[1]
|
Zhang, Y.F. and Lu, M. (2024) Numerical Simulation of Thermal Therapy for Melanoma in Mice. https://pmc.ncbi.nlm.nih.gov/articles/PMC11273475/pdf/bioengineering-11-00694.pdf
|
[2]
|
Liu, L., Kuang, L. and Ji, Y. (2020) Multimodal MRI Brain Tumor Image Segmentation Using Sparse Subspace Clustering Algorithm. Computational and Mathematical Methods in Medicine, 2020, 1-13. https://doi.org/10.1155/2020/8620403
|
[3]
|
Yoshizawa, N., Yamada, M., et al. (20240 Nephritis-Associated Plasmin Receptor (NAPlr): An Essential Inducer of C3-Dominant Glomerular Injury and a Potential Key Diagnostic Biomarker of Infection-Related Glomerulonephritis (IRGN). https://pmc.ncbi.nlm.nih.gov/articles/PMC9456382/pdf/ijms-23-09974.pdf
|
[4]
|
Barkley, D., Moncada, R., Pour, M., Liberman, D.A., Dryg, I., Werba, G., et al. (2022) Cancer Cell States Recur across Tumor Types and Form Specific Interactions with the Tumor Microenvironment. Nature Genetics, 54, 1192-1201. https://doi.org/10.1038/s41588-022-01141-9
|
[5]
|
Tang, Y., Gao, L., Feng, W., Guo, C., Yang, Q., Li, F., et al. (2021) The CRISPR-Cas Toolbox for Analytical and Diagnostic Assay Development. Chemical Society Reviews, 50, 11844-11869. https://doi.org/10.1039/d1cs00098e
|
[6]
|
Bravo, J.P.K., Liu, M., Hibshman, G.N., Dangerfield, T.L., Jung, K., McCool, R.S., et al. (2022) Structural Basis for Mismatch Surveillance by CRISPR-Cas9. Nature, 603, 343-347. https://doi.org/10.1038/s41586-022-04470-1
|
[7]
|
Bhatia, S., Pooja, and Yadav, S.K. (2023) CRISPR-Cas for Genome Editing: Classification, Mechanism, Designing and Applications. International Journal of Biological Macromolecules, 238, Article 124054. https://doi.org/10.1016/j.ijbiomac.2023.124054
|
[8]
|
Knott, G.J. and Doudna, J.A. (2018) CRISPR-Cas Guides the Future of Genetic Engineering. Science, 361, 866-869. https://doi.org/10.1126/science.aat5011
|
[9]
|
Gier, R.A., Budinich, K.A., Evitt, N.H., Cao, Z., Freilich, E.S., Chen, Q., et al. (2020) High-Performance CRISPR-Cas12A Genome Editing for Combinatorial Genetic Screening. Nature Communications, 11, Article No. 3455. https://doi.org/10.1038/s41467-020-17209-1
|
[10]
|
Yang, H. and Patel, D.J. (2024) Structures, Mechanisms and Applications of RNA-Centric CRISPR-Cas13. Nature Chemical Biology, 20, 673-688. https://doi.org/10.1038/s41589-024-01593-6
|
[11]
|
Biagioni, A., Chillà, A., Del Rosso, M., Fibbi, G., Scavone, F., Andreucci, E., et al. (2021) CRISPR/Cas9 UPAR Gene Knockout Results in Tumor Growth Inhibition, EGFR Downregulation and Induction of Stemness Markers in Melanoma and Colon Carcinoma Cell Lines. Frontiers in Oncology, 11, Article 663225. https://doi.org/10.3389/fonc.2021.663225
|
[12]
|
Singh, A., Irfan, H., Fatima, E., Nazir, Z., Verma, A. and Akilimali, A. (2024) Revolutionary Breakthrough: FDA Approves CASGEVY, the First CRISPR/Cas9 Gene Therapy for Sickle Cell Disease. Annals of Medicine & Surgery, 86, 4555-4559. https://doi.org/10.1097/ms9.0000000000002146
|
[13]
|
Yoshimi, K., Takeshita, K., Kodera, N., Shibumura, S., Yamauchi, Y., Omatsu, M., et al. (2022) Dynamic Mechanisms of CRISPR Interference by Escherichia Coli CRISPR-Cas3. Nature Communications, 13, Article No. 4917. https://doi.org/10.1038/s41467-022-32618-0
|
[14]
|
Stella, G. and Marraffini, L. (2024) Type III CRISPR-Cas: Beyond the Cas10 Effector Complex. Trends in Biochemical Sciences, 49, 28-37. https://doi.org/10.1016/j.tibs.2023.10.006
|
[15]
|
Makarova, K.S., Wolf, Y.I., Iranzo, J., Shmakov, S.A., Alkhnbashi, O.S., Brouns, S.J.J., et al. (2019) Evolutionary Classification of CRISPR-Cas Systems: A Burst of Class 2 and Derived Variants. Nature Reviews Microbiology, 18, 67-83. https://doi.org/10.1038/s41579-019-0299-x
|
[16]
|
Yan, W.X., Hunnewell, P., Alfonse, L.E., Carte, J.M., Keston-Smith, E., Sothiselvam, S., et al. (2019) Functionally Diverse Type V CRISPR-Cas Systems. Science, 363, 88-91. https://doi.org/10.1126/science.aav7271
|
[17]
|
Hillary, V.E. and Ceasar, S.A. (2022) A Review on the Mechanism and Applications of CRISPR/Cas9/Cas12/Cas13/Cas14 Proteins Utilized for Genome Engineering. Molecular Biotechnology, 65, 311-325. https://doi.org/10.1007/s12033-022-00567-0
|
[18]
|
Zhou, Y., Tao, L., Qiu, J., Xu, J., Yang, X., Zhang, Y., et al. (2024) Tumor Biomarkers for Diagnosis, Prognosis and Targeted Therapy. Signal Transduction and Targeted Therapy, 9, Article No. 132. https://doi.org/10.1038/s41392-024-01823-2
|
[19]
|
Wang, M., Chen, K., Wu, Q., Peng, R., Zhang, R. and Li, J. (2019) RCasFISH: CRISPR/dCas9-Mediated in Situ Imaging of mRNA Transcripts in Fixed Cells and Tissues. Analytical Chemistry, 92, 2468-2475. https://doi.org/10.1021/acs.analchem.9b03797
|
[20]
|
Shaik, M.R., Sagar, P.R., et al. (2023) Liquid Biopsy in Hepatocellular Carcinoma: The Significance of Circulating Tumor Cells in Diagnosis, Prognosis, and Treatment Monitoring. International Journal of Molecular Sciences, 24, Article 10644.
|
[21]
|
Sivapalan, L., Murray, J.C., Canzoniero, J.V., et al. (2023) Liquid Biopsy Approaches to Capture Tumor Evolution and Clinical Outcomes during Cancer Immunotherapy. The Journal for ImmunoTherapy of Cancer, 11, e005924.
|
[22]
|
Zhang, Q., Gao, X., Ho, Y., Liu, M., Han, Y., Li, D., et al. (2024) Controllable Assembly of a Quantum Dot-Based Aptasensor Guided by CRISPR/Cas12A for Direct Measurement of Circulating Tumor Cells in Human Blood. Nano Letters, 24, 2360-2368. https://doi.org/10.1021/acs.nanolett.3c04828
|
[23]
|
Guan, X.T., Zhao, J.R., et al. (2024) CRISPR/Cas12A and Aptamer-Chemiluminescence Based Analysis for the Relative Abundance Determination of Tumor-Related Protein Positive Exosomes for Breast Cancer Diagnosis. Biosensors and Bioelectronics, 259, Article 116380.
|
[24]
|
Guan, L., Peng, J., Liu, T., Huang, S., Yang, Y., Wang, X., et al. (2023) Ultrasensitive Mirna Detection Based on Magnetic Upconversion Nanoparticle Enhancement and CRISPR/Cas13A-Driven Signal Amplification. Analytical Chemistry, 95, 17708-17715. https://doi.org/10.1021/acs.analchem.3c03554
|
[25]
|
Zhang, Y., Wei, X., Teng, X. and Chen, G. (2023) P53 Aberration and TFE3 Gene Amplification May Be Predictors of Adverse Prognosis in Epithelioid Angiomyolipoma of the Kidney. Diagnostic Pathology, 18, Article No. 14. https://doi.org/10.1186/s13000-023-01298-9
|
[26]
|
Wang, T., Ding, K., Wang, X., Wang, Z., Liu, G., Zang, Y., et al. (2024) Dual Amplification Dynamic DNA Network System for CRISPR/Cas12A Based P53 Gene Detection. Analytica Chimica Acta, 1321, Article 343048. https://doi.org/10.1016/j.aca.2024.343048
|
[27]
|
Zhang, H., Gao, H., Mu, W., Que, L., Gu, X., Rong, S., et al. (2024) Electrochemical-Fluorescent Bimodal Biosensor Based on Dual CRISPR-Cas12A Multiple Cascade Amplification for ctDNA Detection. Analytical Chemistry, 34, 14028-14035. https://doi.org/10.1021/acs.analchem.4c03012
|
[28]
|
Martinez, S., Wu, S., Geuenich, M., Malik, A., Weber, R., Woo, T., et al. (2024) In Vivo CRISPR Screens Reveal SCAF1 and USP15 as Drivers of Pancreatic Cancer. Nature Communications, 15, Article No. 5266. https://doi.org/10.1038/s41467-024-49450-3
|
[29]
|
Alayoubi, A.M., Khawaji, Z.Y., Mohammed, M.A. and Mercier, F.E. (2023) CRISPR-Cas9 System: A Novel and Promising Era of Genotherapy for Beta-Hemoglobinopathies, Hematological Malignancy, and Hemophilia. Annals of Hematology, 103, 1805-1817. https://doi.org/10.1007/s00277-023-05457-2
|
[30]
|
Boumelha, J., de Castro, A., Bah, N., Cha, H., de Carné Trécesson, S., Rana, S., et al. (2024) CRISPR-Cas9 Screening Identifies KRAS-Induced COX2 as a Driver of Immunotherapy Resistance in Lung Cancer. Cancer Research, 84, 2231-2246. https://doi.org/10.1158/0008-5472.can-23-2627
|
[31]
|
Barkley, D., Rao, A., Pour, M., França, G.S. and Yanai, I. (2021) Cancer Cell States and Emergent Properties of the Dynamic Tumor System. Genome Research, 31, 1719-1727. https://doi.org/10.1101/gr.275308.121
|
[32]
|
Guo, T., Chen, G., Li, X., Wang, M., Liu, K., Yang, X., et al. (2023) Small Extrachromosomal Circular DNA Harboring Targeted Tumor Suppressor Gene Mutations Supports Intratumor Heterogeneity in Mouse Liver Cancer Induced by Multiplexed CRISPR/Cas9. Genome Medicine, 15, Article No. 80. https://doi.org/10.1186/s13073-023-01230-2
|
[33]
|
Wu, M., Zhang, T., Gao, C., Zhao, T., Wang, L. and Sun, G. (2024) Assessing of Case-Cohort Design: A Case Study for Breast Cancer Patients in Xinjiang, China. Frontiers in Oncology, 14, Article 1306255. https://doi.org/10.3389/fonc.2024.1306255
|
[34]
|
Chamberlain, C.A., Bennett, E.P., Kverneland, A.H., Svane, I.M., Donia, M. and Met, Ö. (2022) Highly Efficient Pd-1-Targeted CRISPR-Cas9 for Tumor-Infiltrating Lymphocyte-Based Adoptive T Cell Therapy. Molecular Therapy Oncolytics, 24, 417-428.
|
[35]
|
Pandey, S., Lee, M., Lim, J., Park, S., Choung, Y., Kim, J.E., et al. (2023) SMO-CRISPR-Mediated Apoptosis in CD133-Targeted Cancer Stem Cells and Tumor Growth Inhibition. Journal of Controlled Release, 357, 94-108. https://doi.org/10.1016/j.jconrel.2023.03.023
|
[36]
|
Wang, L., Liu, C., Wang, X., Ma, S., Liu, F., Zhang, Y., et al. (2023) Tumor-Specific Activated Nano-Domino-CRISPR to Amplify Intrinsic Oxidative and Activate Endogenous Apoptosis for Spatiotemporally Specific Therapy. Biomaterials, 295, Article 122056. https://doi.org/10.1016/j.biomaterials.2023.122056
|
[37]
|
Wang, S., Gao, C., Zheng, Y., Yi, L., Lu, J., Huang, X., et al. (2022) Current Applications and Future Perspective of CRISPR/Cas9 Gene Editing in Cancer. Molecular Cancer, 21, Article No. 57. https://doi.org/10.1186/s12943-022-01518-8
|
[38]
|
Morton, L.T., Reijmers, R.M., Wouters, A.K., Kweekel, C., Remst, D.F.G., Pothast, C.R., et al. (2020) Simultaneous Deletion of Endogenous Tcrαβ for TCR Gene Therapy Creates an Improved and Safe Cellular Therapeutic. Molecular Therapy, 28, 64-74. https://doi.org/10.1016/j.ymthe.2019.10.001
|
[39]
|
Stadtmauer, E.A., Fraietta, J.A., Davis, M.M., et al. (2020) CRISPR-Engineered T Cells in Patients with Refractory Cancer. Science, 367, eaba7365.
|
[40]
|
Nie, D., Guo, T., Yue, M., Li, W., Zong, X., Zhu, Y., et al. (2022) Research Progress on Nanoparticles-Based CRISPR/Cas9 System for Targeted Therapy of Tumors. Biomolecules, 12, Article 1239. https://doi.org/10.3390/biom12091239
|
[41]
|
He, C., Jaffar Ali, D., Li, Y., Zhu, Y., Sun, B. and Xiao, Z. (2020) Engineering of HN3 Increases the Tumor Targeting Specificity of Exosomes and Upgrade the Anti-Tumor Effect of Sorafenib on Huh-7 Cells. Peer Journal, 8, e9524. https://doi.org/10.7717/peerj.9524
|
[42]
|
Ye, Y., Zhang, X., Xie, F., Xu, B., Xie, P., Yang, T., et al. (2020) An Engineered Exosome for Delivering sgRNA: Cas9 Ribonucleoprotein Complex and Genome Editing in Recipient Cells. Biomaterials Science, 8, 2966-2976. https://doi.org/10.1039/d0bm00427h
|
[43]
|
Yu, D., Li, Y., Wang, M., Gu, J., Xu, W., Cai, H., et al. (2022) Exosomes as a New Frontier of Cancer Liquid Biopsy. Molecular Cancer, 21, Article No. 56. https://doi.org/10.1186/s12943-022-01509-9
|
[44]
|
Ipsen, M.B., Sørensen, E.M.G., Thomsen, E.A., Weiss, S., Haldrup, J., Dalby, A., et al. (2022) A Genome-Wide Crispr-Cas9 Knockout Screen Identifies Novel PARP Inhibitor Resistance Genes in Prostate Cancer. Oncogene, 41, 4271-4281. https://doi.org/10.1038/s41388-022-02427-2
|
[45]
|
Ludwig, M., Birkeland, A., Smith, J., et al. (2024) A Genome Wide CRISPR Profiling Approach Identifies Mechanisms of Cisplatin Resistance in Head and Neck Squamous Cell Carcinoma. https://www.researchsquare.com/article/rs-3922565/v1
|
[46]
|
Deng, L., Yang, L., Zhu, S., Li, M., Wang, Y., Cao, X., et al. (2023) Identifying CDC7 as a Synergistic Target of Chemotherapy in Resistant Small-Cell Lung Cancer via CRISPR/Cas9 Screening. Cell Death Discovery, 9, Article No. 40. https://doi.org/10.1038/s41420-023-01315-2
|
[47]
|
Fazeli, Z., Rajabibazl, M., Faramarzi, S., et al. (2021) Correlation of TCF4, GSK, TERT and TERC Expressions with Proliferation Potential of Early and Late Culture of Human Peripheral Blood Mesenchymal Stem Cells. Cell Journal (Yakhteh), 22, 431-436.
|
[48]
|
George, S.L., Lorenzi, F., King, D., Hartlieb, S., Campbell, J., Pemberton, H., et al. (2020) Therapeutic Vulnerabilities in the DNA Damage Response for the Treatment of ATRX Mutant Neuroblastoma. E Bio Medicine, 59, Article 102971. https://doi.org/10.1016/j.ebiom.2020.102971
|
[49]
|
Hansen, S.L., Larsen, H.L., Pikkupeura, L.M., Maciag, G., Guiu, J., Müller, I., et al. (2023) An Organoid-Based Crispr-Cas9 Screen for Regulators of Intestinal Epithelial Maturation and Cell Fate. Science Advances, 9, eadg4055. https://doi.org/10.1126/sciadv.adg4055
|
[50]
|
Knott, G.J. and Doudna, J.A. (2018) CRISPR Cas Guides the Future of Genetic Engineering. Science, 361, 866-869.
|
[51]
|
Kawamata, M., Suzuki, H.I., Kimura, R. and Suzuki, A. (2023) Optimization of Cas9 Activity through the Addition of Cytosine Extensions to Single-Guide RNAs. Nature Biomedical Engineering, 7, 672-691. https://doi.org/10.1038/s41551-023-01011-7
|
[52]
|
Zuo, Z., Babu, K., Ganguly, C., Zolekar, A., Newsom, S., Rajan, R., et al. (2022) Rational Engineering of CRISPR-Cas9 Nuclease to Attenuate Position-Dependent Off-Target Effects. The CRISPR Journal, 5, 329-340. https://doi.org/10.1089/crispr.2021.0076
|
[53]
|
Kitada, T., DiAndreth, B., Teague, B. and Weiss, R. (2018) Programming Gene and Engineered-Cell Therapies with Synthetic Biology. Science, 359, eaad1067. https://doi.org/10.1126/science.aad1067
|
[54]
|
Zheng, Y., Li, Y., Zhou, K., Li, T., VanDusen, N.J. and Hua, Y. (2024) Precise Genome-Editing in Human Diseases: Mechanisms, Strategies and Applications. Signal Transduction and Targeted Therapy, 9, Article No. 47. https://doi.org/10.1038/s41392-024-01750-2
|