[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
|
[2]
|
Siegel, R.L., Giaquinto, A.N. and Jemal, A. (2024) Cancer Statistics, 2024. CA: A Cancer Journal for Clinicians, 74, 12-49. https://doi.org/10.3322/caac.21820
|
[3]
|
Berenguer, C.V., Pereira, F., Câmara, J.S. and Pereira, J.A.M. (2023) Underlying Features of Prostate Cancer—Statistics, Risk Factors, and Emerging Methods for Its Diagnosis. Current Oncology, 30, 2300-2321. https://doi.org/10.3390/curroncol30020178
|
[4]
|
Haffner, M.C., Zwart, W., Roudier, M.P., True, L.D., Nelson, W.G., Epstein, J.I., et al. (2020) Genomic and Phenotypic Heterogeneity in Prostate Cancer. Nature Reviews Urology, 18, 79-92. https://doi.org/10.1038/s41585-020-00400-w
|
[5]
|
Ilic, D., Djulbegovic, M., Jung, J.H., Hwang, E.C., Zhou, Q., Cleves, A., et al. (2018) Prostate Cancer Screening with Prostate-Specific Antigen (PSA) Test: A Systematic Review and Meta-Analysis. BMJ, 362, k3519. https://doi.org/10.1136/bmj.k3519
|
[6]
|
Shish, L. and Zabell, J. (2024) Digital Rectal Exam in Prostate Cancer Screening and Elevated PSA Work-Up—Is There a Role Anymore? Current Urology Reports, 25, 193-199. https://doi.org/10.1007/s11934-024-01218-4
|
[7]
|
姜红坚, 成艳平. 磁共振成像在前列腺癌诊断中的应用价值[J]. 影像研究与医学应用, 2024, 8(22): 152-154.
|
[8]
|
Mottet, N., van den Bergh, R.C.N., Briers, E., Van den Broeck, T., Cumberbatch, M.G., De Santis, M., et al. (2021) EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer—2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. European Urology, 79, 243-262. https://doi.org/10.1016/j.eururo.2020.09.042
|
[9]
|
Wilt, T.J., Jones, K.M., Barry, M.J., Andriole, G.L., Culkin, D., Wheeler, T., et al. (2017) Follow-Up of Prostatectomy versus Observation for Early Prostate Cancer. New England Journal of Medicine, 377, 132-142. https://doi.org/10.1056/nejmoa1615869
|
[10]
|
Gillies, R.J., Kinahan, P.E. and Hricak, H. (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278, 563-577. https://doi.org/10.1148/radiol.2015151169
|
[11]
|
Gu, R., Tan, S., Xu, Y., Pan, D., Wang, C., Zhao, M., et al. (2023) CT Radiomics Prediction of CXCL9 Expression and Survival in Ovarian Cancer. Journal of Ovarian Research, 16, Article No. 180. https://doi.org/10.1186/s13048-023-01248-5
|
[12]
|
Mossinelli, C., Tagliabue, M., Ruju, F., Cammarata, G., Volpe, S., Raimondi, S., et al. (2023) The Role of Radiomics in Tongue Cancer: A New Tool for Prognosis Prediction. Head & Neck, 45, 849-861. https://doi.org/10.1002/hed.27299
|
[13]
|
Chen, Q., Shao, J., Xue, T., Peng, H., Li, M., Duan, S., et al. (2022) Intratumoral and Peritumoral Radiomics Nomograms for the Preoperative Prediction of Lymphovascular Invasion and Overall Survival in Non-Small Cell Lung Cancer. European Radiology, 33, 947-958. https://doi.org/10.1007/s00330-022-09109-3
|
[14]
|
He, X., Liu, X., Zuo, F., Shi, H. and Jing, J. (2023) Artificial Intelligence-Based Multi-Omics Analysis Fuels Cancer Precision Medicine. Seminars in Cancer Biology, 88, 187-200. https://doi.org/10.1016/j.semcancer.2022.12.009
|
[15]
|
Li, L., Sun, M., Wang, J. and Wan, S. (2024) Multi-Omics Based Artificial Intelligence for Cancer Research. Advances in Cancer Research, 163, 303-356. https://doi.org/10.1016/bs.acr.2024.06.005
|
[16]
|
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R.G.P.M., Granton, P., et al. (2012) Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European Journal of Cancer, 48, 441-446. https://doi.org/10.1016/j.ejca.2011.11.036
|
[17]
|
Ferrari, R., Trinci, M., Casinelli, A., Treballi, F., Leone, E., Caruso, D., et al. (2024) Radiomics in Radiology: What the Radiologist Needs to Know about Technical Aspects and Clinical Impact. La Radiologia Medica, 129, 1751-1765. https://doi.org/10.1007/s11547-024-01904-w
|
[18]
|
Wen, Y.L. and Leech, M. (2020) Review of the Role of Radiomics in Tumour Risk Classification and Prognosis of Cancer. Anticancer Research, 40, 3605-3618. https://doi.org/10.21873/anticanres.14350
|
[19]
|
马晓辉, 周海春, 梁佳伟, 等. 人工智能时代的放射组学及Pyradiomics工具包在放射组学中的应用[J]. 浙江医学, 2022, 44(8): 887-889, 895.
|
[20]
|
Aerts, H.J.W.L., Velazquez, E.R., Leijenaar, R.T.H., Parmar, C., Grossmann, P., Carvalho, S., et al. (2014) Decoding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Radiomics Approach. Nature Communications, 5, Article No. 4006. https://doi.org/10.1038/ncomms5006
|
[21]
|
Cuocolo, R., Stanzione, A., Ponsiglione, A., Romeo, V., Verde, F., Creta, M., et al. (2019) Clinically Significant Prostate Cancer Detection on MRI: A Radiomic Shape Features Study. European Journal of Radiology, 116, 144-149. https://doi.org/10.1016/j.ejrad.2019.05.006
|
[22]
|
Hectors, S.J., Cherny, M., Yadav, K.K., Beksaç, A.T., Thulasidass, H., Lewis, S., et al. (2019) Radiomics Features Measured with Multiparametric Magnetic Resonance Imaging Predict Prostate Cancer Aggressiveness. Journal of Urology, 202, 498-505. https://doi.org/10.1097/ju.0000000000000272
|
[23]
|
Rizzo, S., Botta, F., Raimondi, S., Origgi, D., Fanciullo, C., Morganti, A.G., et al. (2018) Radiomics: The Facts and the Challenges of Image Analysis. European Radiology Experimental, 2, Article No. 36. https://doi.org/10.1186/s41747-018-0068-z
|
[24]
|
Jia, Y., Quan, S., Ren, J., Wu, H., Liu, A., Gao, Y., et al. (2022) MRI Radiomics Predicts Progression-Free Survival in Prostate Cancer. Frontiers in Oncology, 12, Article 974257. https://doi.org/10.3389/fonc.2022.974257
|
[25]
|
Norris, J.M., Simpson, B.S., Parry, M.A., Allen, C., Ball, R., Freeman, A., et al. (2020) Genetic Landscape of Prostate Cancer Conspicuity on Multiparametric Magnetic Resonance Imaging: A Systematic Review and Bioinformatic Analysis. European Urology Open Science, 20, 37-47. https://doi.org/10.1016/j.euros.2020.06.006
|
[26]
|
Srivastava, R. (2022) Applications of Artificial Intelligence Multiomics in Precision Oncology. Journal of Cancer Research and Clinical Oncology, 149, 503-510. https://doi.org/10.1007/s00432-022-04161-4
|
[27]
|
Medori, M.C., Micheletti, C., Gadler, M., et al. (2023) Omics Sciences and Precision Medicine in Prostate Cancer. La Clinica Terapeutica, 174, 95-103. https://doi.org/10.7417/CT.2023.2476
|
[28]
|
Chen, C., Wang, J., Pan, D., Wang, X., Xu, Y., Yan, J., et al. (2023) Applications of Multi‐Omics Analysis in Human Diseases. MedComm, 4, e315. https://doi.org/10.1002/mco2.315
|
[29]
|
Wang, D., Eraslan, B., Wieland, T., Hallström, B., Hopf, T., Zolg, D.P., et al. (2019) A Deep Proteome and Transcriptome Abundance Atlas of 29 Healthy Human Tissues. Molecular Systems Biology, 15, e8503. https://doi.org/10.15252/msb.20188503
|
[30]
|
Kumar, D., Bansal, G., Narang, A., Basak, T., Abbas, T. and Dash, D. (2016) Integrating Transcriptome and Proteome Profiling: Strategies and Applications. PROTEOMICS, 16, 2533-2544. https://doi.org/10.1002/pmic.201600140
|
[31]
|
Inge, M.M., Miller, R., Hook, H., Bray, D., Keenan, J.L., Zhao, R., et al. (2024) Rapid Profiling of Transcription Factor-Cofactor Interaction Networks Reveals Principles of Epigenetic Regulation. Nucleic Acids Research, 52, 10276-10296. https://doi.org/10.1093/nar/gkae706
|
[32]
|
Valdeolivas, A., Tichit, L., Navarro, C., Perrin, S., Odelin, G., Levy, N., et al. (2018) Random Walk with Restart on Multiplex and Heterogeneous Biological Networks. Bioinformatics, 35, 497-505. https://doi.org/10.1093/bioinformatics/bty637
|
[33]
|
Bodein, A., Scott-Boyer, M., Perin, O., Lê Cao, K. and Droit, A. (2021) Interpretation of Network-Based Integration from Multi-Omics Longitudinal Data. Nucleic Acids Research, 50, e27-e27. https://doi.org/10.1093/nar/gkab1200
|
[34]
|
Pang, Z., Zhou, G., Ewald, J., Chang, L., Hacariz, O., Basu, N., et al. (2022) Using Metaboanalyst 5.0 for LC-HRMS Spectra Processing, Multi-Omics Integration and Covariate Adjustment of Global Metabolomics Data. Nature Protocols, 17, 1735-1761. https://doi.org/10.1038/s41596-022-00710-w
|
[35]
|
Ding, J., Blencowe, M., Nghiem, T., Ha, S., Chen, Y., Li, G., et al. (2021) Mergeomics 2.0: A Web Server for Multi-Omics Data Integration to Elucidate Disease Networks and Predict Therapeutics. Nucleic Acids Research, 49, W375-W387. https://doi.org/10.1093/nar/gkab405
|
[36]
|
Delavan, B., Roberts, R., Huang, R., Bao, W., Tong, W. and Liu, Z. (2018) Computational Drug Repositioning for Rare Diseases in the Era of Precision Medicine. Drug Discovery Today, 23, 382-394. https://doi.org/10.1016/j.drudis.2017.10.009
|
[37]
|
Stetson, L.C., Pearl, T., Chen, Y. and Barnholtz-Sloan, J.S. (2014) Computational Identification of Multi-Omic Correlates of Anticancer Therapeutic Response. BMC Genomics, 15, Article No. S2. https://doi.org/10.1186/1471-2164-15-s7-s2
|
[38]
|
Fridley, B.L., Lund, S., Jenkins, G.D. and Wang, L. (2012) A Bayesian Integrative Genomic Model for Pathway Analysis of Complex Traits. Genetic Epidemiology, 36, 352-359. https://doi.org/10.1002/gepi.21628
|
[39]
|
Ogbonnaya, C.N., Alsaedi, B.S.O., Alhussaini, A.J., Hislop, R., Pratt, N., Steele, J.D., et al. (2024) Radiogenomics Map-Based Molecular and Imaging Phenotypical Characterization in Localised Prostate Cancer Using Pre-Biopsy Biparametric MR Imaging. International Journal of Molecular Sciences, 25, Article 5379. https://doi.org/10.3390/ijms25105379
|
[40]
|
Avasthi, K. K., Choi, J., Glushko, T., et al. (2024) Extracellular Microvesicle MicroRNAs, along with Imaging Metrics, Improve Detection of Aggressive Prostate Cancer. https://doi.org/10.1101/2024.08.23.24312491
|
[41]
|
Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., et al. (2021) MOGONET Integrates Multi-Omics Data Using Graph Convolutional Networks Allowing Patient Classification and Biomarker Identification. Nature Communications, 12, Article No. 3445. https://doi.org/10.1038/s41467-021-23774-w
|
[42]
|
Hachem, S., Yehya, A., El Masri, J., Mavingire, N., Johnson, J.R., Dwead, A.M., et al. (2024) Contemporary Update on Clinical and Experimental Prostate Cancer Biomarkers: A Multi-Omics-Focused Approach to Detection and Risk Stratification. Biology, 13, Article 762. https://doi.org/10.3390/biology13100762
|
[43]
|
Saha, D., Dang, H.X., Zhang, M., Quigley, D.A., Feng, F.Y. and Maher, C.A. (2024) Single Cell-Transcriptomic Analysis Informs the LncRNA Landscape in Metastatic Castration Resistant Prostate Cancer. npj Genomic Medicine, 9, Article No. 14. https://doi.org/10.1038/s41525-024-00401-3
|
[44]
|
Ren, S., Wei, G., Liu, D., Wang, L., Hou, Y., Zhu, S., et al. (2018) Whole-Genome and Transcriptome Sequencing of Prostate Cancer Identify New Genetic Alterations Driving Disease Progression. European Urology, 73, 322-339. https://doi.org/10.1016/j.eururo.2017.08.027
|
[45]
|
Kirk, J.S., Wang, J., Long, M., Rosario, S., Tracz, A., Ji, Y., et al. (2024) Integrated Single-Cell Analysis Defines the Epigenetic Basis of Castration-Resistant Prostate Luminal Cells. Cell Stem Cell, 31, 1203-1221.e7. https://doi.org/10.1016/j.stem.2024.05.008
|
[46]
|
Wang, Z., Li, Y., Zhao, W., Jiang, S., Huang, Y., Hou, J., et al. (2023) Integrative Multi-Omics and Drug-Response Characterization of Patient-Derived Prostate Cancer Primary Cells. Signal Transduction and Targeted Therapy, 8, Article No. 175. https://doi.org/10.1038/s41392-023-01393-9
|
[47]
|
Hachem, S., Yehya, A., El Masri, J., Mavingire, N., Johnson, J.R., Dwead, A.M., et al. (2024) Contemporary Update on Clinical and Experimental Prostate Cancer Biomarkers: A Multi-Omics-Focused Approach to Detection and Risk Stratification. Biology, 13, Article 762. https://doi.org/10.3390/biology13100762
|
[48]
|
Quan, Y., Zhang, H., Wang, M. and Ping, H. (2023) Visium Spatial Transcriptomics Reveals Intratumor Heterogeneity and Profiles of Gleason Score Progression in Prostate Cancer. iScience, 26, Article 108429. https://doi.org/10.1016/j.isci.2023.108429
|
[49]
|
De Vargas Roditi, L., Jacobs, A., Rueschoff, J.H., Bankhead, P., Chevrier, S., Jackson, H.W., et al. (2022) Single-Cell Proteomics Defines the Cellular Heterogeneity of Localized Prostate Cancer. Cell Reports Medicine, 3, Article 100604. https://doi.org/10.1016/j.xcrm.2022.100604
|
[50]
|
Bian, X., Wang, W., Abudurexiti, M., Zhang, X., Ma, W., Shi, G., et al. (2024) Integration Analysis of Single‐Cell Multi‐omics Reveals Prostate Cancer Heterogeneity. Advanced Science, 11, Article 2305724. https://doi.org/10.1002/advs.202305724
|
[51]
|
Paolillo, C., Londin, E. and Fortina, P. (2016) Next Generation Sequencing in Cancer: Opportunities and Challenges for Precision Cancer Medicine. Scandinavian Journal of Clinical and Laboratory Investigation, 76, S84-S91. https://doi.org/10.1080/00365513.2016.1210331
|
[52]
|
Taşan, M., Musso, G., Hao, T., Vidal, M., MacRae, C.A. and Roth, F.P. (2014) Selecting Causal Genes from Genome-Wide Association Studies via Functionally Coherent Subnetworks. Nature Methods, 12, 154-159. https://doi.org/10.1038/nmeth.3215
|
[53]
|
Chopra, S., Foltz, W.D., Milosevic, M.F., Toi, A., Bristow, R.G., Ménard, C., et al. (2009) Comparing Oxygen-Sensitive MRI (BOLD R2) with Oxygen Electrode Measurements: A Pilot Study in Men with Prostate Cancer. International Journal of Radiation Biology, 85, 805-813. https://doi.org/10.1080/09553000903043059
|
[54]
|
Robinson, D., Van Allen, E.M., Wu, Y., Schultz, N., Lonigro, R.J., Mosquera, J., et al. (2015) Integrative Clinical Genomics of Advanced Prostate Cancer. Cell, 161, 1215-1228. https://doi.org/10.1016/j.cell.2015.05.001
|
[55]
|
Abida, W., Cyrta, J., Heller, G., Prandi, D., Armenia, J., Coleman, I., et al. (2019) Genomic Correlates of Clinical Outcome in Advanced Prostate Cancer. Proceedings of the National Academy of Sciences, 116, 11428-11436. https://doi.org/10.1073/pnas.1902651116
|
[56]
|
Pope, S.D. and Medzhitov, R. (2018) Emerging Principles of Gene Expression Programs and Their Regulation. Molecular Cell, 71, 389-397. https://doi.org/10.1016/j.molcel.2018.07.017
|
[57]
|
Brouwer, I. and Lenstra, T.L. (2019) Visualizing Transcription: Key to Understanding Gene Expression Dynamics. Current Opinion in Chemical Biology, 51, 122-129. https://doi.org/10.1016/j.cbpa.2019.05.031
|
[58]
|
Eke, I., Bylicky, M.A., Sandfort, V., Chopra, S., Martello, S., Graves, E.E., et al. (2021) The LncRNAs LINC00261 and LINC00665 Are Upregulated in Long-Term Prostate Cancer Adaptation after Radiotherapy. Molecular Therapy-Nucleic Acids, 24, 175-187. https://doi.org/10.1016/j.omtn.2021.02.024
|
[59]
|
Zhao, F., Zhang, T., Wei, J., Chen, L., Liu, Z., Jin, Y., et al. (2024) Integrated Single-Cell Transcriptomic Analyses Identify a Novel Lineage Plasticity-Related Cancer Cell Type Involved in Prostate Cancer Progression. eBioMedicine, 109, Article 105398. https://doi.org/10.1016/j.ebiom.2024.105398
|
[60]
|
Chen, S., Zhu, G., Yang, Y., Wang, F., Xiao, Y., Zhang, N., et al. (2021) Single-Cell Analysis Reveals Transcriptomic Remodellings in Distinct Cell Types That Contribute to Human Prostate Cancer Progression. Nature Cell Biology, 23, 87-98. https://doi.org/10.1038/s41556-020-00613-6
|
[61]
|
Tanase, C.P., Codrici, E., Popescu, I.D., Mihai, S., Enciu, A., Necula, L.G., et al. (2017) Prostate Cancer Proteomics: Current Trends and Future Perspectives for Biomarker Discovery. Oncotarget, 8, 18497-18512. https://doi.org/10.18632/oncotarget.14501
|
[62]
|
Valdés-Mora, F. and Clark, S.J. (2014) Prostate Cancer Epigenetic Biomarkers: Next-Generation Technologies. Oncogene, 34, 1609-1618. https://doi.org/10.1038/onc.2014.111
|
[63]
|
Tonry, C., Finn, S., Armstrong, J. and Pennington, S.R. (2020) Clinical Proteomics for Prostate Cancer: Understanding Prostate Cancer Pathology and Protein Biomarkers for Improved Disease Management. Clinical Proteomics, 17, Article No. 41. https://doi.org/10.1186/s12014-020-09305-7
|
[64]
|
Katsogiannou, M., Boyer, J., Valdeolivas, A., Remy, E., Calzone, L., Audebert, S., et al. (2019) Integrative Proteomic and Phosphoproteomic Profiling of Prostate Cell Lines. PLOS ONE, 14, e0224148. https://doi.org/10.1371/journal.pone.0224148
|
[65]
|
Davalieva, K., Kostovska, I.M., Kiprijanovska, S., Markoska, K., Kubelka-Sabit, K., Filipovski, V., et al. (2015) Proteomics Analysis of Malignant and Benign Prostate Tissue by 2D DIGE/MS Reveals New Insights into Proteins Involved in Prostate Cancer. The Prostate, 75, 1586-1600. https://doi.org/10.1002/pros.23034
|
[66]
|
Launonen, K., Paakinaho, V., Sigismondo, G., Malinen, M., Sironen, R., Hartikainen, J.M., et al. (2021) Chromatin-directed Proteomics-Identified Network of Endogenous Androgen Receptor in Prostate Cancer Cells. Oncogene, 40, 4567-4579. https://doi.org/10.1038/s41388-021-01887-2
|
[67]
|
Zhang, A., Sun, H., Yan, G., Wang, P. and Wang, X. (2015) Metabolomics for Biomarker Discovery: Moving to the Clinic. BioMed Research International, 2015, Article 354671. https://doi.org/10.1155/2015/354671
|
[68]
|
Bansal, N., Kumar, M., Sankhwar, S.N. and Gupta, A. (2022) Relevance of Emerging Metabolomics-Based Biomarkers of Prostate Cancer: A Systematic Review. Expert Reviews in Molecular Medicine, 24, e25. https://doi.org/10.1017/erm.2022.20
|
[69]
|
Kumar, D., Gupta, A., Mandhani, A. and Sankhwar, S.N. (2016) NMR Spectroscopy of Filtered Serum of Prostate Cancer: A New Frontier in Metabolomics. The Prostate, 76, 1106-1119. https://doi.org/10.1002/pros.23198
|
[70]
|
Giunchi, F., Fiorentino, M. and Loda, M. (2019) The Metabolic Landscape of Prostate Cancer. European Urology Oncology, 2, 28-36. https://doi.org/10.1016/j.euo.2018.06.010
|
[71]
|
Gómez-Cebrián, N., Poveda, J.L., Pineda-Lucena, A. and Puchades-Carrasco, L. (2022) Metabolic Phenotyping in Prostate Cancer Using Multi-Omics Approaches. Cancers, 14, Article 596. https://doi.org/10.3390/cancers14030596
|
[72]
|
Mah, C.Y., Nassar, Z.D., Swinnen, J.V. and Butler, L.M. (2020) Lipogenic Effects of Androgen Signaling in Normal and Malignant Prostate. Asian Journal of Urology, 7, 258-270. https://doi.org/10.1016/j.ajur.2019.12.003
|
[73]
|
Drago, D., Andolfo, A., Mosca, E., Orro, A., Nocera, L., Cucchiara, V., et al. (2021) A Novel Expressed Prostatic Secretion (EPS)-Urine Metabolomic Signature for the Diagnosis of Clinically Significant Prostate Cancer. Cancer Biology & Medicine, 18, 604-615. https://doi.org/10.20892/j.issn.2095-3941.2020.0617
|
[74]
|
McCann, S.M., Jiang, Y., Fan, X., Wang, J., Antic, T., Prior, F., et al. (2016) Quantitative Multiparametric MRI Features and PTEN Expression of Peripheral Zone Prostate Cancer: A Pilot Study. American Journal of Roentgenology, 206, 559-565. https://doi.org/10.2214/ajr.15.14967
|
[75]
|
Dinis Fernandes, C., Schaap, A., Kant, J., van Houdt, P., Wijkstra, H., Bekers, E., et al. (2023) Radiogenomics Analysis Linking Multiparametric MRI and Transcriptomics in Prostate Cancer. Cancers, 15, Article 3074. https://doi.org/10.3390/cancers15123074
|
[76]
|
Zhang, G., Zhang, Z., Pei, Y., Hu, W., Xue, Y., Ning, R., et al. (2023) Biological and Clinical Significance of Radiomics Features Obtained from Magnetic Resonance Imaging Preceding Pre-Carbon Ion Radiotherapy in Prostate Cancer Based on Radiometabolomics. Frontiers in Endocrinology, 14, Article 1272806. https://doi.org/10.3389/fendo.2023.1272806
|
[77]
|
Yip, S.S.F. and Aerts, H.J.W.L. (2016) Applications and Limitations of Radiomics. Physics in Medicine and Biology, 61, R150-R166. https://doi.org/10.1088/0031-9155/61/13/r150
|
[78]
|
Integrative HMP (iHMP) Research Network Consortium (2014) The Integrative Human Microbiome Project: Dynamic Analysis of Microbiome-Host Omics Profiles during Periods of Human Health and Disease. Cell Host & Microbe, 16, 276-289. https://doi.org/10.1016/j.chom.2014.08.014
|
[79]
|
Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak, A., et al. (2016) The FAIR Guiding Principles for Scientific Data Management and Stewardship. Scientific Data, 3, Article No. 160018. https://doi.org/10.1038/sdata.2016.18
|
[80]
|
Tarazona, S., Arzalluz-Luque, A. and Conesa, A. (2021) Undisclosed, Unmet and Neglected Challenges in Multi-Omics Studies. Nature Computational Science, 1, 395-402. https://doi.org/10.1038/s43588-021-00086-z
|
[81]
|
Subramanian, I., Verma, S., Kumar, S., Jere, A. and Anamika, K. (2020) Multi-Omics Data Integration, Interpretation, and Its Application. Bioinformatics and Biology Insights, 14. https://doi.org/10.1177/1177932219899051
|
[82]
|
Hong, M., Pawitan, Y., Magnusson, P.K.E. and Prince, J.A. (2009) Strategies and Issues in the Detection of Pathway Enrichment in Genome-Wide Association Studies. Human Genetics, 126, 289-301. https://doi.org/10.1007/s00439-009-0676-z
|
[83]
|
Canzler, S. and Hackermüller, J. (2020) Multigsea: A Gsea-Based Pathway Enrichment Analysis for Multi-Omics Data. BMC Bioinformatics, 21, Article No. 561. https://doi.org/10.1186/s12859-020-03910-x
|
[84]
|
van Karnebeek, C.D.M., Wortmann, S.B., Tarailo‐Graovac, M., Langeveld, M., Ferreira, C.R., van de Kamp, J.M., et al. (2018) The Role of the Clinician in the Multi‐Omics Era: Are You Ready? Journal of Inherited Metabolic Disease, 41, 571-582. https://doi.org/10.1007/s10545-017-0128-1
|
[85]
|
Lee, J., Hyeon, D.Y. and Hwang, D. (2020) Single-Cell Multiomics: Technologies and Data Analysis Methods. Experimental & Molecular Medicine, 52, 1428-1442. https://doi.org/10.1038/s12276-020-0420-2
|
[86]
|
Meier, M.J., Harrill, J., Johnson, K., Thomas, R.S., Tong, W., Rager, J.E., et al. (2024) Progress in Toxicogenomics to Protect Human Health. Nature Reviews Genetics, 26, 105-122. https://doi.org/10.1038/s41576-024-00767-1
|