T淋巴细胞亚群在NAFLD发病机制中的作用
The Roles of T Lymphocyte Subsets in the Pathogenesis of NAFLD
摘要: 非酒精性脂肪性肝病(Non-alcoholic fatty liver disease, NAFLD)包括一系列的肝脏表现,从肝脏脂肪变性开始,可能演变为非酒精性脂肪性肝炎(Non-alcoholic steatohepatitis, NASH)、纤维化、肝硬化甚至肝细胞癌(Hepatocellular carcinoma, HCC)。其发病率在全球范围内呈上升趋势。尽管NAFLD是一种与代谢紊乱相关的疾病,但它也涉及多种免疫细胞介导的炎症过程。多种免疫细胞通过分泌促炎或抗炎因子来促进或抑制肝细胞炎症,从而影响NAFLD进程。T细胞作为适应性免疫中重要的一环,包括多种淋巴细胞亚群,在NAFLD的进展中发挥着关键作用。本文综述了T淋巴细胞亚群在NAFLD发病机制中的作用,以期为非酒精性脂肪性肝病的药物干预提供新策略。
Abstract: Non-alcoholic fatty liver disease (NAFLD) encompasses a series of liver manifestations. Starting from hepatic steatosis, it may progress to non-alcoholic steatohepatitis (NASH), fibrosis, liver cirrhosis and even hepatocellular carcinoma (HCC). The incidence of NAFLD is on the rise globally. Although NAFLD is a disease concerning metabolic disorders, it also involves various inflammatory processes mediated by immune cells. Various immune cells promote or inhibit liver cell inflammation by secreting pro-inflammatory or anti-inflammatory factors to influence the progression of non-alcoholic fatty liver disease (NAFLD). T cells, as an important part of adaptive immunity, include multiple lymphocyte subsets and play a crucial role in the progression of NAFLD. We review the roles of T lymphocyte subsets in the pathogenesis of NAFLD, expecting to provide new strategies for the pharmaceutical intervention of non-alcoholic fatty liver disease.
文章引用:许琳, 高韬, 柯大智. T淋巴细胞亚群在NAFLD发病机制中的作用[J]. 临床医学进展, 2025, 15(1): 777-786. https://doi.org/10.12677/acm.2025.151105

1. 引言

非酒精性脂肪性肝病(NAFLD)是在排除酒精或其他明确依据的原因造成肝损害、以肝细胞发生脂质沉积、脂肪变性为主要病理变化的一种慢性肝病,包括从单纯性脂肪变性(Non-alcoholic fatty liver, NAFL)发展为脂肪性肝炎(NASH)、肝纤维化,甚至转变为肝功能衰竭、肝硬化和肝细胞癌(HCC)的临床病理综合征[1],已成为全球最普遍的慢性肝病之一[2],而且与糖尿病、心血管疾病等密切相关[3]。目前,非酒精性脂肪肝患者的全球患病率为20%~30%,国内发病率为12%~24%,而且随着饮食结构与生活方式的改变,此病的发病率仍呈逐年上升趋势[2]。目前的预测估计,到2030年,中国将有超过3亿人发展为NAFLD,美国将有超过1亿人,欧洲主要国家将有1500万至2000万人[4]。在发达国家,NASH已成为肝移植的主要病因[5]。NASH相关的HCC占已知HCC病因的10%至34% [6],且往往在晚期被诊断,与病毒性肝炎相关的HCC相比,生存率更差[7]。为了延缓其纤维化进展、降低肝损伤程度以及减少其并发症,应当做到早期诊断和治疗。然而,目前被批准用于治疗NASH的药物有限[8]

目前,NAFLD的发病机制尚未完全阐明,但“多重打击”假说被广泛接受[2]。该假说认为,NAFLD的发生始于肝细胞内脂质积累,随后的氧化应激、促炎细胞因子释放增加以及脂肪细胞释放的游离脂肪酸引起的脂毒性共同推动了肝脏脂肪变性和炎症的进展。在这一复杂的病理过程中,免疫系统起着至关重要的作用。

肝脏作为重要的免疫器官之一,富含多种免疫细胞,而T淋巴细胞亚群作为关键的免疫调节细胞,在非酒精性脂肪性肝病(NAFLD)的演变和推进过程中起着至关重要的作用[9]。因此,深入研究T细胞在NAFLD发病机制中的作用,能够为NAFLD的治疗探索新的靶点,为临床新药物的研发提供参考依据。

2. 非酒精性脂肪性肝病发病机制

目前研究表明,NAFLD发病机制和发展是一个复杂的过程。1998年提出的“二次打击”学说解释了部分NAFLD的发病机制[10],其第1次打击为肝脏脂质沉积和胰岛素抵抗、第2次打击为氧化应激。而近年来的最新研究表明,“多重打击”学说为NAFLD的发病机制提供了更恰当的描述[2]。NAFLD发病过程中,多重打击同时发挥作用,包括胰岛素抵抗、脂毒性、炎症级联反应、肠道屏障破坏、肠–肝轴失衡和脂肪组织与肝脏炎症因子的交互作用等,多重因素相互作用导致NAFLD的发生。尽管目前对NAFLD各阶段进展的影响因素仍不完全清楚,但是免疫细胞作为“多重打击”的诸多因素之一,是NAFLD疾病进展的重要因素,众多研究表明,免疫细胞在NAFLD和NASH的病理生理学中起着重要作用[2]

3. 肝脏的先天性免疫和适应性免疫

在先天免疫系统中,最重要的细胞是非酒精性脂肪肝(NAFL)细胞和单核细胞衍生的巨噬细胞[11]。在NAFLD的早期发展阶段,主要表现为单纯性脂肪变性,这些细胞会分泌趋化刺激分子,如C-C基序配体2 (CCL2),导致循环单核细胞分化的巨噬细胞在肝脏中积累[12],从而导致大量促炎细胞因子的产生,包括白细胞介素1β (IL-1β)和肿瘤坏死因子α (TNF-α),进而加速肝脂肪变性、炎症和纤维化。除了巨噬细胞,NK细胞和树突状细胞(DC)也作为先天免疫系统的一部分促进NAFLD的进展。

在适应性免疫系统中,T淋巴细胞起着至关重要的作用,主要负责由感染细胞介导的细胞免疫和随后的效应途径,而B淋巴细胞则负责由抗体的产生和分泌介导的体液成分。适应性免疫反应的细胞成分是由识别抗原呈递细胞(APC)上主要组织相容性复合体(MHC)分子所呈递的抗原刺激产生[13],也是T细胞活化的第一信号,该信号通过T细胞表面的T细胞受体(TCR)以及分化簇3 (CD3)以非共价键结合形成的TCR-CD3复合体传递[14]。第二信号由APC表面共刺激分子和T细胞表面的相应受体相互作用产生,其中参与T细胞的活化最重要的共刺激分子为CD28,它还可以诱导T细胞表面IL-2受体上调,促进细胞因子分泌,进而促进T细胞的活化、增殖和分化。TCR主要由αβ亚基组成,能够根据特定的T细胞亚群对基因片段进行随机重排,从而能够识别广泛的抗原[15]。因此,T细胞可以表达能够识别来自病原体、肿瘤和外部环境等不同抗原的TCR,同时保持记忆和自身耐受性[16]

4. T淋巴细胞亚群在NAFLD中的作用

T细胞是在细胞免疫中发挥核心作用的一类淋巴细胞,通过细胞表面存在的T细胞受体(TCR)与其他淋巴细胞区分开来。常规T细胞包括CD4+T细胞和CD8+T细胞。肝脏炎症在早期以CD4+T细胞为主,随后出现CD8+T细胞反应。除了常规的T细胞亚群外,还有非典型T细胞,包括自然杀伤T(NKT)细胞、γδT细胞和黏膜相关不变T(MAIT)细胞。非典型T细胞被认为是先天免疫细胞,但也具有适应性免疫细胞的特征,其在NAFLD发病机制中的作用也不容忽视。

4.1. γδT细胞

γδT细胞被认为是连接先天和适应性免疫系统的桥梁。一方面,这类细胞的TCR可以识别病原体和宿主细胞上的保守结构,包括非肽代谢物和热休克蛋白。另一方面,γδT细胞是双阴性细胞(既不表达CD4也不表达CD8),可以在无需MHC分子呈递抗原的情况下识别许多非肽配体[17]γδT细胞无需TCR限制即可被激活的特点使其比αβT细胞更快地产生免疫反应。研究发现γδT细胞在肝脏中的含量比血液中含量高[18]γδT细胞在血液中的总T淋巴细胞中约占2%~10%,而在肝脏中的总T细胞群体中占15%~25% [19]γδT细胞可能在肝脏免疫中充当重要角色。在NAFLD中,γδT细胞被聚集到肝脏,并通过调节CD4+T细胞、增加白细胞介素17 (IL-17)的表达,从而加剧脂肪性肝炎[20] [21]。研究表明γδT细胞在促进肝内炎症中起着核心作用[22] [23],这些细胞在肝脏中的积累很可能加重NAFLD的进展[24]。Li等[25]在比较蛋氨酸胆碱缺乏饮食与正常饮食的小鼠模型后,发现γδT细胞可能通过增强IL-17的分泌从而加重肝脏炎症并促进NALFD的进展。Li等[26]通过研究高脂饮食(HFD)诱导的NAFLD小鼠模型中γδT细胞的作用,发现γδT细胞是肝脏中关键的促炎细胞因子IL-17A的主要提供者,可以加速NAFLD的进程。此外,在NAFLD小鼠模型中[27]γδT细胞可通过分泌IL-17促进巨噬细胞极化为促炎M1细胞,两者共同促进NAFLD转变成为NASH。在另一项小鼠实验中[20]γδT细胞通过CCR2、CCR5等趋化因子和NOD2信号转导被募集到肝脏,通过IL-15或VEGF依赖性机制抑制CD4+T细胞产生IFN-γ,从而促进NASH的形成。以上研究表明,γδT细胞在NAFLD小鼠模型以及NAFLD患者中都很丰富,γδT细胞与IL-17等因子的相互作用可以加速NAFLD进程,并且γδT细胞的耗竭能够延缓小鼠NAFLD的进展[25]。这提示可以探索开发专门针对γδT细胞的细胞毒性药物或者细胞治疗技术,选择性地减少γδT细胞数量,从而延缓肝病的发展。

4.2. CD4+T细胞

4.2.1. CD4+T辅助细胞

CD4+T细胞常通过产生细胞因子来调节其他免疫细胞的生成和维持,因此也被称为T辅助(Th)细胞[28]。根据其功能和所产生的细胞因子,CD4+Th细胞进一步分为Th1、Th2和Th17细胞,每种细胞产生特定的细胞因子以支持不同的免疫功能。Th1细胞通常与炎症相关,并通过分泌促炎细胞因子如干扰素(IFN)-γ、IL-2、肿瘤坏死因子(TNF) α、IL-6、IL-8和IL-1β等诱导细胞介导的免疫反应。Th2细胞主要分泌抗炎细胞因子,如IL-1ra、IL-4、IL-5和IL-10,通过调节产生抗体的细胞(如B细胞)诱导体液免疫反应[29] [30]。而Th17细胞主要产生促炎细胞因子,包括IL-17A、IL-22和IL-23 [31]。CD4+T细胞在NAFLD期间主要与病理学进展有关,包括肝纤维化和肝细胞癌(HCC)。最近一项在人源化小鼠中的研究发现,CD4+T细胞是NAFLD从脂肪变性进展为肝纤维化的重要驱动因素[24];并在体内模型中,观察到CD4+T细胞的浸润增加,同时发现有IFNγ、IL-6、IL-17A和IL-18等促炎细胞因子的升高。虽然在HFD小鼠模型中CD4+T细胞的耗竭不能预防肝脂肪变性,但显著减少了肝脏炎性和肝纤维化。这表明CD4+T细胞可能促进NAFLD诱导的炎症并进展为肝纤维化。有趣的是,有研究表明NAFLD中的脂质代谢失调会导致肝内CD4+T淋巴细胞选择性丢失,从而加速肝癌的发生[32]。因此,肝脏炎症信号与脂质代谢之间的相互作用可能阐明CD4+T细胞在NAFLD进展中的作用机制。

4.2.2. CD4+调节性T细胞

在健康人类体内,调节性T细胞(Tregs)作为占CD4+T细胞总数5%~10%的一个子集,以表达CD4+、CD25+和FOXP3+标记为典型特征,在维持免疫耐受以及调节免疫稳态方面发挥着极为关键的作用[33]。这些细胞通过释放细胞因子如IL-10、TGF-β和IL-35发挥其免疫抑制功能[34]。虽然目前Treg细胞在NAFLD发病机制中的重要性尚未得到充分认识,但普遍认为其可通过抑制细胞毒性T细胞的增殖和激活来维持免疫反应的稳态。例如,在NAFLD的动物模型中,肝脏Treg细胞数量呈现减少态势[32] [35] [36]。在NASH的小鼠模型中,Treg细胞的耗竭会致使NAFLD的严重程度加剧、肥胖以及胰岛素抵抗现象加重[35] [37],而Treg细胞的诱导则能够减轻肝脏炎症[38]。与健康对照组相比,NAFLD患者体内循环和肝脏Treg细胞数量显著降低,NASH患者的降低幅度更为突出[39]。Treg细胞主要通过分泌IL-10表现出抗纤维化作用[40]。然而,近期的另一项研究在小鼠NASH模型中观测到肝内Tregs数量增加,同时还揭示了它们的有害作用[41],这或许与Treg细胞衍生的TGF-β有关,发挥促纤维化作用[42]。此外,Treg细胞和Th17细胞之间的失衡与NASH的严重程度相关,故而能够作为NAFLD向NASH转变的一种标志物[43]。由此可见,Treg细胞在NASH不同阶段的双重抗纤维化和促纤维化作用凸显出其功能的复杂性,这极有可能成为未来研究的核心关注点。

4.3. CD8+细胞毒性T细胞

CD8+T细胞主要通过分泌穿孔素、颗粒酶和促炎细胞因子(包括TNF-α和IFN-γ)发挥细胞毒性作用[44]。从NAFLD的单纯脂肪变性到非酒精性脂肪性肝炎(NASH)的过程中,已有研究证明肝脏内活性细胞毒性CD8+T细胞的数量增加,伴随着炎症介质水平的升高,这种升高的CD8+T细胞活性与肝损伤的进展相关[45]。相反,在肝细胞癌(HCC)的发展过程中,CD8+T细胞浸润及其产生细胞毒性因子的能力显著降低,这可能有助于肿瘤进展[46]。然而,在从NASH到HCC的整个过渡过程中,CD8+T细胞的作用尚未完全阐明,需要进一步研究。此外,NASH患者肝组织的单细胞RNA测序分析已经鉴定了大量CXCR6 + PD1高表达CD8+T细胞[47]。该亚群的特征在于高细胞毒性基因表达,并且与肝脏炎症和纤维化的严重程度相关。值得注意的是,NASH小鼠模型中这些细胞的耗竭会导致肝脏损伤减轻[48]

4.4. 自然杀伤T (NKT)细胞

NKT细胞(Natural killer T cell),是一群特殊的T细胞亚群,其细胞表面既有T细胞受体(TCR),又有NK细胞受体。在呈递脂质抗原后,NKT细胞立即分泌大量细胞因子,包括IFNγ和IL-4,以发挥免疫功能[49]。NKT细胞对于维持免疫系统在炎症和耐受性之间的平衡至关重要[50]。CD1d限制的NKT细胞分为两个子集,即I型和II型。在肝损伤期间,I型为经典NKT细胞,即iNKT细胞,主要发挥促炎作用;而II型(非经典NKT细胞)抑制促炎反应。I型NKT细胞被认为以类似于CD8+T细胞的方式影响NAFLD的疾病进展。一项在无胆碱的高脂肪(CDAA)喂养的小鼠模型研究中,发现NAFLD的进展依赖于iNKT细胞,在NASH患者中发现越来越多的CXCR3 + IFN-g + T-bet + IL-17A + iNKT细胞[51]。在喂食高脂肪高碳水化合物(HFHC)的小鼠模型中,观察到肝脏中iNKT细胞的浸润增加,而iNKT细胞缺陷(CD1d敲除)小鼠受到保护,延缓NASH的进展[52]。此外,iNKT细胞缺陷小鼠显示体重增加减少,血浆丙氨酸转氨酶(ALT)水平降低,NAFLD活动度评分(NAS)降低,肝脏中巨噬细胞浸润减少,以及肝纤维化标记物包括α平滑肌肌动蛋白(α-SMA)、1型胶原alpha 1 (Col1a1)、1型胶原alpha 2 (Col1a2)的下调[52]。II型NKT细胞已显示出在自身免疫性疾病、炎性肝病和癌症中具有免疫抑制作用[53]。然而,在NAFLD的肝损伤期间,主要是I型NKT细胞迅速被激活并在肝脏中积累,而II型NKT细胞的作用尚不清楚。需要进一步的研究来揭示它们的作用。

4.5. 黏膜相关恒定T (MAIT)细胞

黏膜相关不变T (Mucosal-associated invariant T cells, MAIT)细胞是一种新型的先天样淋巴细胞群,与各种炎症和自身免疫性疾病有关。虽然MAIT细胞在NAFLD中的直接作用仍然未知,但研究表明,MALT细胞的作用可能归因于IL-17、IFN-g等促炎细胞因子的产生[54] [55]和细胞毒性因子如颗粒酶B、穿孔素的释放[56]。Li等人在NAFLD患者检测到肝脏中MAIT细胞的数量增加,与NAS评分呈正相关,在NAS评分较高的患者中MAIT细胞数量甚至更多[57]。此外,MAIT细胞通过产生调节细胞因子和诱导抗炎巨噬细胞极化来降低NAFLD中的炎症,这可能为NAFLD提供新的治疗策略[57]。另一项研究在NAFLD相关肝硬化患者中检测到循环MAIT细胞减少而肝脏中增加,但该研究在慢性肝损伤小鼠模型中,发现MAIT细胞丰富的小鼠表现出肝纤维化增加和肝纤维化细胞积累,而MAIT细胞缺陷小鼠具有抵抗力[58],呈现出相反的观点。因此,需要进一步的研究来了解它们在NAFLD不同进展阶段和条件下的作用。

5. 治疗方法

2024年3月14日,美国食品药物监管局(U.S. Food and Drug Administration, FDA)批准了全球首个治疗非酒精性脂肪性肝炎(NASH)的药物Rezdiffra。作为一种针对肝脏的甲状腺激素受体-β选择性激动剂,Rezdiffra (学名为resmetirom)获批用于伴有中度至重度肝纤维化的NASH患者。其获批的关键依据是MAESTRO-NASH试验[59],在这项多中心随机对照试验研究中,Rezdiffra在治疗有显著肝纤维化的NASH患者显示出良好的安全性和有效性。除了Madrigal制药的Rezdiffra之外,Akero Therapeutics公司的efruxifermin (前称AKR-001)在治疗因代谢功能障碍相关脂肪性肝炎(MASH) (以前称为NASH)导致的肝纤维化的早期临床试验中,亦表现出了良好的安全性和有效性。

考虑到T细胞在NAFLD发病机制中的影响,调节T细胞的靶向药物可能是开发新的治疗方法的一个重要研究方向。其潜在靶点包括T细胞向肝脏的募集、TCR信号传导、T细胞分泌的促炎性细胞因子、特异性T细胞亚群的存活和增殖。单核细胞和T细胞表达CCR2和CCR5,作为CCR2和CCR5双重拮抗剂的Cenicriviroc (CVC)可以限制它们在肝脏中的浸润,并且已经显示出限制NASH小鼠中的纤维化[60]-[62],然而,在一项名为AURORA的III期、多中心、随机、双盲、安慰剂对照试验中提示缺乏临床疗效[8]。深入分析其可能原因,CVC虽能阻断相关受体介导的细胞浸润,但可能由于肝脏疾病的复杂性,如存在其他补偿性的细胞招募途径或信号网络的相互作用,导致单一阻断无法达到理想的治疗效果。从临床试验结果来看,前期动物模型中的有效性未能在人体临床试验中复现,这可能与动物和人体生理病理差异、用药剂量、疗程设置或患者群体的异质性等因素有关。其局限性表明,单纯依靠CVC进行治疗难以实现对NASH的有效控制。为更有效地应对NASH,CVC可与其他阻断T细胞募集的药物联合使用[63],通过多靶点协同作用,或许能够弥补单一药物的不足,提高治疗效果。在NASH诱发的HCC中,尽管CCL2/CCR2对免疫细胞具有双重作用,可驱动髓源性抑制细胞(MDSCs)以及CD4+Th1、CD8+T细胞的浸润[64],但临床前研究已证明,CCR2拮抗剂可阻断肿瘤浸润巨噬细胞介导的免疫抑制并增加CD8+T细胞,且与低剂量索拉非尼联合应用时在HCC中表现出更为显著的抗肿瘤功效[65] [66]。CCR2拮抗剂打破了肿瘤微环境中的免疫抑制平衡,使得CD8+T细胞能够更好地发挥抗肿瘤免疫效应,而与索拉非尼联合则可能从肿瘤细胞增殖抑制和免疫调节两个方面协同作用。不过,目前此类联合治疗仍处于临床前研究阶段,其在人体临床试验中的安全性、有效性以及最佳联合用药方案等仍有待进一步探索。Vedolizumab作为一种抗α4β7的抗体,已被批准用于治疗炎症性肠病(IBD),其可阻断CD4+T细胞与黏膜血管地址素细胞黏附分子-1 (MAdCAM-1)的结合,从而抑制CD4+T细胞的致病性募集,并减轻NASH模型中的肝脏炎症和纤维化[67]。抗MAdCAM-1抗体也已进入临床试验阶段[68]。Vedolizumab在NASH治疗中的临床试验结果显示出一定的潜力,但由于其最初研发是针对IBD,在应用于NASH时可能需要考虑肝脏特异性的生理病理特征对药物疗效和安全性的影响。例如,肝脏的免疫微环境与肠道存在差异,药物在肝脏中的分布、代谢以及与肝脏固有细胞和其他免疫细胞的相互作用可能不同于肠道,这可能限制其在NASH治疗中的广泛应用。使用最小深度随机森林算法[69],CXCL10被确定为NAFLD进展中的关键基因。抗CXCL10抗体能够减少脂质蓄积和炎性细胞浸润,从而预防脂肪性肝炎和减少肝纤维化。CXCR3作为CXCL10的同源受体,在人NAFLD肝组织和脂肪性肝炎模型中可检测到CXCR3表达增强。但CXCR3基因敲除小鼠在受到刀豆蛋白A攻击后肝损伤更严重。这表明在以CXCL10为靶点的治疗中,需要高度特异性的药物设计[70]。从作用机制上看,CXCL10参与了肝脏炎症与纤维化的调节过程,但与CXCR3等相关因子存在复杂的相互作用网络,对其进行干预可能引发一系列连锁反应。在临床试验方面,需进行高度特异性的药物设计,确保在抑制CXCL10的促炎促纤维化作用的同时,避免因干扰其相关因子网络而导致的肝损伤加重。T细胞分泌的TNF-α具有促炎特性。抗TNF-α药物沙利度胺和英夫利西单抗对TNF-α的中和作用在NASH模型中均显示出炎症和纤维化程度的降低[71] [72]。但这些抗TNF-α药物也存在潜在局限性,例如其可能影响机体正常的免疫调节功能,引发感染风险增加或其他免疫相关不良反应。在临床应用中,需要严格筛选患者,权衡药物的治疗效益与风险。

综上所述,靶向T细胞的治疗方法在NAFLD和NASH治疗领域展现出一定的前景,但目前各种治疗策略均面临着不同程度的挑战。从基础研究成果向临床应用的转化过程中,需要深入探究药物的作用机制,充分考虑肝脏疾病的复杂性和异质性,精心设计临床试验,优化用药方案,以克服潜在的局限性,从而实现更安全、高效的治疗效果,使其真正成为未来NAFLD和NASH的有效治疗手段。

6. 小结与展望

由于非酒精性脂肪肝的复杂性和多因素性,其患病率逐年上升,并可导致严重的肝脏损伤,但目前药物治疗手段有限。尽管目前普遍认为非酒精性脂肪肝是由代谢改变引起的,但它也表现出强烈的免疫炎症维度。在NASH期间,激活了庞大的免疫细胞网络。我们综述了不同类型的T细胞如何促进或抑制NAFLD的进展,靶向免疫治疗有望在未来取得突破。此外,由于NAFLD是一种涉及遗传、代谢和环境等众多因素的复杂疾病,我们仍然缺乏对免疫在NAFLD发病机制中独立作用的全面认识,目前能够模拟人类NAFLD的临床前模型仍然缺乏,这些问题限制了通过基础研究确定的治疗靶点的潜力,阻碍了新型有效药物的开发。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Lazarus, J.V., Mark, H.E., Villota-Rivas, M., Palayew, A., Carrieri, P., Colombo, M., et al. (2022) The Global NAFLD Policy Review and Preparedness Index: Are Countries Ready to Address This Silent Public Health Challenge? Journal of Hepatology, 76, 771-780.
https://doi.org/10.1016/j.jhep.2021.10.025
[2] Powell, E.E., Wong, V.W. and Rinella, M. (2021) Non-Alcoholic Fatty Liver Disease. The Lancet, 397, 2212-2224.
https://doi.org/10.1016/s0140-6736(20)32511-3
[3] White, L., Fishman, P., Basu, A., Crane, P.K., Larson, E.B. and Coe, N.B. (2019) Medicare Expenditures Attributable to Dementia. Health Services Research, 54, 773-781.
https://doi.org/10.1111/1475-6773.13134
[4] Eslam, M., Newsome, P.N., Sarin, S.K., Anstee, Q.M., Targher, G., Romero-Gomez, M., et al. (2020) A New Definition for Metabolic Dysfunction-Associated Fatty Liver Disease: An International Expert Consensus Statement. Journal of Hepatology, 73, 202-209.
https://doi.org/10.1016/j.jhep.2020.03.039
[5] Lindenmeyer, C.C. and McCullough, A.J. (2018) The Natural History of Nonalcoholic Fatty Liver Disease—An Evolving View. Clinics in Liver Disease, 22, 11-21.
https://doi.org/10.1016/j.cld.2017.08.003
[6] Huang, D.Q., El-Serag, H.B. and Loomba, R. (2020) Global Epidemiology of NAFLD-Related HCC: Trends, Predictions, Risk Factors and Prevention. Nature Reviews Gastroenterology & Hepatology, 18, 223-238.
https://doi.org/10.1038/s41575-020-00381-6
[7] Younossi, Z.M., Otgonsuren, M., Henry, L., Venkatesan, C., Mishra, A., Erario, M., et al. (2015) Association of Nonalcoholic Fatty Liver Disease (NAFLD) with Hepatocellular Carcinoma (HCC) in the United States from 2004 to 2009. Hepatology, 62, 1723-1730.
https://doi.org/10.1002/hep.28123
[8] Vuppalanchi, R., Noureddin, M., Alkhouri, N. and Sanyal, A.J. (2021) Therapeutic Pipeline in Nonalcoholic Steatohepatitis. Nature Reviews Gastroenterology & Hepatology, 18, 373-392.
https://doi.org/10.1038/s41575-020-00408-y
[9] Narayanan, S., Surette, F.A. and Hahn, Y.S. (2016) The Immune Landscape in Nonalcoholic Steatohepatitis. Immune Network, 16, 147-158.
https://doi.org/10.4110/in.2016.16.3.147
[10] Day, C.P. and James, O.F.W. (1998) Steatohepatitis: A Tale of Two “Hits”? Gastroenterology, 114, 842-845.
https://doi.org/10.1016/s0016-5085(98)70599-2
[11] Vonghia, L., Michielsen, P. and Francque, S. (2013) Immunological Mechanisms in the Pathophysiology of Non-Alcoholic Steatohepatitis. International Journal of Molecular Sciences, 14, 19867-19890.
https://doi.org/10.3390/ijms141019867
[12] Davies, L.C., Jenkins, S.J., Allen, J.E. and Taylor, P.R. (2013) Tissue-Resident Macrophages. Nature Immunology, 14, 986-995.
https://doi.org/10.1038/ni.2705
[13] Viret, C. and Janeway Jr., C.A. (1999) MHC and T Cell Development. Reviews in immunogenetics, 1, 91-104.
[14] Rossjohn, J., Gras, S., Miles, J.J., Turner, S.J., Godfrey, D.I. and McCluskey, J. (2015) T Cell Antigen Receptor Recognition of Antigen-Presenting Molecules. Annual Review of Immunology, 33, 169-200.
https://doi.org/10.1146/annurev-immunol-032414-112334
[15] Scaviner, D. and Lefranc, M. (2000) The Human T Cell Receptor Alpha Variable (TRAV) Genes. Experimental and Clinical Immunogenetics, 17, 83-96.
https://doi.org/10.1159/000019128
[16] Bhati, M., Cole, D.K., McCluskey, J., Sewell, A.K. and Rossjohn, J. (2014) The Versatility of the αβ T‐cell Antigen Receptor. Protein Science, 23, 260-272.
https://doi.org/10.1002/pro.2412
[17] Hayday, A.C. (2000) γδ Cells: A Right Time and a Right Place for a Conserved Third Way of Protection. Annual Review of Immunology, 18, 975-1026.
https://doi.org/10.1146/annurev.immunol.18.1.975
[18] Kenna, T., Golden-Mason, L., Norris, S., Hegarty, J.E., O’Farrelly, C. and Doherty, D.G. (2004) Distinct Subpopulations of γδ T Cells Are Present in Normal and Tumor-Bearing Human Liver. Clinical Immunology, 113, 56-63.
https://doi.org/10.1016/j.clim.2004.05.003
[19] Gao, B., Jeong, W. and Tian, Z. (2008) Liver: An Organ with Predominant Innate Immunity. Hepatology, 47, 729-736.
https://doi.org/10.1002/hep.22034
[20] Torres‐Hernandez, A., Wang, W., Nikiforov, Y., Tejada, K., Torres, L., Kalabin, A., et al. (2019) γδ T Cells Promote Steatohepatitis by Orchestrating Innate and Adaptive Immune Programming. Hepatology, 71, 477-494.
https://doi.org/10.1002/hep.30952
[21] Castaño-Rodríguez, N., Mitchell, H.M. and Kaakoush, N.O. (2017) NAFLD, Helicobacter Species and the Intestinal Microbiome. Best Practice & Research Clinical Gastroenterology, 31, 657-668.
https://doi.org/10.1016/j.bpg.2017.09.008
[22] Ribeiro, S.T., Ribot, J.C. and Silva-Santos, B. (2015) Five Layers of Receptor Signaling in γδ T-Cell Differentiation and Activation. Frontiers in Immunology, 6, Article 15.
https://doi.org/10.3389/fimmu.2015.00015
[23] Lombes, A., Durand, A., Charvet, C., Rivière, M., Bonilla, N., Auffray, C., et al. (2015) Adaptive Immune-Like γ/δ T Lymphocytes Share Many Common Features with Their α/β T Cell Counterparts. The Journal of Immunology, 195, 1449-1458.
https://doi.org/10.4049/jimmunol.1500375
[24] Her, Z., Tan, J.H.L., Lim, Y., Tan, S.Y., Chan, X.Y., Tan, W.W.S., et al. (2020) CD4+ T Cells Mediate the Development of Liver Fibrosis in High Fat Diet-Induced NAFLD in Humanized Mice. Frontiers in Immunology, 11, Article 580968.
https://doi.org/10.3389/fimmu.2020.580968
[25] Li, C., Du, X., Shen, Z., Wei, Y., Wang, Y., Han, X., et al. (2022) The Critical and Diverse Roles of CD4CD8 Double Negative T Cells in Nonalcoholic Fatty Liver Disease. Cellular and Molecular Gastroenterology and Hepatology, 13, 1805-1827.
https://doi.org/10.1016/j.jcmgh.2022.02.019
[26] Li, F., Hao, X., Chen, Y., Bai, L., Gao, X., Lian, Z., et al. (2017) The Microbiota Maintain Homeostasis of Liver-Resident γδT-17 Cells in a Lipid Antigen/CD1D-Dependent Manner. Nature Communications, 8, Article No. 13839.
https://doi.org/10.1038/ncomms13839
[27] Han, Y., Ling, Q., Wu, L., Wang, X., Wang, Z., Chen, J., et al. (2023) Akkermansia muciniphila Inhibits Nonalcoholic Steatohepatitis by Orchestrating TLR2-Activated γδt17 Cell and Macrophage Polarization. Gut Microbes, 15, Article ID: 2221485.
https://doi.org/10.1080/19490976.2023.2221485
[28] Dutton, R.W., Bradley, L.M. and Swain, S.L. (1998) T CELL Memory. Annual Review of Immunology, 16, 201-223.
https://doi.org/10.1146/annurev.immunol.16.1.201
[29] Raphael, I., Nalawade, S., Eagar, T.N. and Forsthuber, T.G. (2015) T Cell Subsets and Their Signature Cytokines in Autoimmune and Inflammatory Diseases. Cytokine, 74, 5-17.
https://doi.org/10.1016/j.cyto.2014.09.011
[30] Shinkai, K., Mohrs, M. and Locksley, R.M. (2002) Helper T Cells Regulate Type-2 Innate Immunity in Vivo. Nature, 420, 825-829.
https://doi.org/10.1038/nature01202
[31] Ouyang, W., Kolls, J.K. and Zheng, Y. (2008) The Biological Functions of T Helper 17 Cell Effector Cytokines in Inflammation. Immunity, 28, 454-467.
https://doi.org/10.1016/j.immuni.2008.03.004
[32] Ma, C., Kesarwala, A.H., Eggert, T., Medina-Echeverz, J., Kleiner, D.E., Jin, P., et al. (2016) NAFLD Causes Selective CD4+ T Lymphocyte Loss and Promotes Hepatocarcinogenesis. Nature, 531, 253-257.
https://doi.org/10.1038/nature16969
[33] Grover, P., Goel, P.N. and Greene, M.I. (2021) Regulatory T Cells: Regulation of Identity and Function. Frontiers in Immunology, 12, Article 750542.
https://doi.org/10.3389/fimmu.2021.750542
[34] Arce-Sillas, A., Álvarez-Luquín, D.D., Tamaya-Domínguez, B., Gomez-Fuentes, S., Trejo-García, A., Melo-Salas, M., et al. (2016) Regulatory T Cells: Molecular Actions on Effector Cells in Immune Regulation. Journal of Immunology Research, 2016, Article ID: 1720827.
https://doi.org/10.1155/2016/1720827
[35] Ma, X., Hua, J., Mohamood, A.R., Hamad, A.R.A., Ravi, R. and Li, Z. (2007) A High-Fat Diet and Regulatory T Cells Influence Susceptibility to Endotoxin-Induced Liver Injury. Hepatology, 46, 1519-1529.
https://doi.org/10.1002/hep.21823
[36] He, B., Wu, L., Xie, W., Shao, Y., Jiang, J., Zhao, Z., et al. (2017) The Imbalance of Th17/Treg Cells Is Involved in the Progression of Nonalcoholic Fatty Liver Disease in Mice. BMC Immunology, 18, Article No. 33.
https://doi.org/10.1186/s12865-017-0215-y
[37] Roh, Y.S., Kim, J.W., Park, S., Shon, C., Kim, S., Eo, S.K., et al. (2018) Toll-like Receptor-7 Signaling Promotes Nonalcoholic Steatohepatitis by Inhibiting Regulatory T Cells in Mice. The American Journal of Pathology, 188, 2574-2588.
https://doi.org/10.1016/j.ajpath.2018.07.011
[38] Ilan, Y., Maron, R., Tukpah, A., Maioli, T.U., Murugaiyan, G., Yang, K., et al. (2010) Induction of Regulatory T Cells Decreases Adipose Inflammation and Alleviates Insulin Resistance in Ob/Ob Mice. Proceedings of the National Academy of Sciences of the United States of America, 107, 9765-9770.
https://doi.org/10.1073/pnas.0908771107
[39] Rau, M., Schilling, A., Meertens, J., Hering, I., Weiss, J., Jurowich, C., et al. (2016) Progression from Nonalcoholic Fatty Liver to Nonalcoholic Steatohepatitis Is Marked by a Higher Frequency of Th17 Cells in the Liver and an Increased Th17/resting Regulatory T Cell Ratio in Peripheral Blood and in the Liver. The Journal of Immunology, 196, 97-105.
https://doi.org/10.4049/jimmunol.1501175
[40] Zhang, C., Li, L., Feng, K., Fan, D., Xue, W. and Lu, J. (2017) ‘Repair’ Treg Cells in Tissue Injury. Cellular Physiology and Biochemistry, 43, 2155-2169.
https://doi.org/10.1159/000484295
[41] Dywicki, J., Buitrago‐Molina, L.E., Noyan, F., Davalos‐Misslitz, A.C., Hupa‐Breier, K.L., Lieber, M., et al. (2021) The Detrimental Role of Regulatory T Cells in Nonalcoholic Steatohepatitis. Hepatology Communications, 6, 320-333.
https://doi.org/10.1002/hep4.1807
[42] Fabregat, I., Moreno‐Càceres, J., Sánchez, A., Dooley, S., Dewidar, B., Giannelli, G., et al. (2016) TGF‐β Signalling and Liver Disease. The FEBS Journal, 283, 2219-2232.
https://doi.org/10.1111/febs.13665
[43] Wang, X., Li, W., Fu, J., Ni, Y. and Liu, K. (2022) Correlation between T-Lymphocyte Subsets, Regulatory T Cells, and Hepatic Fibrosis in Patients with Nonalcoholic Fatty Liver. Evidence-Based Complementary and Alternative Medicine, 2022, Article ID: 6250751.
https://doi.org/10.1155/2022/6250751
[44] Koh, C., Lee, S., Kwak, M., Kim, B. and Chung, Y. (2023) CD8 T-Cell Subsets: Heterogeneity, Functions, and Therapeutic Potential. Experimental & Molecular Medicine, 55, 2287-2299.
https://doi.org/10.1038/s12276-023-01105-x
[45] Zhong, X., Lv, M., Ma, M., Huang, Q., Hu, R., Li, J., et al. (2023) State of CD8+ T Cells in Progression from Nonalcoholic Steatohepatitis to Hepatocellular Carcinoma: From Pathogenesis to Immunotherapy. Biomedicine & Pharmacotherapy, 165, Article ID: 115131.
https://doi.org/10.1016/j.biopha.2023.115131
[46] Fu, J., Xu, D., Liu, Z., Shi, M., Zhao, P., Fu, B., et al. (2007) Increased Regulatory T Cells Correlate with CD8 T-Cell Impairment and Poor Survival in Hepatocellular Carcinoma Patients. Gastroenterology, 132, 2328-2339.
https://doi.org/10.1053/j.gastro.2007.03.102
[47] Wang, T., Sun, G., Wang, Y., Li, S., Zhao, X., Zhang, C., et al. (2019) The Immunoregulatory Effects of CD8 T‐Cell-Derived Perforin on Diet‐induced Nonalcoholic Steatohepatitis. The FASEB Journal, 33, 8490-8503.
https://doi.org/10.1096/fj.201802534rr
[48] Dudek, M., Pfister, D., Donakonda, S., Filpe, P., Schneider, A., Laschinger, M., et al. (2021) Auto-Aggressive CXCR6+ CD8 T Cells Cause Liver Immune Pathology in Nash. Nature, 592, 444-449.
https://doi.org/10.1038/s41586-021-03233-8
[49] Winau, F., Hegasy, G., Weiskirchen, R., Weber, S., Cassan, C., Sieling, P.A., et al. (2007) Ito Cells Are Liver-Resident Antigen-Presenting Cells for Activating T Cell Responses. Immunity, 26, 117-129.
https://doi.org/10.1016/j.immuni.2006.11.011
[50] Kremer, M. and Hines, I.N. (2008) Natural Killer T Cells and Non-Alcoholic Fatty Liver Disease: Fat Chews on the Immune System. World Journal of Gastroenterology, 14, 487-488.
https://doi.org/10.3748/wjg.14.487
[51] Maricic, I., Marrero, I., Eguchi, A., Nakamura, R., Johnson, C.D., Dasgupta, S., et al. (2018) Differential Activation of Hepatic Invariant NKT Cell Subsets Plays a Key Role in Progression of Nonalcoholic Steatohepatitis. The Journal of Immunology, 201, 3017-3035.
https://doi.org/10.4049/jimmunol.1800614
[52] Bhattacharjee, J., Kirby, M., Softic, S., Miles, L., Salazar‐Gonzalez, R., Shivakumar, P., et al. (2017) Hepatic Natural Killer T‐Cell and CD8+ T‐Cell Signatures in Mice with Nonalcoholic Steatohepatitis. Hepatology Communications, 1, 299-310.
https://doi.org/10.1002/hep4.1041
[53] Dasgupta, S. and Kumar, V. (2016) Type II NKT Cells: A Distinct CD1d-Restricted Immune Regulatory NKT Cell Subset. Immunogenetics, 68, 665-676.
https://doi.org/10.1007/s00251-016-0930-1
[54] Billerbeck, E., Kang, Y., Walker, L., Lockstone, H., Grafmueller, S., Fleming, V., et al. (2010) Analysis of CD161 Expression on Human CD8+ T Cells Defines a Distinct Functional Subset with Tissue-Homing Properties. Proceedings of the National Academy of Sciences of the United States of America, 107, 3006-3011.
https://doi.org/10.1073/pnas.0914839107
[55] Leeansyah, E., Loh, L., Nixon, D.F. and Sandberg, J.K. (2014) Acquisition of Innate-Like Microbial Reactivity in Mucosal Tissues during Human Fetal Mait-Cell Development. Nature Communications, 5, Article No. 3143.
https://doi.org/10.1038/ncomms4143
[56] Bolte, F. and Rehermann, B. (2018) Mucosal-Associated Invariant T Cells in Chronic Inflammatory Liver Disease. Seminars in Liver Disease, 38, 60-65.
https://doi.org/10.1055/s-0037-1621709
[57] Li, Y., Huang, B., Jiang, X., Chen, W., Zhang, J., Wei, Y., et al. (2018) Mucosal-Associated Invariant T Cells Improve Nonalcoholic Fatty Liver Disease through Regulating Macrophage Polarization. Frontiers in Immunology, 9, Article 1994.
https://doi.org/10.3389/fimmu.2018.01994
[58] Hegde, P., Weiss, E., Paradis, V., Wan, J., Mabire, M., Sukriti, S., et al. (2018) Mucosal-Associated Invariant T Cells Are a Profibrogenic Immune Cell Population in the Liver. Nature Communications, 9, Article No. 2146.
https://doi.org/10.1038/s41467-018-04450-y
[59] Harrison, S.A., Bedossa, P., Guy, C.D., Schattenberg, J.M., Loomba, R., Taub, R., et al. (2024) A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. New England Journal of Medicine, 390, 497-509.
https://doi.org/10.1056/nejmoa2309000
[60] Kruger, A.J., Fuchs, B.C., Masia, R., Holmes, J.A., Salloum, S., Sojoodi, M., et al. (2018) Prolonged Cenicriviroc Therapy Reduces Hepatic Fibrosis Despite Steatohepatitis in a Diet‐induced Mouse Model of Nonalcoholic Steatohepatitis. Hepatology Communications, 2, 529-545.
https://doi.org/10.1002/hep4.1160
[61] Lefebvre, E., Moyle, G., Reshef, R., Richman, L.P., Thompson, M., Hong, F., et al. (2016) Antifibrotic Effects of the Dual CCR2/CCR5 Antagonist Cenicriviroc in Animal Models of Liver and Kidney Fibrosis. PLOS ONE, 11, e0158156.
https://doi.org/10.1371/journal.pone.0158156
[62] Fantuzzi, L., Tagliamonte, M., Gauzzi, M.C. and Lopalco, L. (2019) Dual CCR5/CCR2 Targeting: Opportunities for the Cure of Complex Disorders. Cellular and Molecular Life Sciences, 76, 4869-4886.
https://doi.org/10.1007/s00018-019-03255-6
[63] Huby, T. and Gautier, E.L. (2021) Immune Cell-Mediated Features of Non-Alcoholic Steatohepatitis. Nature Reviews Immunology, 22, 429-443.
https://doi.org/10.1038/s41577-021-00639-3
[64] Chew, V., Chen, J., Lee, D., Loh, E., Lee, J., Lim, K.H., et al. (2011) Chemokine-Driven Lymphocyte Infiltration: An Early Intratumoural Event Determining Long-Term Survival in Resectable Hepatocellular Carcinoma. Gut, 61, 427-438.
https://doi.org/10.1136/gutjnl-2011-300509
[65] Marabelle, A., Kohrt, H., Caux, C. and Levy, R. (2014) Intratumoral Immunization: A New Paradigm for Cancer Therapy. Clinical Cancer Research, 20, 1747-1756.
https://doi.org/10.1158/1078-0432.ccr-13-2116
[66] Yao, W., Ba, Q., Li, X., Li, H., Zhang, S., Yuan, Y., et al. (2017) A Natural CCR2 Antagonist Relieves Tumor-Associated Macrophage-Mediated Immunosuppression to Produce a Therapeutic Effect for Liver Cancer. EBioMedicine, 22, 58-67.
https://doi.org/10.1016/j.ebiom.2017.07.014
[67] Rai, R.P., Liu, Y., Iyer, S.S., Liu, S., Gupta, B., Desai, C., et al. (2020) Blocking Integrin α4β7-Mediated CD4 T Cell Recruitment to the Intestine and Liver Protects Mice from Western Diet-Induced Non-Alcoholic Steatohepatitis. Journal of Hepatology, 73, 1013-1022.
https://doi.org/10.1016/j.jhep.2020.05.047
[68] Hirsova, P., Bamidele, A.O., Wang, H., Povero, D. and Revelo, X.S. (2021) Emerging Roles of T Cells in the Pathogenesis of Nonalcoholic Steatohepatitis and Hepatocellular Carcinoma. Frontiers in Endocrinology, 12, Article 760860.
https://doi.org/10.3389/fendo.2021.760860
[69] Wen, W., Wu, P., Zhang, Y., Chen, Z., Sun, J. and Chen, H. (2021) Comprehensive Analysis of NAFLD and the Therapeutic Target Identified. Frontiers in Cell and Developmental Biology, 9, Article 704704.
https://doi.org/10.3389/fcell.2021.704704
[70] Xu, Z., Zhang, X., Lau, J. and Yu, J. (2016) C-X-C Motif Chemokine 10 in Non-Alcoholic Steatohepatitis: Role as a Pro-Inflammatory Factor and Clinical Implication. Expert Reviews in Molecular Medicine, 18, e16.
https://doi.org/10.1017/erm.2016.16
[71] de Fraia Pinto, L., Compri, C.M., Fornari, J.V., Bartchewsky, W., Cintra, D.E., Trevisan, M., et al. (2010) The Immunosuppressant Drug, Thalidomide, Improves Hepatic Alterations Induced by a High-Fat Diet in Mice. Liver International, 30, 603-610.
https://doi.org/10.1111/j.1478-3231.2009.02200.x
[72] Li, Z., Yang, S., Lin, H., Huang, J., Watkins, P.A., Moser, A.B., et al. (2003) Probiotics and Antibodies to TNF Inhibit Inflammatory Activity and Improve Nonalcoholic Fatty Liver Disease. Hepatology, 37, 343-350.
https://doi.org/10.1053/jhep.2003.50048