[1]
|
Hmada, Y.A., Bernieh, A., Morris, R.W., Lewin, J. and Allen, T. (2019) Chondroblastoma-Like Osteosarcoma. Archives of Pathology & Laboratory Medicine, 144, 15-17. https://doi.org/10.5858/arpa.2019-0191-ra
|
[2]
|
Anninga, J.K., Gelderblom, H., Fiocco, M., Kroep, J.R., Taminiau, A.H.M., Hogendoorn, P.C.W., et al. (2011) Chemotherapeutic Adjuvant Treatment for Osteosarcoma: Where Do We Stand? European Journal of Cancer, 47, 2431-2445. https://doi.org/10.1016/j.ejca.2011.05.030
|
[3]
|
Ritter, J. and Bielack, S.S. (2010) Osteosarcoma. Annals of Oncology, 21, vii320-vii325. https://doi.org/10.1093/annonc/mdq276
|
[4]
|
Song, X.J., Bi, M.C., Zhu, Q.S. and Liu, X.L. (2022) The Emerging Role of lncRNAs in the Regulation of Osteosarcoma Stem Cells. European Review for Medical and Pharmacological Sciences, 26, 966-974. https://doi.org/10.26355/eurrev_202202_28006
|
[5]
|
Li, B., Cao, Y., Sun, M. and Feng, H. (2021) Expression, Regulation, and Function of Exosome‐Derived miRNAs in Cancer Progression and Therapy. The FASEB Journal, 35, e21916. https://doi.org/10.1096/fj.202100294rr
|
[6]
|
Johnstone, R.M., Adam, M., Hammond, J.R., Orr, L. and Turbide, C. (1987) Vesicle Formation during Reticulocyte Maturation. Association of Plasma Membrane Activities with Released Vesicles (Exosomes). Journal of Biological Chemistry, 262, 9412-9420. https://doi.org/10.1016/s0021-9258(18)48095-7
|
[7]
|
Yue, B., Yang, H., Wang, J., Ru, W., Wu, J., Huang, Y., et al. (2020) Exosome Biogenesis, Secretion and Function of Exosomal miRNAs in Skeletal Muscle Myogenesis. Cell Proliferation, 53, e12857. https://doi.org/10.1111/cpr.12857
|
[8]
|
曾昭穆, 温稀超, 张雨豪, 等. 外泌体介导miRNAs在脑胶质瘤治疗中的作用与应用[J]. 中国组织工程研究, 2020, 24(25): 4073-4080.
|
[9]
|
Pegtel, D.M. and Gould, S.J. (2019) Exosomes. Annual Review of Biochemistry, 88, 487-514. https://doi.org/10.1146/annurev-biochem-013118-111902
|
[10]
|
Han, Q., Li, W., Hu, K., Gao, J., Zhai, W., Yang, J., et al. (2022) Exosome Biogenesis: Machinery, Regulation, and Therapeutic Implications in Cancer. Molecular Cancer, 21, Article No. 207. https://doi.org/10.1186/s12943-022-01671-0
|
[11]
|
Kalluri, R. (2016) The Biology and Function of Exosomes in Cancer. Journal of Clinical Investigation, 126, 1208-1215. https://doi.org/10.1172/jci81135
|
[12]
|
Chen, C., Xie, L., Ren, T., Huang, Y., Xu, J. and Guo, W. (2021) Immunotherapy for Osteosarcoma: Fundamental Mechanism, Rationale, and Recent Breakthroughs. Cancer Letters, 500, 1-10. https://doi.org/10.1016/j.canlet.2020.12.024
|
[13]
|
Assil, S., Webster, B. and Dreux, M. (2015) Regulation of the Host Antiviral State by Intercellular Communications. Viruses, 7, 4707-4733. https://doi.org/10.3390/v7082840
|
[14]
|
Isaac, R., Reis, F.C.G., Ying, W. and Olefsky, J.M. (2021) Exosomes as Mediators of Intercellular Crosstalk in Metabolism. Cell Metabolism, 33, 1744-1762. https://doi.org/10.1016/j.cmet.2021.08.006
|
[15]
|
Hill, M. and Tran, N. (2021) MiRNA Interplay: Mechanisms and Consequences in Cancer. Disease Models & Mechanisms, 14, dmm047662. https://doi.org/10.1242/dmm.047662
|
[16]
|
Zuntini, M., Salvatore, M., Pedrini, E., Parra, A., Sgariglia, F., Magrelli, A., et al. (2010) MicroRNA Profiling of Multiple Osteochondromas: Identification of Disease‐Specific and Normal Cartilage Signatures. Clinical Genetics, 78, 507-516. https://doi.org/10.1111/j.1399-0004.2010.01490.x
|
[17]
|
Naseri, M., Bozorgmehr, M., Zöller, M., Ranaei Pirmardan, E. and Madjd, Z. (2020) Tumor-Derived Exosomes: The Next Generation of Promising Cell-Free Vaccines in Cancer Immunotherapy. OncoImmunology, 9, Article 1779991. https://doi.org/10.1080/2162402x.2020.1779991
|
[18]
|
Hosseinikhah, S.M., Gheybi, F., Moosavian, S.A., Shahbazi, M., Jaafari, M.R., Sillanpää, M., et al. (2022) Role of Exosomes in Tumour Growth, Chemoresistance and Immunity: State-of-the-Art. Journal of Drug Targeting, 31, 32-50. https://doi.org/10.1080/1061186x.2022.2114000
|
[19]
|
Wu, Z., Yin, H., Liu, T., Yan, W., Li, Z., Chen, J., et al. (2014) MiR-126-5p Regulates Osteoclast Differentiation and Bone Resorption in Giant Cell Tumor through Inhibition of MMP-13. Biochemical and Biophysical Research Communications, 443, 944-949. https://doi.org/10.1016/j.bbrc.2013.12.075
|
[20]
|
Lin, W., Fang, J., Wei, S., He, G., Liu, J., Li, X., et al. (2023) Extracellular Vesicle-Cell Adhesion Molecules in Tumours: Biofunctions and Clinical Applications. Cell Communication and Signaling, 21, Article No. 246. https://doi.org/10.1186/s12964-023-01236-8
|
[21]
|
Maleki, M., Golchin, A., Javadi, S., Khelghati, N., Morovat, P., Asemi, Z., et al. (2021) Role of Exosomal miRNA in Chemotherapy Resistance of Colorectal Cancer: A Systematic Review. Chemical Biology & Drug Design, 101, 1096-1112. https://doi.org/10.1111/cbdd.13947
|
[22]
|
Raimondi, L., De Luca, A., Gallo, A., Costa, V., Russelli, G., Cuscino, N., et al. (2019) Osteosarcoma Cell-Derived Exosomes Affect Tumor Microenvironment by Specific Packaging of MicroRNAs. Carcinogenesis, 41, 666-677. https://doi.org/10.1093/carcin/bgz130
|
[23]
|
Wu, X., Zhou, H., Yue, B., Li, M., Liu, F., Qiu, C., et al. (2017) Upregulation of MicroRNA-25-3p Inhibits Proliferation, Migration and Invasion of Osteosarcoma Cells in vitro by Directly Targeting SOX4. Molecular Medicine Reports, 16, 4293-4300. https://doi.org/10.3892/mmr.2017.7103
|
[24]
|
翁宗琴, 赵海龙. 外泌体miRNA参与肿瘤化疗耐药的机制[J]. 中国组织工程研究, 2025, 29(7): 1504-1511.
|
[25]
|
Jiang, D., Wu, X., Sun, X., Tan, W., Dai, X., Xie, Y., et al. (2022) Bone Mesenchymal Stem Cell-Derived Exosomal MicroRNA-7-5p Inhibits Progression of Acute Myeloid Leukemia by Targeting OSBPL11. Journal of Nanobiotechnology, 20, Article No. 29. https://doi.org/10.1186/s12951-021-01206-7
|
[26]
|
Qin, F., Tang, H., Zhang, Y., Zhang, Z., Huang, P. and Zhu, J. (2019) Bone Marrow‐Derived Mesenchymal Stem Cell‐Derived Exosomal microRNA‐208a Promotes Osteosarcoma Cell Proliferation, Migration, and Invasion. Journal of Cellular Physiology, 235, 4734-4745. https://doi.org/10.1002/jcp.29351
|
[27]
|
Wei, F., Ma, C., Zhou, T., Dong, X., Luo, Q., Geng, L., et al. (2021) Correction to: Exosomes Derived from Gemcitabine Resistant Cells Transfer Malignant Phenotypic Traits via Delivery of MiRNA-222-3p. Molecular Cancer, 20, Article No. 35. https://doi.org/10.1186/s12943-021-01320-y
|
[28]
|
Ma, Y., Yuwen, D., Chen, J., Zheng, B., Gao, J., Fan, M., et al. (2019) Exosomal Transfer of Cisplatin-Induced MiR-425-3p Confers Cisplatin Resistance in NSCLC through Activating Autophagy. International Journal of Nanomedicine, 14, 8121-8132. https://doi.org/10.2147/ijn.s221383
|
[29]
|
Torreggiani, E., Roncuzzi, L., Perut, F., Zini, N. and Baldini, N. (2016) Multimodal Transfer of MDR by Exosomes in Human Osteosarcoma. International Journal of Oncology, 49, 189-196. https://doi.org/10.3892/ijo.2016.3509
|
[30]
|
Xu, J., Wang, Y., Zhang, S., Chen, Y., Gu, H., Dou, X., et al. (2017) Exosomes Containing Differential Expression of MicroRNA and mRNA in Osteosarcoma That Can Predict Response to Chemotherapy. Oncotarget, 8, 75968-75978. https://doi.org/10.18632/oncotarget.18373
|
[31]
|
Ye, Z., Zheng, Z. and Peng, L. (2020) MicroRNA Profiling of Serum Exosomes in Patients with Osteosarcoma by High-Throughput Sequencing. Journal of Investigative Medicine, 68, 893-901. https://doi.org/10.1136/jim-2019-001196
|
[32]
|
Xie, F., Zhou, X., Fang, M., Li, H., Su, P., Tu, Y., et al. (2019) Extracellular Vesicles in Cancer Immune Microenvironment and Cancer Immunotherapy. Advanced Science, 6, Article 1901779. https://doi.org/10.1002/advs.201901779
|
[33]
|
肖敏, 华东, 刘永萍. 肿瘤外泌体疫苗的研究进展[J/OL]. 现代肿瘤医学, 1-8. http://kns.cnki.net/kcms/detail/61.1415.R.20241111.1605.010.html, 2024-11-23.
|
[34]
|
Shimbo, K., Miyaki, S., Ishitobi, H., Kato, Y., Kubo, T., Shimose, S., et al. (2014) Exosome-Formed Synthetic MicroRNA-143 Is Transferred to Osteosarcoma Cells and Inhibits Their Migration. Biochemical and Biophysical Research Communications, 445, 381-387. https://doi.org/10.1016/j.bbrc.2014.02.007
|
[35]
|
Vandewalle, V., Essaghir, A., Bollaert, E., Lenglez, S., Graux, C., Schoemans, H., et al. (2020) MiR‐15a‐5p and miR‐21‐5p Contribute to Chemoresistance in Cytogenetically Normal Acute Myeloid Leukaemia by Targeting PDCD4, ARL2 and BTG2. Journal of Cellular and Molecular Medicine, 25, 575-585. https://doi.org/10.1111/jcmm.16110
|