[1]
|
Kong, X., Zhao, Z., Zhang, D., Xie, R., Sun, L., Zhao, H., et al. (2022) Major Osteoporosis Fracture Prediction in Type 2 Diabetes: A Derivation and Comparison Study. Osteoporosis International, 33, 1957-1967. https://doi.org/10.1007/s00198-022-06425-8
|
[2]
|
Weber, D.R., Haynes, K., Leonard, M.B., Willi, S.M. and Denburg, M.R. (2015) Type 1 Diabetes Is Associated with an Increased Risk of Fracture across the Life Span: A Population-Based Cohort Study Using the Health Improvement Network (Thin). Diabetes Care, 38, 1913-1920. https://doi.org/10.2337/dc15-0783
|
[3]
|
Vestergaard, P., Rejnmark, L. and Mosekilde, L. (2005) Relative Fracture Risk in Patients with Diabetes Mellitus, and the Impact of Insulin and Oral Antidiabetic Medication on Relative Fracture Risk. Diabetologia, 48, 1292-1299. https://doi.org/10.1007/s00125-005-1786-3
|
[4]
|
Bonds, D.E., Larson, J.C., Schwartz, A.V., Strotmeyer, E.S., Robbins, J., Rodriguez, B.L., et al. (2006) Risk of Fracture in Women with Type 2 Diabetes: The Women’s Health Initiative Observational Study. The Journal of Clinical Endocrinology & Metabolism, 91, 3404-3410. https://doi.org/10.1210/jc.2006-0614
|
[5]
|
Hans, D., Goertzen, A.L., Krieg, M. and Leslie, W.D. (2011) Bone Microarchitecture Assessed by TBS Predicts Osteoporotic Fractures Independent of Bone Density: The Manitoba Study. Journal of Bone and Mineral Research, 26, 2762-2769. https://doi.org/10.1002/jbmr.499
|
[6]
|
Valderrábano, R.J. and Linares, M.I. (2018) Diabetes Mellitus and Bone Health: Epidemiology, Etiology and Implications for Fracture Risk Stratification. Clinical Diabetes and Endocrinology, 4, Article No. 9. https://doi.org/10.1186/s40842-018-0060-9
|
[7]
|
Bai, J., Gao, Q., Wang, C. and Dai, J. (2019) Diabetes Mellitus and Risk of Low-Energy Fracture: A Meta-Analysis. Aging Clinical and Experimental Research, 32, 2173-2186. https://doi.org/10.1007/s40520-019-01417-x
|
[8]
|
Hamann, C., Kirschner, S., Günther, K. and Hofbauer, L.C. (2012) Bone, Sweet Bone—Osteoporotic Fractures in Diabetes Mellitus. Nature Reviews Endocrinology, 8, 297-305. https://doi.org/10.1038/nrendo.2011.233
|
[9]
|
Bełtowski, J., Wójcicka, G. and Jamroz-Wiśniewska, A. (2018) Hydrogen Sulfide in the Regulation of Insulin Secretion and Insulin Sensitivity: Implications for the Pathogenesis and Treatment of Diabetes Mellitus. Biochemical Pharmacology, 149, 60-76. https://doi.org/10.1016/j.bcp.2018.01.004
|
[10]
|
Gaudio, A., Privitera, F., Battaglia, K., Torrisi, V., Sidoti, M.H., Pulvirenti, I., et al. (2012) Sclerostin Levels Associated with Inhibition of the Wnt/β-Catenin Signaling and Reduced Bone Turnover in Type 2 Diabetes Mellitus. The Journal of Clinical Endocrinology & Metabolism, 97, 3744-3750. https://doi.org/10.1210/jc.2012-1901
|
[11]
|
Ivers, R.Q., Cumming, R.G., Mitchell, P. and Peduto, A.J. (2001) Diabetes and Risk of Fracture: The Blue Mountains Eye Study. Diabetes Care, 24, 1198-1203. https://doi.org/10.2337/diacare.24.7.1198
|
[12]
|
Melton, L.J., Leibson, C.L., Achenbach, S.J., Therneau, T.M. and Khosla, S. (2008) Fracture Risk in Type 2 Diabetes: Update of a Population-Based Study. Journal of Bone and Mineral Research, 23, 1334-1342. https://doi.org/10.1359/jbmr.080323
|
[13]
|
Kanis, J.A. (2008) Assessment of Osteoporosis at the Primary Health Care Level. World Health Organization Scientific Group. University of Sheffield, WHO Collaborating Centre for Metabolic Bone Diseases.
|
[14]
|
Li, C., Liu, C., Lin, W., Meng, N., Chen, C., Yang, S., et al. (2015) Journal of Bone and Mineral Research, 30, 1338-1346. https://doi.org/10.1002/jbmr.2462
|
[15]
|
Sarodnik, C., Bours, S.P.G., Schaper, N.C., van den Bergh, J.P. and van Geel, T.A.C.M. (2018) The Risks of Sarcopenia, Falls and Fractures in Patients with Type 2 Diabetes Mellitus. Maturitas, 109, 70-77. https://doi.org/10.1016/j.maturitas.2017.12.011
|
[16]
|
Kim, T.N., Park, M.S., Yang, S.J., Yoo, H.J., Kang, H.J., Song, W., et al. (2010) Prevalence and Determinant Factors of Sarcopenia in Patients with Type 2 Diabetes: The Korean Sarcopenic Obesity Study (KSOS). Diabetes Care, 33, 1497-1499. https://doi.org/10.2337/dc09-2310
|
[17]
|
Sriruanthong, K., Philawuth, N., Saloa, S., Daraphongsataporn, N. and Sucharitpongpan, W. (2022) Risk Factors of Refracture after a Fragility Fracture in Elderly. Archives of Osteoporosis, 17, Article No. 98. https://doi.org/10.1007/s11657-022-01143-4
|
[18]
|
Eller-Vainicher, C., Falchetti, A., Gennari, L., Cairoli, E., Bertoldo, F., Vescini, F., et al. (2019) Diagnosis of Endocrine Disease: Evaluation of Bone Fragility in Endocrine Disorders. European Journal of Endocrinology, 180, R213-R232. https://doi.org/10.1530/eje-18-0991
|
[19]
|
Hough, F.S., Pierroz, D.D., Cooper, C., Ferrari, S.L. (2016) Mechanisms in Endocrinology: Mechanisms and Evaluation of Bone Fragility in Type 1 Diabetes Mellitus. European Journal of Endocrinology, 174, R127-R138. https://doi.org/10.1530/eje-15-0820
|
[20]
|
Kanis, J.A., Cooper, C., Rizzoli, R. and Reginster, J. (2018) European Guidance for the Diagnosis and Management of Osteoporosis in Postmenopausal Women. Osteoporosis International, 30, 3-44. https://doi.org/10.1007/s00198-018-4704-5
|
[21]
|
Popp, A.W., Meer, S., Krieg, M., Perrelet, R., Hans, D. and Lippuner, K. (2015) Bone Mineral Density (BMD) and Vertebral Trabecular Bone Score (TBS) for the Identification of Elderly Women at High Risk for Fracture: The SEMOF Cohort Study. European Spine Journal, 25, 3432-3438. https://doi.org/10.1007/s00586-015-4035-6
|
[22]
|
Ferrari, S.L., Abrahamsen, B., Napoli, N., Akesson, K., Chandran, M., Eastell, R., et al. (2018) Diagnosis and Management of Bone Fragility in Diabetes: An Emerging Challenge. Osteoporosis International, 29, 2585-2596. https://doi.org/10.1007/s00198-018-4650-2
|
[23]
|
Kanis, J.A., Johansson, H., Oden, A., Johnell, O., De Laet, C., Eisman, J.A., et al. (2004) A Family History of Fracture and Fracture Risk: A Meta-Analysis. Bone, 35, 1029-1037. https://doi.org/10.1016/j.bone.2004.06.017
|
[24]
|
Shah, V.N., Sippl, R., Joshee, P., Pyle, L., Kohrt, W.M., Schauer, I.E., et al. (2017) Trabecular Bone Quality Is Lower in Adults with Type 1 Diabetes and Is Negatively Associated with Insulin Resistance. Osteoporosis International, 29, 733-739. https://doi.org/10.1007/s00198-017-4353-0
|
[25]
|
Patsch, J.M., Burghardt, A.J., Yap, S.P., Baum, T., Schwartz, A.V., Joseph, G.B., et al. (2012) Increased Cortical Porosity in Type 2 Diabetic Postmenopausal Women with Fragility Fractures. Journal of Bone and Mineral Research, 28, 313-324. https://doi.org/10.1002/jbmr.1763
|
[26]
|
Jiang, N. and Xia, W. (2018) Assessment of Bone Quality in Patients with Diabetes Mellitus. Osteoporosis International, 29, 1721-1736. https://doi.org/10.1007/s00198-018-4532-7
|
[27]
|
Napoli, N., Chandran, M., Pierroz, D.D., Abrahamsen, B., Schwartz, A.V. and Ferrari, S.L. (2016) Mechanisms of Diabetes Mellitus-Induced Bone Fragility. Nature Reviews Endocrinology, 13, 208-219. https://doi.org/10.1038/nrendo.2016.153
|
[28]
|
Napoli, N., Strotmeyer, E.S., Ensrud, K.E., Sellmeyer, D.E., Bauer, D.C., Hoffman, A.R., et al. (2014) Fracture Risk in Diabetic Elderly Men: The Mros Study. Diabetologia, 57, 2057-2065. https://doi.org/10.1007/s00125-014-3289-6
|
[29]
|
Kostev, K., Pscherer, S., Rathmann, W. and Dippel, F. (2016) Fracture Risk in Patients with Type 2 Diabetes under Different Antidiabetic Treatment Regimens: A Retrospective Database Analysis in Primary Care. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 9, 17-23. https://doi.org/10.2147/dmso.s101370
|
[30]
|
Xue, X., Li, Z. and Zhao, M. (2022) Metformin and Lipopolysaccharide Regulate Transcription of NFATc2 Gene via the Transcription Factor RUNX2. Journal of Southern Medical University, 42, 425-431.
|
[31]
|
Komori, T. (2022) Whole Aspect of Runx2 Functions in Skeletal Development. International Journal of Molecular Sciences, 23, Article 5776. https://doi.org/10.3390/ijms23105776
|
[32]
|
Palermo, A., D’Onofrio, L., Eastell, R., Schwartz, A.V., Pozzilli, P. and Napoli, N. (2015) Oral Anti-Diabetic Drugs and Fracture Risk, Cut to the Bone: Safe or Dangerous? A Narrative Review. Osteoporosis International, 26, 2073-2089. https://doi.org/10.1007/s00198-015-3123-0
|
[33]
|
Napoli, N., Chandran, M., Pierroz, D.D., Abrahamsen, B., Schwartz, A.V. and Ferrari, S.L. (2016) Mechanisms of Diabetes Mellitus-Induced Bone Fragility. Nature Reviews Endocrinology, 13, 208-219. https://doi.org/10.1038/nrendo.2016.153
|
[34]
|
Ruanpeng, D., Ungprasert, P., Sangtian, J. and Harindhanavudhi, T. (2017) Sodium‐Glucose Cotransporter 2 (SGLT2) Inhibitors and Fracture Risk in Patients with Type 2 Diabetes Mellitus: A Meta‐Analysis. Diabetes/Metabolism Research and Reviews, 33, e2903. https://doi.org/10.1002/dmrr.2903
|
[35]
|
Watts, N.B., Bilezikian, J.P., Usiskin, K., Edwards, R., Desai, M., Law, G., et al. (2016) Effects of Canagliflozin on Fracture Risk in Patients with Type 2 Diabetes Mellitus. The Journal of Clinical Endocrinology & Metabolism, 101, 157-166. https://doi.org/10.1210/jc.2015-3167
|
[36]
|
Su, B., Sheng, H., Zhang, M., Bu, L., Yang, P., Li, L., et al. (2014) Risk of Bone Fractures Associated with Glucagon-Like Peptide-1 Receptor Agonists’ Treatment: A Meta-Analysis of Randomized Controlled Trials. Endocrine, 48, 107-115. https://doi.org/10.1007/s12020-014-0361-4
|
[37]
|
Mohsin, S., Baniyas, M.M., AlDarmaki, R.S., Tekes, K., Kalász, H. and Adeghate, E.A. (2019) An Update on Therapies for the Treatment of Diabetes-Induced Osteoporosis. Expert Opinion on Biological Therapy, 19, 937-948. https://doi.org/10.1080/14712598.2019.1618266
|
[38]
|
王露, 刘伟兵, 钟嘉伟, 廖翔, 徐王兵. 骨质疏松症药物治疗的现状和研究进展[J]. 中国现代医生, 2024, 62(27): 124-128.
|
[39]
|
Lyu, H., Zhao, S.S., Zhang, L., Wei, J., Li, X., Li, H., et al. (2023) Denosumab and Incidence of Type 2 Diabetes among Adults with Osteoporosis: Population Based Cohort Study. BMJ, 381, e073435. https://doi.org/10.1136/bmj-2022-073435
|
[40]
|
Pagnotti, G.M., Styner, M., Uzer, G., Patel, V.S., Wright, L.E., Ness, K.K., et al. (2019) Combating Osteoporosis and Obesity with Exercise: Leveraging Cell Mechanosensitivity. Nature Reviews Endocrinology, 15, 339-355. https://doi.org/10.1038/s41574-019-0170-1
|