|
[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231.
|
|
[3]
|
中国医师协会外科医师分会, 中华医学会外科分会胃肠外科学组, 中华医学会外科分会结直肠外科学组, 等. 中国结直肠癌肝转移诊断和综合治疗指南(V2023) [J]. 中华胃肠外科杂志, 2023, 26(1): 1-15.
|
|
[4]
|
Stewart, C.L., Warner, S., Ito, K., Raoof, M., Wu, G.X., Kessler, J., et al. (2018) Cytoreduction for Colorectal Metastases: Liver, Lung, Peritoneum, Lymph Nodes, Bone, Brain. When Does It Palliate, Prolong Survival, and Potentially Cure? Current Problems in Surgery, 55, 330-379. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wikman, H., Vessella, R. and Pantel, K. (2008) Cancer Micrometastasis and Tumour Dormancy. APMIS, 116, 754-770. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Ocana, A., Nieto-Jiménez, C., Pandiella, A. and Templeton, A.J. (2017) Neutrophils in Cancer: Prognostic Role and Therapeutic Strategies. Molecular Cancer, 16, Article No. 137. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Bhat, A.A., Nisar, S., Singh, M., Ashraf, B., Masoodi, T., Prasad, C.P., et al. (2022) Cytokine‐ and Chemokine‐Induced Inflammatory Colorectal Tumor Microenvironment: Emerging Avenue for Targeted Therapy. Cancer Communications, 42, 689-715. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Chen, A., Huang, H., Fang, S. and Hang, Q. (2024) ROS: A “Booster” for Chronic Inflammation and Tumor Metastasis. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1879, Article 189175. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Huber, V., Camisaschi, C., Berzi, A., Ferro, S., Lugini, L., Triulzi, T., et al. (2017) Cancer Acidity: An Ultimate Frontier of Tumor Immune Escape and a Novel Target of Immunomodulation. Seminars in Cancer Biology, 43, 74-89. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., Weng, Y., et al. (2019) Metabolic Regulation of Gene Expression by Histone Lactylation. Nature, 574, 575-580. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Choi, S.Y.C., Collins, C.C., Gout, P.W. and Wang, Y. (2013) Cancer‐Generated Lactic Acid: A Regulatory, Immunosuppressive Metabolite? The Journal of Pathology, 230, 350-355. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Feichtinger, R.G. and Lang, R. (2019) Targeting L-Lactate Metabolism to Overcome Resistance to Immune Therapy of Melanoma and Other Tumor Entities. Journal of Oncology, 2019, Article 2084195. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Chambers, A.F., Groom, A.C. and MacDonald, I.C. (2002) Dissemination and Growth of Cancer Cells in Metastatic Sites. Nature Reviews Cancer, 2, 563-572. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lake-Bakaar, G., Ahmed, M., Evenson, A., Bonder, A., Faintuch, S. and Sundaram, V. (2014) Management of Hepatocellular Carcinoma in Cirrhotic Patients with Portal Hypertension: Relevance of Hagen-Poiseuille’s Law. Liver Cancer, 3, 428-438. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Poisson, J., Lemoinne, S., Boulanger, C., Durand, F., Moreau, R., Valla, D., et al. (2017) Liver Sinusoidal Endothelial Cells: Physiology and Role in Liver Diseases. Journal of Hepatology, 66, 212-227. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zheng, M. and Tian, Z. (2019) Liver-Mediated Adaptive Immune Tolerance. Frontiers in Immunology, 10, Article 2525. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Wang, Y., Zhong, X., He, X., Hu, Z., Huang, H., Chen, J., et al. (2023) Liver Metastasis from Colorectal Cancer: Pathogenetic Development, Immune Landscape of the Tumour Microenvironment and Therapeutic Approaches. Journal of Experimental & Clinical Cancer Research, 42, Article No. 177. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Brodt, P. (2016) Role of the Microenvironment in Liver Metastasis: From Pre-To Prometastatic Niches. Clinical Cancer Research, 22, 5971-5982. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Timmers, M., Vekemans, K., Vermijlen, D., Asosingh, K., Kuppen, P., Bouwens, L., et al. (2004) Interactions between Rat Colon Carcinoma Cells and Kupffer Cells during the Onset of Hepatic Metastasis. International Journal of Cancer, 112, 793-802. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Piñeiro Fernández, J., Luddy, K.A., Harmon, C. and O’Farrelly, C. (2019) Hepatic Tumor Microenvironments and Effects on NK Cell Phenotype and Function. International Journal of Molecular Sciences, 20, Article 4131. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Liu, X., Xu, J., Rosenthal, S., Zhang, L., McCubbin, R., Meshgin, N., et al. (2020) Identification of Lineage-Specific Transcription Factors That Prevent Activation of Hepatic Stellate Cells and Promote Fibrosis Resolution. Gastroenterology, 158, 1728-1744.e14. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Lee, J., Ung, A., Kim, H., Lee, K., Cho, H., Bandaru, P., et al. (2021) Engineering Liver Microtissues to Study the Fusion of HepG2 with Mesenchymal Stem Cells and Invasive Potential of Fused Cells. Biofabrication, 14, Article 014104. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Mueller, L., Goumas, F.A., Affeldt, M., Sandtner, S., Gehling, U.M., Brilloff, S., et al. (2007) Stromal Fibroblasts in Colorectal Liver Metastases Originate from Resident Fibroblasts and Generate an Inflammatory Microenvironment. The American Journal of Pathology, 171, 1608-1618. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Taura, K., De Minicis, S., Seki, E., Hatano, E., Iwaisako, K., Osterreicher, C.H., et al. (2008) Hepatic Stellate Cells Secrete Angiopoietin 1 That Induces Angiogenesis in Liver Fibrosis. Gastroenterology, 135, 1729-1738. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Milette, S., Sicklick, J.K., Lowy, A.M. and Brodt, P. (2017) Molecular Pathways: Targeting the Microenvironment of Liver Metastases. Clinical Cancer Research, 23, 6390-6399. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Goodla, L. and Xue, X. (2022) The Role of Inflammatory Mediators in Colorectal Cancer Hepatic Metastasis. Cells, 11, Article 2313. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhou, S., Zhou, Z., Hu, Z., Huang, X., Wang, Z., Chen, E., et al. (2016) Tumor-Associated Neutrophils Recruit Macrophages and T-Regulatory Cells to Promote Progression of Hepatocellular Carcinoma and Resistance to Sorafenib. Gastroenterology, 150, 1646-1658.e17. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhu, K., Li, P., Mo, Y., Wang, J., Jiang, X., Ge, J., et al. (2020) Neutrophils: Accomplices in Metastasis. Cancer Letters, 492, 11-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yang, L., Liu, L., Zhang, R., Hong, J., Wang, Y., Wang, J., et al. (2020) IL-8 Mediates a Positive Loop Connecting Increased Neutrophil Extracellular Traps (Nets) and Colorectal Cancer Liver Metastasis. Journal of Cancer, 11, 4384-4396. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Guerriero, J.L. (2019) Macrophages: Their Untold Story in T Cell Activation and Function. International Review of Cell and Molecular Biology, 342, 73-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhang, Y., Han, G., Gu, J., Chen, Z. and Wu, J. (2024) Role of Tumor-Associated Macrophages in Hepatocellular Carcinoma: Impact, Mechanism, and Therapy. Frontiers in Immunology, 15, Article 1429812. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Komohara, Y., Fujiwara, Y., Ohnishi, K. and Takeya, M. (2016) Tumor-Associated Macrophages: Potential Therapeutic Targets for Anti-Cancer Therapy. Advanced Drug Delivery Reviews, 99, 180-185. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Huang, Y., Snuderl, M. and Jain, R.K. (2011) Polarization of Tumor-Associated Macrophages: A Novel Strategy for Vascular Normalization and Antitumor Immunity. Cancer Cell, 19, 1-2. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Allavena, P., Sica, A., Solinas, G., Porta, C. and Mantovani, A. (2008) The Inflammatory Micro-Environment in Tumor Progression: The Role of Tumor-Associated Macrophages. Critical Reviews in Oncology/Hematology, 66, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Boutilier, A.J. and Elsawa, S.F. (2021) Macrophage Polarization States in the Tumor Microenvironment. International Journal of Molecular Sciences, 22, Article 6995. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Huang, C., Ou, R., Chen, X., Zhang, Y., Li, J., Liang, Y., et al. (2021) Tumor Cell-Derived SPON2 Promotes M2-Polarized Tumor-Associated Macrophage Infiltration and Cancer Progression by Activating PYK2 in CRC. Journal of Experimental & Clinical Cancer Research, 40, Article No. 304. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Grossman, J.G., Nywening, T.M., Belt, B.A., Panni, R.Z., Krasnick, B.A., DeNardo, D.G., et al. (2018) Recruitment of CCR2+ Tumor Associated Macrophage to Sites of Liver Metastasis Confers a Poor Prognosis in Human Colorectal Cancer. OncoImmunology, 7, e1470729. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Donadon, M., Torzilli, G., Cortese, N., Soldani, C., Di Tommaso, L., Franceschini, B., et al. (2020) Macrophage Morphology Correlates with Single-Cell Diversity and Prognosis in Colorectal Liver Metastasis. Journal of Experimental Medicine, 217, e20191847. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Tosolini, M., Kirilovsky, A., Mlecnik, B., Fredriksen, T., Mauger, S., Bindea, G., et al. (2011) Clinical Impact of Different Classes of Infiltrating T Cytotoxic and Helper Cells (Th1, Th2, Treg, Th17) in Patients with Colorectal Cancer. Cancer Research, 71, 1263-1271. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Koyama, S. and Nishikawa, H. (2021) Mechanisms of Regulatory T Cell Infiltration in Tumors: Implications for Innovative Immune Precision Therapies. Journal for ImmunoTherapy of Cancer, 9, e002591. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Qureshi, O.S., Zheng, Y., Nakamura, K., Attridge, K., Manzotti, C., Schmidt, E.M., et al. (2011) Trans-Endocytosis of CD80 and CD86: A Molecular Basis for the Cell-Extrinsic Function of CTLA-4. Science, 332, 600-603. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Setoguchi, R., Hori, S., Takahashi, T. and Sakaguchi, S. (2005) Homeostatic Maintenance of Natural Foxp3+ CD25+ CD4+ Regulatory T Cells by Interleukin (IL)-2 and Induction of Autoimmune Disease by IL-2 Neutralization. The Journal of Experimental Medicine, 201, 723-735. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Masuda, K., Kornberg, A., Miller, J., Lin, S., Suek, N., Botella, T., et al. (2022) Multiplexed Single-Cell Analysis Reveals Prognostic and Nonprognostic T Cell Types in Human Colorectal Cancer. JCI Insight, 7, e154646. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Phanthunane, C., Wijers, R., De Herdt, M., Koljenović, S., Sleijfer, S., Baatenburg de Jong, R., et al. (2022) Intratumoral Niches of B Cells and Follicular Helper T Cells, and the Absence of Regulatory T Cells, Associate with Longer Survival in Early-Stage Oral Tongue Cancer Patients. Cancers, 14, Article 4298. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Liu, H., Li, Z., Han, X., Li, Z., Zhao, Y., Liu, F., et al. (2023) The Prognostic Impact of Tumor-Infiltrating B Lymphocytes in Patients with Solid Malignancies: A Systematic Review and Meta-Analysis. Critical Reviews in Oncology/Hematology, 181, Article 103893. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Anderson, N.M. and Simon, M.C. (2020) The Tumor Microenvironment. Current Biology, 30, R921-R925. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Fridman, W.H., Meylan, M., Petitprez, F., Sun, C., Italiano, A. and Sautès-Fridman, C. (2022) B Cells and Tertiary Lymphoid Structures as Determinants of Tumour Immune Contexture and Clinical Outcome. Nature Reviews Clinical Oncology, 19, 441-457. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Salmon, H., Idoyaga, J., Rahman, A., Leboeuf, M., Remark, R., Jordan, S., et al. (2016) Expansion and Activation of CD103+ Dendritic Cell Progenitors at the Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition. Immunity, 44, 924-938. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Merad, M., Sathe, P., Helft, J., Miller, J. and Mortha, A. (2013) The Dendritic Cell Lineage: Ontogeny and Function of Dendritic Cells and Their Subsets in the Steady State and the Inflamed Setting. Annual Review of Immunology, 31, 563-604. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Xia, S., Guo, Z., Xu, X., Yi, H., Wang, Q. and Cao, X. (2008) Hepatic Microenvironment Programs Hematopoietic Progenitor Differentiation into Regulatory Dendritic Cells, Maintaining Liver Tolerance. Blood, 112, 3175-3185. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Liu, Y., Zhang, Q., Xing, B., Luo, N., Gao, R., Yu, K., et al. (2022) Immune Phenotypic Linkage between Colorectal Cancer and Liver Metastasis. Cancer Cell, 40, 424-437.e5. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Palucka, K. and Banchereau, J. (2012) Cancer Immunotherapy via Dendritic Cells. Nature Reviews Cancer, 12, 265-277. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Vander Heiden, M.G., Cantley, L.C. and Thompson, C.B. (2009) Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science, 324, 1029-1033. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Nieman, K.M., Kenny, H.A., Penicka, C.V., Ladanyi, A., Buell-Gutbrod, R., Zillhardt, M.R., et al. (2011) Adipocytes Promote Ovarian Cancer Metastasis and Provide Energy for Rapid Tumor Growth. Nature Medicine, 17, 1498-1503. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Weinhouse, S. (1956) On Respiratory Impairment in Cancer Cells. Science, 124, 267-269. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Warburg, O., Wind, F. and Negelein, E. (1927) The Metabolism of Tumors in the Body. Journal of General Physiology, 8, 519-530. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Wang, J.X., Choi, S.Y.C., Niu, X., Kang, N., Xue, H., Killam, J., et al. (2020) Lactic Acid and an Acidic Tumor Microenvironment Suppress Anticancer Immunity. International Journal of Molecular Sciences, 21, Article 8363. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Pucino, V., Certo, M., Bulusu, V., Cucchi, D., Goldmann, K., Pontarini, E., et al. (2019) Lactate Buildup at the Site of Chronic Inflammation Promotes Disease by Inducing CD4+ T Cell Metabolic Rewiring. Cell Metabolism, 30, 1055-1074.e8. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Tanaka, A. and Sakaguchi, S. (2019) Targeting Treg Cells in Cancer Immunotherapy. European Journal of Immunology, 49, 1140-1146. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Sharma, M.D., Shinde, R., McGaha, T.L., Huang, L., Holmgaard, R.B., Wolchok, J.D., et al. (2015) The PTEN Pathway in Tregs Is a Critical Driver of the Suppressive Tumor Microenvironment. Science Advances, 1, e1500845. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Nakamura, T., Shima, T., Saeki, A., Hidaka, T., Nakashima, A., Takikawa, O., et al. (2007) Expression of Indoleamine 2, 3‐Dioxygenase and the Recruitment of Foxp3‐Expressing Regulatory T Cells in the Development and Progression of Uterine Cervical Cancer. Cancer Science, 98, 874-881. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Hinshaw, D.C. and Shevde, L.A. (2019) The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Research, 79, 4557-4566. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Liu, H., Pan, M., Liu, M., Zeng, L., Li, Y., Huang, Z., et al. (2024) Lactate: A Rising Star in Tumors and Inflammation. Frontiers in Immunology, 15, Article 1496390. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Gottfried, E., Kunz-Schughart, L.A., Ebner, S., Mueller-Klieser, W., Hoves, S., Andreesen, R., et al. (2006) Tumor-derived Lactic Acid Modulates Dendritic Cell Activation and Antigen Expression. Blood, 107, 2013-2021. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Wculek, S.K., Cueto, F.J., Mujal, A.M., Melero, I., Krummel, M.F. and Sancho, D. (2019) Dendritic Cells in Cancer Immunology and Immunotherapy. Nature Reviews Immunology, 20, 7-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Cao, S., Liu, P., Zhu, H., Gong, H., Yao, J., Sun, Y., et al. (2015) Extracellular Acidification Acts as a Key Modulator of Neutrophil Apoptosis and Functions. PLOS ONE, 10, e0137221. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Díaz, F.E., Dantas, E., Cabrera, M., Benítez, C.A., Delpino, M.V., Duette, G., et al. (2016) Fever-Range Hyperthermia Improves the Anti-Apoptotic Effect Induced by Low Ph on Human Neutrophils Promoting a Proangiogenic Profile. Cell Death & Disease, 7, e2437. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Brand, A., Singer, K., Koehl, G.E., Kolitzus, M., Schoenhammer, G., Thiel, A., et al. (2016) LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells. Cell Metabolism, 24, 657-671. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Mathew, M., Nguyen, N., Bhutia, Y., Sivaprakasam, S. and Ganapathy, V. (2024) Metabolic Signature of Warburg Effect in Cancer: An Effective and Obligatory Interplay between Nutrient Transporters and Catabolic/Anabolic Pathways to Promote Tumor Growth. Cancers, 16, Article 504. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Wagner, W., Kania, K.D., Blauz, A. and Ciszewski, W.M. (2017) The Lactate Receptor (HCAR1/GPR81) Contributes to Doxorubicin Chemoresistance via ABCB1 Transporter Up-Regulation in Human Cervical Cancer HeLa Cells. Journal of Physiology and Pharmacology, 68, 555-564.
|