[1]
|
Nordestgaard, B.G. and Varbo, A. (2014) Triglycerides and Cardiovascular Disease. The Lancet, 384, 626-635. https://doi.org/10.1016/s0140-6736(14)61177-6
|
[2]
|
Nordestgaard, B.G. (2016) Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease: New Insights from Epidemiology, Genetics, and Biology. Circulation Research, 118, 547-563. https://doi.org/10.1161/circresaha.115.306249
|
[3]
|
Duran, E.K. and Pradhan, A.D. (2020) Triglyceride-Rich Lipoprotein Remnants and Cardiovascular Disease. Clinical Chemistry, 67, 183-196. https://doi.org/10.1093/clinchem/hvaa296
|
[4]
|
Ginsberg, H.N., Packard, C.J., Chapman, M.J., Borén, J., Aguilar-Salinas, C.A., Averna, M., et al. (2021) Triglyceride-rich Lipoproteins and Their Remnants: Metabolic Insights, Role in Atherosclerotic Cardiovascular Disease, and Emerging Therapeutic Strategies—A Consensus Statement from the European Atherosclerosis Society. European Heart Journal, 42, 4791-4806. https://doi.org/10.1093/eurheartj/ehab551
|
[5]
|
Chait, A., Ginsberg, H.N., Vaisar, T., Heinecke, J.W., Goldberg, I.J. and Bornfeldt, K.E. (2020) Remnants of the Triglyceride-Rich Lipoproteins, Diabetes, and Cardiovascular Disease. Diabetes, 69, 508-516. https://doi.org/10.2337/dbi19-0007
|
[6]
|
Miller, Y.I., Choi, S., Fang, L. and Tsimikas, S. (2010) Lipoprotein Modification and Macrophage Uptake: Role of Pathologic Cholesterol Transport in Atherogenesis. In: Harris, J., Ed., Cholesterol Binding and Cholesterol Transport Proteins: Subcellular Biochemistry, Springer, 229-251. https://doi.org/10.1007/978-90-481-8622-8_8
|
[7]
|
Olufadi, R. and Byrne, C.D. (2006) Effects of VLDL and Remnant Particles on Platelets. Pathophysiology of Haemostasis and Thrombosis, 35, 281-291. https://doi.org/10.1159/000093221
|
[8]
|
Varbo, A. and Nordestgaard, B.G. (2021) Directly Measured Vs. Calculated Remnant Cholesterol Identifies Additional Overlooked Individuals in the General Population at Higher Risk of Myocardial Infarction. European Heart Journal, 42, 4833-4843. https://doi.org/10.1093/eurheartj/ehab293
|
[9]
|
Cao, Y., Zhang, H., Jin, J., Liu, H., Zhang, Y., Gao, Y., et al. (2020) The Longitudinal Association of Remnant Cholesterol with Cardiovascular Outcomes in Patients with Diabetes and Pre-Diabetes. Cardiovascular Diabetology, 19, Article No. 104. https://doi.org/10.1186/s12933-020-01076-7
|
[10]
|
Martin, S.S., Blaha, M.J., Elshazly, M.B., Brinton, E.A., Toth, P.P., McEvoy, J.W., et al. (2013) Friedewald-Estimated versus Directly Measured Low-Density Lipoprotein Cholesterol and Treatment Implications. Journal of the American College of Cardiology, 62, 732-739. https://doi.org/10.1016/j.jacc.2013.01.079
|
[11]
|
Martin, S.S., Blaha, M.J., Elshazly, M.B., Toth, P.P., Kwiterovich, P.O., Blumenthal, R.S., et al. (2013) Comparison of a Novel Method vs the Friedewald Equation for Estimating Low-Density Lipoprotein Cholesterol Levels from the Standard Lipid Profile. JAMA, 310, 2061-2068. https://doi.org/10.1001/jama.2013.280532
|
[12]
|
Jepsen, A.K., Langsted, A., Varbo, A., Bang, L.E., Kamstrup, P.R. and Nordestgaard, B.G. (2016) Increased Remnant Cholesterol Explains Part of Residual Risk of All-Cause Mortality in 5414 Patients with Ischemic Heart Disease. Clinical Chemistry, 62, 593-604. https://doi.org/10.1373/clinchem.2015.253757
|
[13]
|
Masuda, D. and Yamashita, S. (2017) Postprandial Hyperlipidemia and Remnant Lipoproteins. Journal of Atherosclerosis and Thrombosis, 24, 95-109. https://doi.org/10.5551/jat.rv16003
|
[14]
|
Lupton, J.R., Faridi, K.F., Martin, S.S., Sharma, S., Kulkarni, K., Jones, S.R., et al. (2016) Deficient Serum 25-Hydroxyvitamin D Is Associated with an Atherogenic Lipid Profile: The Very Large Database of Lipids (VLDL-3) Study. Journal of Clinical Lipidology, 10, 72-81.e1. https://doi.org/10.1016/j.jacl.2015.09.006
|
[15]
|
Jepsen, A.K., Langsted, A., Varbo, A., Bang, L.E., Kamstrup, P.R. and Nordestgaard, B.G. (2016) Increased Remnant Cholesterol Explains Part of Residual Risk of All-Cause Mortality in 5414 Patients with Ischemic Heart Disease. Clinical Chemistry, 62, 593-604. https://doi.org/10.1373/clinchem.2015.253757
|
[16]
|
Navarese, E.P., Vine, D., Proctor, S., Grzelakowska, K., Berti, S., Kubica, J., et al. (2023) Independent Causal Effect of Remnant Cholesterol on Atherosclerotic Cardiovascular Outcomes: A Mendelian Randomization Study. Arteriosclerosis, Thrombosis, and Vascular Biology, 43, e373-e380. https://doi.org/10.1161/atvbaha.123.319297
|
[17]
|
Han, M.H., et al. (2024) Discordant High Remnant Cholesterol with LDL-C Increases the Risk of Stroke: A Chinese Prospective Cohort Study. Stroke, 55, 2066-2074.
|
[18]
|
Elshazly, M.B., Mani, P., Nissen, S., Brennan, D.M., Clark, D., Martin, S., et al. (2019) Remnant Cholesterol, Coronary Atheroma Progression and Clinical Events in Statin-Treated Patients with Coronary Artery Disease. European Journal of Preventive Cardiology, 27, 1091-1100. https://doi.org/10.1177/2047487319887578
|
[19]
|
Hinton, J., Mariathas, M.N., Gabara, L., Allan, R., Nicholas, Z., Kwok, C.S., et al. (2023) Association between Troponin Level and Medium-Term Mortality in 20 000 Hospital Patients. Heart, 109, 1772-1777. https://doi.org/10.1136/heartjnl-2023-322463
|
[20]
|
Castañer, O., Pintó, X., Subirana, I., Amor, A.J., Ros, E., Hernáez, Á., et al. (2020) Remnant Cholesterol, Not LDL Cholesterol, Is Associated with Incident Cardiovascular Disease. Journal of the American College of Cardiology, 76, 2712-2724. https://doi.org/10.1016/j.jacc.2020.10.008
|
[21]
|
Xiao, Z.W., et al. (2023) Cumulative Remnant Cholesterol Predicts Cardiovascular Outcomes in Elderly Patients with Atherosclerotic Cardiovascular Disease. European Journal of Preventive Cardiology, 30, 1924-1934.
|
[22]
|
Chapman, M.J., Ginsberg, H.N., Amarenco, P., Andreotti, F., Borén, J., Catapano, A.L., et al. (2011) Triglyceride-Rich Lipoproteins and High-Density Lipoprotein Cholesterol in Patients at High Risk of Cardiovascular Disease: Evidence and Guidance for Management. European Heart Journal, 32, 1345-1361. https://doi.org/10.1093/eurheartj/ehr112
|
[23]
|
Wang, X., Wu, X., Lu, Y., Sun, Y., Zhu, H., Liang, J., et al. (2017) Potential Involvement of Mir-30e-3p in Myocardial Injury Induced by Coronary Microembolization via Autophagy Activation. Cellular Physiology and Biochemistry, 44, 1995-2004. https://doi.org/10.1159/000485905
|
[24]
|
Würtz, P., Wang, Q., Soininen, P., Kangas, A.J., Fatemifar, G., Tynkkynen, T., et al. (2016) Metabolomic Profiling of Statin Use and Genetic Inhibition of HMG-COA Reductase. Journal of the American College of Cardiology, 67, 1200-1210. https://doi.org/10.1016/j.jacc.2015.12.060
|
[25]
|
Kofink, D., Eppinga, R.N., van Gilst, W.H., Bakker, S.J.L., Dullaart, R.P.F., van der Harst, P., et al. (2017) Statin Effects on Metabolic Profiles: Data from the PREVEND IT (Prevention of Renal and Vascular End-Stage Disease Intervention Trial). Circulation: Cardiovascular Genetics, 10, e001759. https://doi.org/10.1161/circgenetics.117.001759
|
[26]
|
Miller, P.E., Martin, S.S., Joshi, P.H., Jones, S.R., Massaro, J.M., D’Agostino, R.B., et al. (2016) Pitavastatin 4 Mg Provides Significantly Greater Reduction in Remnant Lipoprotein Cholesterol Compared with Pravastatin 40 Mg: Results from the Short-Term Phase IV PREVAIL US Trial in Patients with Primary Hyperlipidemia or Mixed Dyslipidemia. Clinical Therapeutics, 38, 603-609. https://doi.org/10.1016/j.clinthera.2016.02.001
|
[27]
|
Tsunoda, F., Asztalos, I.B., Horvath, K.V., Steiner, G., Schaefer, E.J. and Asztalos, B.F. (2016) Fenofibrate, HDL, and Cardiovascular Disease in Type-2 Diabetes: The DAIS Trial. Atherosclerosis, 247, 35-39. https://doi.org/10.1016/j.atherosclerosis.2016.01.028
|
[28]
|
Bhatt, D.L., Steg, P.G., Miller, M., Brinton, E.A., Jacobson, T.A., Ketchum, S.B., et al. (2019) Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. New England Journal of Medicine, 380, 11-22. https://doi.org/10.1056/nejmoa1812792
|
[29]
|
Wang, J., Feng, Q., Liang, D. and Shi, J. (2021) miRNA-26a Inhibits Myocardial Infarction-Induced Apoptosis by Targeting PTEN via JAK/STAT Pathways. Cells & Development, 165, Article ID: 203661. https://doi.org/10.1016/j.cdev.2021.203661
|
[30]
|
曹岩, 颜培实. 残余胆固醇与动脉粥样硬化性心血管疾病[J]. 心血管病学进展, 2021, 42(10): 920-923.
|
[31]
|
Paik, J. and Duggan, S. (2019) Volanesorsen: First Global Approval. Drugs, 79, 1349-1354. https://doi.org/10.1007/s40265-019-01168-z
|
[32]
|
Prohaska, T.A., Alexander, V.J., Karwatowska-Prokopczuk, E., Tami, J., Xia, S., Witztum, J.L., et al. (2023) APOC3 Inhibition with Volanesorsen Reduces Hepatic Steatosis in Patients with Severe Hypertriglyceridemia. Journal of Clinical Lipidology, 17, 406-411. https://doi.org/10.1016/j.jacl.2023.04.007
|
[33]
|
王新鑫, 董彬. 残余胆固醇与动脉粥样硬化性心血管疾病风险的研究[J]. 心脑血管病防治, 2024, 24(3): 36-39.
|