Wang, X., Li, W., Fu, J., Ni, Y. and Liu, K. (2022) Correlation between T-Lymphocyte Subsets, Regulatory T Cells, and Hepatic Fibrosis in Patients with Nonalcoholic Fatty Liver. Evidence-Based Complementary and Alternative Medicine, 2022, Article ID: 6250751. https://doi.org/10.1155/2022/6250751
|
[44]
|
Koh, C., Lee, S., Kwak, M., Kim, B. and Chung, Y. (2023) CD8 T-Cell Subsets: Heterogeneity, Functions, and Therapeutic Potential. Experimental & Molecular Medicine, 55, 2287-2299. https://doi.org/10.1038/s12276-023-01105-x
|
[45]
|
Zhong, X., Lv, M., Ma, M., Huang, Q., Hu, R., Li, J., et al. (2023) State of CD8+ T Cells in Progression from Nonalcoholic Steatohepatitis to Hepatocellular Carcinoma: From Pathogenesis to Immunotherapy. Biomedicine & Pharmacotherapy, 165, Article ID: 115131. https://doi.org/10.1016/j.biopha.2023.115131
|
[46]
|
Fu, J., Xu, D., Liu, Z., Shi, M., Zhao, P., Fu, B., et al. (2007) Increased Regulatory T Cells Correlate with CD8 T-Cell Impairment and Poor Survival in Hepatocellular Carcinoma Patients. Gastroenterology, 132, 2328-2339. https://doi.org/10.1053/j.gastro.2007.03.102
|
[47]
|
Wang, T., Sun, G., Wang, Y., Li, S., Zhao, X., Zhang, C., et al. (2019) The Immunoregulatory Effects of CD8 T‐Cell-Derived Perforin on Diet‐induced Nonalcoholic Steatohepatitis. The FASEB Journal, 33, 8490-8503. https://doi.org/10.1096/fj.201802534rr
|
[48]
|
Dudek, M., Pfister, D., Donakonda, S., Filpe, P., Schneider, A., Laschinger, M., et al. (2021) Auto-Aggressive CXCR6+ CD8 T Cells Cause Liver Immune Pathology in Nash. Nature, 592, 444-449. https://doi.org/10.1038/s41586-021-03233-8
|
[49]
|
Winau, F., Hegasy, G., Weiskirchen, R., Weber, S., Cassan, C., Sieling, P.A., et al. (2007) Ito Cells Are Liver-Resident Antigen-Presenting Cells for Activating T Cell Responses. Immunity, 26, 117-129. https://doi.org/10.1016/j.immuni.2006.11.011
|
[50]
|
Kremer, M. and Hines, I.N. (2008) Natural Killer T Cells and Non-Alcoholic Fatty Liver Disease: Fat Chews on the Immune System. World Journal of Gastroenterology, 14, 487-488. https://doi.org/10.3748/wjg.14.487
|
[51]
|
Maricic, I., Marrero, I., Eguchi, A., Nakamura, R., Johnson, C.D., Dasgupta, S., et al. (2018) Differential Activation of Hepatic Invariant NKT Cell Subsets Plays a Key Role in Progression of Nonalcoholic Steatohepatitis. The Journal of Immunology, 201, 3017-3035. https://doi.org/10.4049/jimmunol.1800614
|
[52]
|
Bhattacharjee, J., Kirby, M., Softic, S., Miles, L., Salazar‐Gonzalez, R., Shivakumar, P., et al. (2017) Hepatic Natural Killer T‐Cell and CD8+ T‐Cell Signatures in Mice with Nonalcoholic Steatohepatitis. Hepatology Communications, 1, 299-310. https://doi.org/10.1002/hep4.1041
|
[53]
|
Dasgupta, S. and Kumar, V. (2016) Type II NKT Cells: A Distinct CD1d-Restricted Immune Regulatory NKT Cell Subset. Immunogenetics, 68, 665-676. https://doi.org/10.1007/s00251-016-0930-1
|
[54]
|
Billerbeck, E., Kang, Y., Walker, L., Lockstone, H., Grafmueller, S., Fleming, V., et al. (2010) Analysis of CD161 Expression on Human CD8+ T Cells Defines a Distinct Functional Subset with Tissue-Homing Properties. Proceedings of the National Academy of Sciences of the United States of America, 107, 3006-3011. https://doi.org/10.1073/pnas.0914839107
|
[55]
|
Leeansyah, E., Loh, L., Nixon, D.F. and Sandberg, J.K. (2014) Acquisition of Innate-Like Microbial Reactivity in Mucosal Tissues during Human Fetal Mait-Cell Development. Nature Communications, 5, Article No. 3143. https://doi.org/10.1038/ncomms4143
|
[56]
|
Bolte, F. and Rehermann, B. (2018) Mucosal-Associated Invariant T Cells in Chronic Inflammatory Liver Disease. Seminars in Liver Disease, 38, 60-65. https://doi.org/10.1055/s-0037-1621709
|
[57]
|
Li, Y., Huang, B., Jiang, X., Chen, W., Zhang, J., Wei, Y., et al. (2018) Mucosal-Associated Invariant T Cells Improve Nonalcoholic Fatty Liver Disease through Regulating Macrophage Polarization. Frontiers in Immunology, 9, Article 1994. https://doi.org/10.3389/fimmu.2018.01994
|
[58]
|
Hegde, P., Weiss, E., Paradis, V., Wan, J., Mabire, M., Sukriti, S., et al. (2018) Mucosal-Associated Invariant T Cells Are a Profibrogenic Immune Cell Population in the Liver. Nature Communications, 9, Article No. 2146. https://doi.org/10.1038/s41467-018-04450-y
|
[59]
|
Harrison, S.A., Bedossa, P., Guy, C.D., Schattenberg, J.M., Loomba, R., Taub, R., et al. (2024) A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. New England Journal of Medicine, 390, 497-509. https://doi.org/10.1056/nejmoa2309000
|
[60]
|
Kruger, A.J., Fuchs, B.C., Masia, R., Holmes, J.A., Salloum, S., Sojoodi, M., et al. (2018) Prolonged Cenicriviroc Therapy Reduces Hepatic Fibrosis Despite Steatohepatitis in a Diet‐induced Mouse Model of Nonalcoholic Steatohepatitis. Hepatology Communications, 2, 529-545. https://doi.org/10.1002/hep4.1160
|
[61]
|
Lefebvre, E., Moyle, G., Reshef, R., Richman, L.P., Thompson, M., Hong, F., et al. (2016) Antifibrotic Effects of the Dual CCR2/CCR5 Antagonist Cenicriviroc in Animal Models of Liver and Kidney Fibrosis. PLOS ONE, 11, e0158156. https://doi.org/10.1371/journal.pone.0158156
|
[62]
|
Fantuzzi, L., Tagliamonte, M., Gauzzi, M.C. and Lopalco, L. (2019) Dual CCR5/CCR2 Targeting: Opportunities for the Cure of Complex Disorders. Cellular and Molecular Life Sciences, 76, 4869-4886. https://doi.org/10.1007/s00018-019-03255-6
|
[63]
|
Huby, T. and Gautier, E.L. (2021) Immune Cell-Mediated Features of Non-Alcoholic Steatohepatitis. Nature Reviews Immunology, 22, 429-443. https://doi.org/10.1038/s41577-021-00639-3
|
[64]
|
Chew, V., Chen, J., Lee, D., Loh, E., Lee, J., Lim, K.H., et al. (2011) Chemokine-Driven Lymphocyte Infiltration: An Early Intratumoural Event Determining Long-Term Survival in Resectable Hepatocellular Carcinoma. Gut, 61, 427-438. https://doi.org/10.1136/gutjnl-2011-300509
|
[65]
|
Marabelle, A., Kohrt, H., Caux, C. and Levy, R. (2014) Intratumoral Immunization: A New Paradigm for Cancer Therapy. Clinical Cancer Research, 20, 1747-1756. https://doi.org/10.1158/1078-0432.ccr-13-2116
|
[66]
|
Yao, W., Ba, Q., Li, X., Li, H., Zhang, S., Yuan, Y., et al. (2017) A Natural CCR2 Antagonist Relieves Tumor-Associated Macrophage-Mediated Immunosuppression to Produce a Therapeutic Effect for Liver Cancer. EBioMedicine, 22, 58-67. https://doi.org/10.1016/j.ebiom.2017.07.014
|
[67]
|
Rai, R.P., Liu, Y., Iyer, S.S., Liu, S., Gupta, B., Desai, C., et al. (2020) Blocking Integrin α4β7-Mediated CD4 T Cell Recruitment to the Intestine and Liver Protects Mice from Western Diet-Induced Non-Alcoholic Steatohepatitis. Journal of Hepatology, 73, 1013-1022. https://doi.org/10.1016/j.jhep.2020.05.047
|
[68]
|
Hirsova, P., Bamidele, A.O., Wang, H., Povero, D. and Revelo, X.S. (2021) Emerging Roles of T Cells in the Pathogenesis of Nonalcoholic Steatohepatitis and Hepatocellular Carcinoma. Frontiers in Endocrinology, 12, Article 760860. https://doi.org/10.3389/fendo.2021.760860
|
[69]
|
Wen, W., Wu, P., Zhang, Y., Chen, Z., Sun, J. and Chen, H. (2021) Comprehensive Analysis of NAFLD and the Therapeutic Target Identified. Frontiers in Cell and Developmental Biology, 9, Article 704704. https://doi.org/10.3389/fcell.2021.704704
|
[70]
|
Xu, Z., Zhang, X., Lau, J. and Yu, J. (2016) C-X-C Motif Chemokine 10 in Non-Alcoholic Steatohepatitis: Role as a Pro-Inflammatory Factor and Clinical Implication. Expert Reviews in Molecular Medicine, 18, e16. https://doi.org/10.1017/erm.2016.16
|
[71]
|
de Fraia Pinto, L., Compri, C.M., Fornari, J.V., Bartchewsky, W., Cintra, D.E., Trevisan, M., et al. (2010) The Immunosuppressant Drug, Thalidomide, Improves Hepatic Alterations Induced by a High-Fat Diet in Mice. Liver International, 30, 603-610. https://doi.org/10.1111/j.1478-3231.2009.02200.x
|
[72]
|
Li, Z., Yang, S., Lin, H., Huang, J., Watkins, P.A., Moser, A.B., et al. (2003) Probiotics and Antibodies to TNF Inhibit Inflammatory Activity and Improve Nonalcoholic Fatty Liver Disease. Hepatology, 37, 343-350. https://doi.org/10.1053/jhep.2003.50048
|