[1]
|
Meyer, N.J., Gattinoni, L. and Calfee, C.S. (2021) Acute Respiratory Distress Syndrome. The Lancet, 398, 622-637. https://doi.org/10.1016/s0140-6736(21)00439-6
|
[2]
|
Ten, V.S. and Ratner, V. (2020) Mitochondrial Bioenergetics and Pulmonary Dysfunction: Current Progress and Future Directions. Paediatric Respiratory Reviews, 34, 37-45. https://doi.org/10.1016/j.prrv.2019.04.001
|
[3]
|
Cen, M., Ouyang, W., Zhang, W., Yang, L., Lin, X., Dai, M., et al. (2021) MitoQ Protects against Hyperpermeability of Endothelium Barrier in Acute Lung Injury via a Nrf2-Dependent Mechanism. Redox Biology, 41, Article ID: 101936. https://doi.org/10.1016/j.redox.2021.101936
|
[4]
|
Eldeeb, M.A., Thomas, R.A., Ragheb, M.A., Fallahi, A. and Fon, E.A. (2022) Mitochondrial Quality Control in Health and in Parkinson’s Disease. Physiological Reviews, 102, 1721-1755. https://doi.org/10.1152/physrev.00041.2021
|
[5]
|
An, H., Zhou, B. and Ji, X. (2021) Mitochondrial Quality Control in Acute Ischemic Stroke. Journal of Cerebral Blood Flow & Metabolism, 41, 3157-3170. https://doi.org/10.1177/0271678x211046992
|
[6]
|
Chang, X., Li, Y., Cai, C., Wu, F., He, J., Zhang, Y., et al. (2022) Mitochondrial Quality Control Mechanisms as Molecular Targets in Diabetic Heart. Metabolism, 137, Article ID: 155313. https://doi.org/10.1016/j.metabol.2022.155313
|
[7]
|
Li, N., Liu, B., Xiong, R., Li, G., Wang, B. and Geng, Q. (2023) HDAC3 Deficiency Protects against Acute Lung Injury by Maintaining Epithelial Barrier Integrity through Preserving Mitochondrial Quality Control. Redox Biology, 63, Article ID: 102746. https://doi.org/10.1016/j.redox.2023.102746
|
[8]
|
Shi, J., Yu, J., Zhang, Y., Wu, L., Dong, S., Wu, L., et al. (2019) PI3K/Akt Pathway-Mediated HO-1 Induction Regulates Mitochondrial Quality Control and Attenuates Endotoxin-Induced Acute Lung Injury. Laboratory Investigation, 99, 1795-1809. https://doi.org/10.1038/s41374-019-0286-x
|
[9]
|
Wu, D., Zhang, H., Li, F., Liu, S., Wang, Y., Zhang, Z., et al. (2024) Resveratrol Alleviates Acute Lung Injury in Mice by Promoting Pink1/Parkin-Related Mitophagy and Inhibiting NLRP3 Inflammasome Activation. Biochimica et Biophysica Acta (BBA)—General Subjects, 1868, Article ID: 130612. https://doi.org/10.1016/j.bbagen.2024.130612
|
[10]
|
Wu, D., Zhang, H., Wu, Q., Li, F., Wang, Y., Liu, S., et al. (2021) Sestrin 2 Protects against LPS-Induced Acute Lung Injury by Inducing Mitophagy in Alveolar Macrophages. Life Sciences, 267, Article ID: 118941. https://doi.org/10.1016/j.lfs.2020.118941
|
[11]
|
Mai, J., He, Q., Liu, Y. and Hou, Y. (2023) Hyperoside Attenuates Sepsis-Induced Acute Lung Injury (ALI) through Autophagy Regulation and Inflammation Suppression. Mediators of Inflammation, 2023, Article ID: 1257615. https://doi.org/10.1155/2023/1257615
|
[12]
|
Lu, Y., Li, Z., Zhang, S., Zhang, T., Liu, Y. and Zhang, L. (2023) Cellular Mitophagy: Mechanism, Roles in Diseases and Small Molecule Pharmacological Regulation. Theranostics, 13, 736-766. https://doi.org/10.7150/thno.79876
|
[13]
|
Handschin, C. (2009) The Biology of Pgc-1α and Its Therapeutic Potential. Trends in Pharmacological Sciences, 30, 322-329. https://doi.org/10.1016/j.tips.2009.03.006
|
[14]
|
Scarpulla, R.C. (2008) Transcriptional Paradigms in Mammalian Mitochondrial Biogenesis and Function. Physiological Reviews, 88, 611-638. https://doi.org/10.1152/physrev.00025.2007
|
[15]
|
Liu, L., Li, Y., Wang, J., Zhang, D., Wu, H., Li, W., et al. (2021) Mitophagy Receptor FUNDC1 Is Regulated by PGC‐1α/NRF1 to Fine Tune Mitochondrial Homeostasis. EMBO Reports, 22, e50629. https://doi.org/10.15252/embr.202050629
|
[16]
|
Dröge, W. (2002) Free Radicals in the Physiological Control of Cell Function. Physiological Reviews, 82, 47-95. https://doi.org/10.1152/physrev.00018.2001
|
[17]
|
Di, A., Mehta, D. and Malik, A.B. (2016) Ros-Activated Calcium Signaling Mechanisms Regulating Endothelial Barrier Function. Cell Calcium, 60, 163-171. https://doi.org/10.1016/j.ceca.2016.02.002
|
[18]
|
Zheng, L., Zhou, W., Wu, Y., Xu, W., Hu, S., Zhang, Y., et al. (2023) Melatonin Alleviates Acute Respiratory Distress Syndrome by Inhibiting Alveolar Macrophage NLRP3 Inflammasomes through the ROS/HIF-1α/GLUT1 Pathway. Laboratory Investigation, 103, Article ID: 100266. https://doi.org/10.1016/j.labinv.2023.100266
|
[19]
|
Long, G., Gong, R., Wang, Q., Zhang, D. and Huang, C. (2022) Role of Released Mitochondrial DNA in Acute Lung Injury. Frontiers in Immunology, 13, Article 973089. https://doi.org/10.3389/fimmu.2022.973089
|
[20]
|
Zhan, X., Cui, R., Geng, X., Li, J., Zhou, Y., He, L., et al. (2021) LPS-Induced Mitochondrial DNA Synthesis and Release Facilitate RAD50-Dependent Acute Lung Injury. Signal Transduction and Targeted Therapy, 6, Article No. 103. https://doi.org/10.1038/s41392-021-00494-7
|
[21]
|
Xiao, Z., Jia, B., Zhao, X., Bi, S. and Meng, W. (2018) Attenuation of Lipopolysaccharide-Induced Acute Lung Injury by Cyclosporine-A via Suppression of Mitochondrial DNA. Medical Science Monitor, 24, 7682-7688. https://doi.org/10.12659/msm.909909
|
[22]
|
Xian, H., Watari, K., Sanchez-Lopez, E., Offenberger, J., Onyuru, J., Sampath, H., et al. (2022) Oxidized DNA Fragments Exit Mitochondria via mPTP-and VDAC-Dependent Channels to Activate NLRP3 Inflammasome and Interferon Signaling. Immunity, 55, 1370-1385.e8. https://doi.org/10.1016/j.immuni.2022.06.007
|
[23]
|
Cabral, A., Cabral, J.E., Wang, A., Zhang, Y., Liang, H., Nikbakht, D., et al. (2023) Differential Binding of NLRP3 to Non-Oxidized and Ox-mtDNA Mediates NLRP3 Inflammasome Activation. Communications Biology, 6, Article No. 578. https://doi.org/10.1038/s42003-023-04817-y
|
[24]
|
Ward, G.A., McGraw, K., McLemore, A.F., Lam, N.B., Hou, H., Meyer, B.S., et al. (2019) Oxidized Mitochondrial DNA Engages TLR9 to Activate the NLRP3 Inflammasome in Myelodysplastic Syndromes. Blood, 134, 774. https://doi.org/10.1182/blood-2019-122358
|
[25]
|
Huang, B., Zhang, N., Qiu, X., Zeng, R., Wang, S., Hua, M., et al. (2024) Mitochondria-Targeted SkQ1 Nanoparticles for Dry Eye Disease: Inhibiting NLRP3 Inflammasome Activation by Preventing Mitochondrial DNA Oxidation. Journal of Controlled Release, 365, 1-15. https://doi.org/10.1016/j.jconrel.2023.11.021
|
[26]
|
Garbincius, J.F. and Elrod, J.W. (2022) Mitochondrial Calcium Exchange in Physiology and Disease. Physiological Reviews, 102, 893-992. https://doi.org/10.1152/physrev.00041.2020
|
[27]
|
Walkon, L.L., Strubbe-Rivera, J.O. and Bazil, J.N. (2022) Calcium Overload and Mitochondrial Metabolism. Biomolecules, 12, Article 1891. https://doi.org/10.3390/biom12121891
|
[28]
|
Islam, M.N., Gusarova, G.A., Das, S.R., Li, L., Monma, E., Anjaneyulu, M., et al. (2022) The Mitochondrial Calcium Uniporter of Pulmonary Type 2 Cells Determines Severity of Acute Lung Injury. Nature Communications, 13, Article No. 5837. https://doi.org/10.1038/s41467-022-33543-y
|
[29]
|
Hou, L., Zhang, J., Liu, Y., Fang, H., Liao, L., Wang, Z., et al. (2021) MitoQ Alleviates LPS-Mediated Acute Lung Injury through Regulating Nrf2/Drp1 Pathway. Free Radical Biology and Medicine, 165, 219-228. https://doi.org/10.1016/j.freeradbiomed.2021.01.045
|
[30]
|
Jiang, C., Zhang, J., Xie, H., Guan, H., Li, R., Chen, C., et al. (2022) Baicalein Suppresses Lipopolysaccharide-Induced Acute Lung Injury by Regulating Drp1-Dependent Mitochondrial Fission of Macrophages. Biomedicine & Pharmacotherapy, 145, Article ID: 112408. https://doi.org/10.1016/j.biopha.2021.112408
|
[31]
|
Song, K., Shi, J., Zhan, L., Gao, Q., Yang, J., Dong, S., et al. (2022) Dexmedetomidine Modulates Mitochondrial Dynamics to Protect against Endotoxin-Induced Lung Injury via the Protein Kinase C-α/Haem Oxygenase-1 Signalling Pathway. Biomarkers, 27, 159-168. https://doi.org/10.1080/1354750x.2021.2023219
|
[32]
|
Deng, S., Zhang, L., Mo, Y., Huang, Y., Li, W., Peng, Q., et al. (2020) Mdivi-1 Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting MAPKs, Oxidative Stress and Apoptosis. Pulmonary Pharmacology & Therapeutics, 62, Article ID: 101918. https://doi.org/10.1016/j.pupt.2020.101918
|
[33]
|
Li, L., Mu, Z., Liu, P., Wang, Y., Yang, F. and Han, X. (2021) Mdivi‐1 Alleviates Atopic Dermatitis through the Inhibition of NLRP3 Inflammasome. Experimental Dermatology, 30, 1734-1744. https://doi.org/10.1111/exd.14412
|
[34]
|
Jin, H., Zhao, Y., Yao, Y., Zhao, J., Luo, R., Fan, S., et al. (2023) Therapeutic Effects of Tea Polyphenol-Loaded Nanoparticles Coated with Platelet Membranes on LPS-Induced Lung Injury. Biomaterials Science, 11, 6223-6235. https://doi.org/10.1039/d3bm00802a
|
[35]
|
Li, Y., Guo, C., Chen, Q., Su, Y., Guo, H., Liu, R., et al. (2022) Improvement of Pneumonia by Curcumin-Loaded Bionanosystems Based on Platycodon grandiflorum Polysaccharides via Calming Cytokine Storm. International Journal of Biological Macromolecules, 202, 691-706. https://doi.org/10.1016/j.ijbiomac.2022.01.194
|
[36]
|
Laffey, J.G. and Matthay, M.A. (2017) Fifty Years of Research in ARDS. Cell-Based Therapy for Acute Respiratory Distress Syndrome. Biology and Potential Therapeutic Value. American Journal of Respiratory and Critical Care Medicine, 196, 266-273. https://doi.org/10.1164/rccm.201701-0107cp
|