O-GlcNAc糖基化修饰在癌症中的调控机制
The Regulatory Mechanism of O-GlcNAc Glycosylation Modification in Cancer
DOI: 10.12677/acm.2025.151126, PDF, HTML, XML,    科研立项经费支持
作者: 周美欣, 薛 娟*:西海岸新区区立医院口腔科,山东 青岛;刘 桐*:青岛大学附属泰安市中心医院口腔科,山东 泰安
关键词: O-GlcNA糖基化分子机制预后O-GlcNA Glycosylation Molecular Mechanism Prognosis
摘要: O-GlcNAc糖基化是一种可逆的蛋白质翻译后修饰。O-GlcNAc循环失衡在癌症的发生和发展中起着至关重要的作用。因此,探索O-GlcNAc糖基化与肿瘤之间的作用机制对于开发新的靶向治疗方法具有极其重要的意义。本文阐明O-GlcNAc糖基化修饰使细胞能够将营养物质的可用性和细胞代谢与关键细胞过程调节联系起来,其中许多可能在癌症中受到损害。总结O-GlcNAc糖基化调节在肿瘤治疗中的作用,为临床实践中开发新的靶向疗法提供了理论依据。
Abstract: O-GlcNAc glycosylation is a reversible post-translational modification of proteins. The imbalance of O-GlcNAc cycle plays a crucial role in the occurrence and development of cancer. Therefore, exploring the mechanism of action between O-GlcNAc glycosylation and tumors is of great significance for developing new targeted therapies. This article elucidates that O-GlcNAc glycosylation modification enables cells to link the availability of nutrients and cellular metabolism with the regulation of key cellular processes, many of which may be compromised in cancer. Summarizing the role of O-GlcNAc glycosylation regulation in tumor therapy provides a theoretical basis for the development of new targeted therapies in clinical practice.
文章引用:周美欣, 刘桐, 薛娟. O-GlcNAc糖基化修饰在癌症中的调控机制[J]. 临床医学进展, 2025, 15(1): 947-953. https://doi.org/10.12677/acm.2025.151126

1. 前言

O-连接的N-乙酰氨基葡萄糖基化(O-GlcNAcylation)是一种可逆的蛋白质翻译后修饰(PTM),主要调节蛋白质酶活性[1]、亚细胞定位、蛋白质稳定性、转录活性以及与其他蛋白质的相互作用[2]。到目前为止,大约有3000种人类蛋白质被证实是O-GlcNAc糖基化[3]。O-GlcNAcylation循环障碍与各种慢性人类疾病的进展有关,包括衰老、肥胖、糖尿病、心血管疾病、神经退行性疾病和癌症[4]。近年来,O-GlcNAc糖基化已被报道与肿瘤的发展密切相关[5]。在不同类型的癌症中发现O-GlcNAcylation水平失衡[6],导致各种癌症标志物,如肿瘤生长、转移、血管生成、癌症干燥潜能和代谢重编程[7]。因此,探索O-GlcNAc糖基化在肿瘤中的具体机制具有重要意义。

在这篇文章中,我们主要关注O-GlcNAcylation与癌症相关炎症之间关系的最新研究,并概述O-GlcNAcylation如何驱动肿瘤的潜在机制及其与癌症进展的关系。

2. O-GlcNAc糖基化:一种特殊的糖基化修饰

糖基化是将寡糖化合物附着到蛋白质上以产生糖蛋白的过程[8]。它形成了PTM的一种常见形式,包括n-聚糖[9]、邻聚糖和蛋白多糖。O-GlcNAc糖基化不同于N-糖基化和其他O-糖基化,主要发生在核蛋白[10]、细胞质蛋白和线粒体蛋白上。O-GlcNAc糖基化是一种非典型糖基化,涉及单个O-链N-乙酰葡糖胺(O-GlcNAc)部分附着在细胞质[11]、细胞核和线粒体中的丝氨酸和苏氨酸残基上。O-GlcNAc糖基化是通过己糖胺生物合成途径(HBP)产生营养物质的产物,该途径结合了葡萄糖[12]、氨基酸、脂肪酸和核苷酸代谢,产生清除O-GlcA酰化的供体底物尿苷二磷酸GlcNAc [13]。除了依赖营养物质的可用性外,O-GlcNAc信号通路对细胞应激也高度敏感[14]。O-GlcNAc糖基化被认为是一种营养和应激传感器,调节从转录和翻译到信号转导和代谢的细胞过程。

OGT和OGA是唯一控制O-GlcNAc循环的酶[15]。OGT和OGA可以通过选择性剪接和选择性起始密码子产生多种亚型[16]。在饥饿或其他压力条件下,OGT和OGA会发生复杂的变化[17],它们在细胞中的丰度和活性也会发生变化。当O-GlcNAc水平升高时,OGT的mRNA成熟被阻断[18],而OGA的成熟被促进,导致OGA增加和OGT减少。相比之下,低水平的O-GlcNAc促进OGT mRNA成熟并抑制OGA [19]。OGT形成具有重要功能的剪刀形二聚体。在OGT-OGA的复杂结构中,一个长而可行的OGA片段占据了延伸OGT的底物结合槽,并定位了一个丝氨酸进行O-GlcNA酰化[20],从而防止OGT修饰其他底物。相比之下,OGT会破坏OGA的选择性二聚化并阻断其活性位点[21],从而阻断其他底物的进入[22]

3. O-GlcNAc酰化和炎症相关信号通路

3.1. NF-κB通路

核因子(NF)-κB转录因子家族由五种蛋白质组成[23],包括p65 (RelA)、RelB、cRel和p105/p50 (NF-κB1)以及p100/p52 (NF-κB2) [24]。NF-κB活性与肿瘤的发病机制密切相关,主要受PTMs调节[25],如磷酸化、乙酰化和糖基化。NF-κB调节多种细胞过程,如先天免疫、适应性免疫[26]、炎症、细胞凋亡、细胞存活和分化,其激活在炎症和免疫反应中起着核心作用。NF-kB可以被各种刺激激活,如脂多糖(LPS)和葡萄糖[27]。活化的IKK复合物介导IkB的磷酸化以降解蛋白酶体[28]。游离的NF-κB从细胞质转移到细胞核,与DNA元件结合并激活靶基因的表达[29]。此外,位点特异性O-GlcNAc与NF-κB途径介导的炎症有关[30]。NF-κB中p65的O-GlcNAcThr352减少了其与IkB的结合,IkB是高血糖条件下转录活性所必需的[31]。NF-κB信号通路的活性可能通过OGT介导的O-GlcN酰化间接调节[32]。糖皮质激素受体(GR)可以与NF-κB家族成员相互作用并抑制其功能,包括大量促炎蛋白NF-κB下游基因的转录,如白细胞介素-8 (IL-8)和细胞内粘附分子-1 (ICAM-1) [33]。最近的一项研究表明,OGT通过增强聚合酶(pol) II CTD的O-GlcNA酰化来促进NF-κB [34],这反过来又破坏了肿瘤坏死因子(TNF)-α诱导的pol II CTD磷酸化,并进一步阻碍了IL-8和ICAM-1的转录起始阶段[35]

3.2. JAK-STAT通路

Janus激酶/信号转导子和信号转换转录激活子(JAK-STAT)信号通路参与致癌过程中调节细胞因子依赖性炎症和免疫,激活JAK和STAT3 [36],并转运STAT3以转录靶基因,如IL-10 [37]。Li等人最近发现,STAT3在T717位点被o-glcn酰化,抑制STAT3的转录活性和下游基因的表达。T717位点突变阻止了STAT3的O-GlcNA酰化,并显著增强了其磷酸化和转录活性[37]。Stat3-O-GlcNAcylization受Culin-3 (CUL3)的负调控[38]。CUL3缺乏可以通过促进核因子重组蛋白2-相关因子2 (Nrf2)的稳定性和巨噬细胞的酰化水平来增强OGT和总蛋白O-GlcN的表达,Nrf2是OGT转录调节因子。与野生型细胞相比,CUL3缺乏的巨噬细胞中靶基因(如IL-10)的水平和表达水平有所降低[39]。这一发现进一步揭示了过度免疫炎症激活诱导的IL-6如何调节STAT3-O-GlcNA酰化。

STAT6是STAT家族的另一个成员[40],其转录激活主要是由IL-4和IL-13与其各自受体的结合诱导的[41]。OGT介导的STAT6 O-GlcNA酰化在蠕虫感染期间促进了STAT6的转录活性,并进一步促进了Pou2f3和Gsdmc的转录[42]。STAT6 O-GlcNacylization介导的蛋白质增加了POU2F3驱动的树突状细胞的分化,促进了抗蠕虫细胞因子IL-25 [43]的释放。此外,GSDMC介导无细胞GSDMCN孔的形成,以分泌IL-33。重要的是,肠上皮细胞(IEC)分泌IL-25和IL-33已被证明可以促进第二组先天淋巴细胞(ILC2)和CD4+T辅助细胞2 (Th2)细胞产生2型细胞因子[44],如IL-13和IL-4 [45]。这引发了蠕虫排泄和耐受的2型免疫反应[46]。随后,鉴定了STAT6位点的O-GlcNA酰化,证实了反向结构域内的五个位点(S746、T757、S778、S810和S825)构成了关键的O-Glc酰化位点。所有五个位点突变为丙氨酸完全取消了STAT6的O-GlcNA酰化水平,降低了其转录活性,并降低了STAT6下调的转录靶基因Pou2f3和Gsdmc。这进一步抑制了IEC产生和分泌IL-25和IL-33,最终损害了抗蠕虫2型免疫反应[46]。OGT对多个STAT6位点O-GlcNA酰化的调节对于驱动针对蠕虫感染的2型免疫反应至关重要[46]

4. O-GlcNAc在癌症治疗中的相互作用

4.1. 肺癌

肺癌是全球主要的健康威胁,也是全球癌症相关发病率和死亡率的主要原因。2018年,约有209万例新诊断的肺癌[47]。传统的治疗方法如放疗和化疗通常疗效有限,特别是对于中晚期肺癌患者,他们通常死亡率高,预后差。尽管如此,最近在靶向治疗和免疫疗法方面的进展还是带来了新的希望。尽管有了这些进展,但随着时间的推移,许多患者对这些治疗产生了耐药性。因此,了解肺癌获得性耐药的分子机制至关重要。最近的研究强调了O-GlcNAc酰化在注入肺癌耐药性中的重要作用。例如,超O-GlcNAc酰化可以通过涉及p53或c-Myc的不同机制使肺癌细胞抵抗凋亡,这取决于细胞环境[48]。高CDDpin诱导的p53激活,超O-GlcNAc酰化靶向p53,促进其泛素化和随后的p53降解,从而获得致癌和抗凋亡功能。与p53激活率低相比,高O-GlcNAc酰化对p53的影响最小,而是通过干扰其泛素介导的降解来调节c-Myc的稳定性[49]。在顺铂治疗期间,O-GlcNAc酰化与p53或c-霉素化和泛素化之间的相关性分析支持了这些观点。

4.2. 胶质瘤

胶质瘤是最常见的恶性脑肿瘤类型,多形性胶质母细胞瘤特别具有侵袭性,常致命,导致患者预后较差[50]。虽然导致胶质瘤发展和进展的确切机制尚不清楚,但最近的研究提供了一些线索。Xu等人报道,亲黑素的O-GlcNAc酰化(MLPH)通过与含有21的E3泛素连接酶三部分基序(TRIM21)相互作用来阻止其降解。Tis相互作用似乎通过激活NF-κB信号通路[51]来增强胶质母细胞瘤对辐射的抵抗力。另一项研究强调了zeste同源物2 (EZH2)增强子在控制胶质瘤抗肿瘤免疫中的作用。EZH2的结构有利于磷酸化和O-GlcNAc酰化,促进胶质瘤细胞的侵袭和转移。抑制EZH2表达和经前颅磁刺激可能逆转胶质瘤患者对替莫唑胺的耐药性

4.3. 乳腺癌

乳腺癌BC约占全球女性所有癌症的30%,死亡率显著为15%。随着全球发病率和死亡率的逐年增长,确定有效的生物标志物的BC诊断和预后是至关重要的。沉默信息调节因子1 (SIRT1)是一种NAD+依赖的去乙酰化酶,在BC [52]中起重要作用。例如,Ferrer等人证实了SIRT1在OGT介导的叉头盒M1 (FOXM1)泛素化调控中的关键作用,表明降低SIRT1活性可以减轻OGT对FOXM1的影响,从而注入BC细胞[52]的侵袭和转移。进一步的研究表明,利亚诺定受体1 (RYR1)的O-GlcNAc酰化干扰nek10介导的磷酸化,增加泛素化和蛋白酶体降解;miR-122介导的OGT减少导致BC中RYR1丰度升高。此外,Yang等人发现MCF-7细胞中p53Ser149位点的O-GlcNAc酰化降低了Tr 155的磷酸化,使p53部分抵抗链脲佐菌素处理[53]下的泛素依赖的蛋白水解,影响了细胞活力。Tesefns强调了癌症治疗中O-GlcNAc酰化、磷酸化和泛素化之间存在复杂的相互作用,强调需要进一步研究突变蛋白与O-GlcNAc酰化之间的关系,特别是p53调控和O-GlcNac酰化。

5. 结论和未来展望

O-GlcNAc修饰是细胞对各种刺激作出反应的关键机制。O-GlcNAc修饰使细胞能够将营养物质的可用性和细胞代谢与关键细胞过程的调节联系起来,其中许多可能在癌症中受到损害。O-GlcNA酰化的改变是调节细胞周期进程、适应局部环境和基因表达变化的机制之一。O-GlcNA酰化的变化也会破坏其他信号系统的信息流,如磷酸化、泛素化和乙酰化。

O-GlcNAc糖基化是一种新的非经典糖基化反应[5]。尽管有足够的证据表明O-GlcNA酰化在调节肿瘤炎症中起着关键作用,但其机制仍有待充分阐明。OGT和OGA的调节和靶向对于维持正常的细胞功能至关重要,这些酶靶向其众多底物的机制仍有待阐明[2]。尽管人类癌症与OGT或OGA突变之间没有直接相关性,这可能是由于这些突变的致命性,但这两种酶的调节变化对细胞功能有着深远的影响。抑制OGT或OGA的靶向化疗药物可能会改变肿瘤功能,或使肿瘤更容易受到其他作用或化疗药物的影响[5]。然而,抑制OGT或OGA对正常细胞的潜在不利影响尚不清楚。最近,产生了一种O-GlcNAc传感器蛋白,并在信号转导过程中表现出动态的O-GlcNAc糖基化。这项技术将允许在体内仔细分析不同信号系统对O-GlcNAc循环的影响[7]。使用深度测序和先进的蛋白质组学技术的研究,如稳定的氨基酸同位素标记或细胞培养中的相对和绝对定量,将为O-GlcNAc调节的信号通路提供新的见解。更好地了解与癌症变化相关的途径以及O-GlcNAc在这些途径中的作用,将有助于开发新的靶向治疗方法。

基金项目

本项目受泰安市科技创新发展项目(2023NS246)支持。

NOTES

*通讯作者。

参考文献

[1] Olsen, J.V. and Mann, M. (2013) Status of Large-Scale Analysis of Post-Translational Modifications by Mass Spectrometry. Molecular & Cellular Proteomics, 12, 3444-3452.
https://doi.org/10.1074/mcp.o113.034181
[2] Yang, X. and Qian, K. (2017) Protein O-GlcNAcylation: Emerging Mechanisms and Functions. Nature Reviews Molecular Cell Biology, 18, 452-465.
https://doi.org/10.1038/nrm.2017.22
[3] Whelan, S.A. and Hart, G.W. (2003) Proteomic Approaches to Analyze the Dynamic Relationships between Nucleocytoplasmic Protein Glycosylation and Phosphorylation. Circulation Research, 93, 1047-1058.
https://doi.org/10.1161/01.res.0000103190.20260.37
[4] Decourcelle, A., Leprince, D. and Dehennaut, V. (2019) Regulation of Polycomb Repression by O-GlcNAcylation: Linking Nutrition to Epigenetic Reprogramming in Embryonic Development and Cancer. Frontiers in Endocrinology, 10, Article 117.
https://doi.org/10.3389/fendo.2019.00117
[5] Hart, G.W., Housley, M.P. and Slawson, C. (2007) Cycling of O-Linked β-N-Acetylglucosamine on Nucleocytoplasmic Proteins. Nature, 446, 1017-1022.
https://doi.org/10.1038/nature05815
[6] He, X., Hu, X., Wen, G., Wang, Z. and Lin, W. (2023) O-GlcNAcylation in Cancer Development and Immunotherapy. Cancer Letters, 566, Article ID: 216258.
https://doi.org/10.1016/j.canlet.2023.216258
[7] Xie, S., Jin, N., Gu, J., Shi, J., Sun, J., Chu, D., et al. (2016) O‐GlcNAcylation of Protein Kinase a Catalytic Subunits Enhances Its Activity: A Mechanism Linked to Learning and Memory Deficits in Alzheimer’s Disease. Aging Cell, 15, 455-464.
https://doi.org/10.1111/acel.12449
[8] Yang, W.H., Park, S.Y., Nam, H.W., Kim, D.H., Kang, J.G., Kang, E.S., et al. (2008) NFκB Activation Is Associated with Its O-GlcNAcylation State under Hyperglycemic Conditions. Proceedings of the National Academy of Sciences of the United States of America, 105, 17345-17350.
https://doi.org/10.1073/pnas.0806198105
[9] Yuzwa, S.A., Shan, X., Macauley, M.S., Clark, T., Skorobogatko, Y., Vosseller, K., et al. (2012) Increasing O-GlcNAc Slows Neurodegeneration and Stabilizes Tau against Aggregation. Nature Chemical Biology, 8, 393-399.
https://doi.org/10.1038/nchembio.797
[10] Yuzwa, S.A. and Vocadlo, D.J. (2014) O-GlcNAc and Neurodegeneration: Biochemical Mechanisms and Potential Roles in Alzheimer’s Disease and Beyond. Chemical Society Reviews, 43, 6839-6858.
https://doi.org/10.1039/c4cs00038b
[11] Zhang, C., Atasoy, D., Araç, D., Yang, X., Fucillo, M.V., Robison, A.J., et al. (2010) Neurexins Physically and Functionally Interact with GABAA Receptors. Neuron, 66, 403-416.
https://doi.org/10.1016/j.neuron.2010.04.008
[12] Zhang, Q., Lenardo, M.J. and Baltimore, D. (2017) 30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology. Cell, 168, 37-57.
https://doi.org/10.1016/j.cell.2016.12.012
[13] Zhang, Z., Tan, E.P., VandenHull, N.J., Peterson, K.R. and Slawson, C. (2014) O-GlcNAcase Expression Is Sensitive to Changes in O-GlcNAc Homeostasis. Frontiers in Endocrinology, 5, Article 206.
https://doi.org/10.3389/fendo.2014.00206
[14] Zhu, Q., Cheng, X., Cheng, Y., Chen, J., Xu, H., Gao, Y., et al. (2020) O-GlcNAcylation Regulates the Methionine Cycle to Promote Pluripotency of Stem Cells. Proceedings of the National Academy of Sciences of the United States of America, 117, 7755-7763.
https://doi.org/10.1073/pnas.1915582117
[15] Zhu, Y., Wang, Y., Yao, R., Hao, T., Cao, J., Huang, H., et al. (2017) Enhanced Neuroinflammation Mediated by DNA Methylation of the Glucocorticoid Receptor Triggers Cognitive Dysfunction after Sevoflurane Anesthesia in Adult Rats Subjected to Maternal Separation during the Neonatal Period. Journal of Neuroinflammation, 14, Article 6.
https://doi.org/10.1186/s12974-016-0782-5
[16] Dong, X., Shu, L., Zhang, J., Yang, X., Cheng, X., Zhao, X., et al. (2023) Ogt-Mediated O-GlcNAcylation Inhibits Astrocytes Activation through Modulating NF-κB Signaling Pathway. Journal of Neuroinflammation, 20, Article No. 146.
https://doi.org/10.1186/s12974-023-02824-8
[17] Zhang, D., Cai, Y., Chen, M., Gao, L., Shen, Y. and Huang, Z. (2015) Ogt-Mediated O-GlcNAcylation Promotes NF-κB Activation and Inflammation in Acute Pancreatitis. Inflammation Research, 64, 943-952.
https://doi.org/10.1007/s00011-015-0877-y
[18] Yang, Y.R., Kim, D.H., Seo, Y., Park, D., Jang, H., Choi, S.Y., et al. (2015) Elevated O-GlcNAcylation Promotes Colonic Inflammation and Tumorigenesis by Modulating NF-κB Signaling. Oncotarget, 6, 12529-12542.
https://doi.org/10.18632/oncotarget.3725
[19] Motolani, A., Martin, M., Wang, B., Jiang, G., Alipourgivi, F., Huang, X., et al. (2023) Critical Role of Novel O-GlcNAcylation of S550 and S551 on the P65 Subunit of NF-κB in Pancreatic Cancer. Cancers, 15, Article 4742.
https://doi.org/10.3390/cancers15194742
[20] Dong, H., Liu, Z. and Wen, H. (2022) Protein O-GlcNAcylation Regulates Innate Immune Cell Function. Frontiers in Immunology, 13, Article 805018.
https://doi.org/10.3389/fimmu.2022.805018
[21] Ma, Z., Vocadlo, D.J. and Vosseller, K. (2013) Hyper-O-GlcNAcylation Is Anti-Apoptotic and Maintains Constitutive NF-κB Activity in Pancreatic Cancer Cells. Journal of Biological Chemistry, 288, 15121-15130.
https://doi.org/10.1074/jbc.m113.470047
[22] Nakagawa, T., Furukawa, Y., Hayashi, T., Nomura, A., Yokoe, S., Moriwaki, K., et al. (2019) Augmented O-GlcNAcylation Attenuates Intermittent Hypoxia-Induced Cardiac Remodeling through the Suppression of NFAT and NF-κB Activities in Mice. Hypertension Research, 42, 1858-1871.
https://doi.org/10.1038/s41440-019-0311-x
[23] Li, Y., Liu, H., Xu, Q., Du, Y. and Xu, J. (2014) Chitosan Oligosaccharides Block LPS-Induced O-GlcNAcylation of NF-κB and Endothelial Inflammatory Response. Carbohydrate Polymers, 99, 568-578.
https://doi.org/10.1016/j.carbpol.2013.08.082
[24] Pellegrini, S. and Dusanter‐Fourt, I. (1997) The Structure, Regulation and Function of the Janus Kinases (JAKs) and the Signal Transducers and Activators of Transcription (STATS). European Journal of Biochemistry, 248, 615-633.
https://doi.org/10.1111/j.1432-1033.1997.00615.x
[25] Liongue, C., O’Sullivan, L.A., Trengove, M.C. and Ward, A.C. (2012) Evolution of JAK-STAT Pathway Components: Mechanisms and Role in Immune System Development. PLOS ONE, 7, e32777.
https://doi.org/10.1371/journal.pone.0032777
[26] Du, X., Wang, B., Liu, X., Liu, X., He, Y., Zhang, Q., et al. (2017) Comparative Transcriptome Analysis of Ovary and Testis Reveals Potential Sex-Related Genes and Pathways in Spotted Knifejaw Oplegnathus Punctatus. Gene, 637, 203-210.
https://doi.org/10.1016/j.gene.2017.09.055
[27] Zhang, Z., Ma, P., Li, Q., Xiao, Q., Sun, H., Olasege, B.S., et al. (2018) Exploring the Genetic Correlation between Growth and Immunity Based on Summary Statistics of Genome-Wide Association Studies. Frontiers in Genetics, 9, Article 393.
https://doi.org/10.3389/fgene.2018.00393
[28] Auernhammer, C.J., Chesnokova, V., Bousquet, C. and Melmed, S. (1998) Pituitary Corticotroph SOCS-3: Novel Intracellular Regulation of Leukemia-Inhibitory Factor-Mediated Proopiomelanocortin Gene Expression and Adrenocorticotropin Secretion. Molecular Endocrinology, 12, 954-961.
https://doi.org/10.1210/mend.12.7.0140
[29] Herrera, S.C. and Bach, E.A. (2019) JAK/STAT Signaling in Stem Cells and Regeneration: From Drosophila to Vertebrates. Development, 146, dev167643.
https://doi.org/10.1242/dev.167643
[30] Kornfeld, J. (2008) The Different Functions of Stat5 and Chromatin Alteration through Stat5 Proteins. Frontiers in Bioscience, 13, 6237-6254.
https://doi.org/10.2741/3151
[31] Briscoe, J., Guschin, D. and Müller, M. (1994) Signal Transduction: Just Another Signalling Pathway. Current Biology, 4, 1033-1035.
https://doi.org/10.1016/s0960-9822(00)00236-0
[32] Images SSMAFM.
https://smart.servier.com
[33] Bond, M.R. and Hanover, J.A. (2015) A Little Sugar Goes a Long Way: The Cell Biology of O-GlcNAc. Journal of Cell Biology, 208, 869-880.
https://doi.org/10.1083/jcb.201501101
[34] Love, D.C. and Hanover, J.A. (2005) The Hexosamine Signaling Pathway: Deciphering the “O-GlcNAc Code”. Sciences STKE, 2005, re13.
https://doi.org/10.1126/stke.3122005re13
[35] Krämer, O.H. and Moriggl, R. (2012) Acetylation and Sumoylation Control STAT5 Activation Antagonistically. JAK-STAT, 1, 203-207.
https://doi.org/10.4161/jkst.21232
[36] Liu, J., Qian, C. and Cao, X. (2016) Post-Translational Modification Control of Innate Immunity. Immunity, 45, 15-30.
https://doi.org/10.1016/j.immuni.2016.06.020
[37] Enchev, R.I., Schulman, B.A. and Peter, M. (2014) Protein Neddylation: Beyond Cullin-Ring Ligases. Nature Reviews Molecular Cell Biology, 16, 30-44.
https://doi.org/10.1038/nrm3919
[38] Alleyn, M., Breitzig, M., Lockey, R. and Kolliputi, N. (2018) The Dawn of Succinylation: A Posttranslational Modification. American Journal of Physiology-Cell Physiology, 314, C228-C232.
https://doi.org/10.1152/ajpcell.00148.2017
[39] Van Nguyen, T., Angkasekwinai, P., Dou, H., Lin, F., Lu, L., Cheng, J., et al. (2012) Sumo-Specific Protease 1 Is Critical for Early Lymphoid Development through Regulation of STAT5 Activation. Molecular Cell, 45, 210-221.
https://doi.org/10.1016/j.molcel.2011.12.026
[40] Rani, A. and Murphy, J.J. (2016) STAT5 in Cancer and Immunity. Journal of Interferon & Cytokine Research, 36, 226-237.
https://doi.org/10.1089/jir.2015.0054
[41] Chen, P., Chi, J. and Boyce, M. (2018) Functional Crosstalk among Oxidative Stress and O-GlcNAc Signaling Pathways. Glycobiology, 28, 556-564.
https://doi.org/10.1093/glycob/cwy027
[42] Kang, J.G., Park, S.Y., Ji, S., Jang, I., Park, S., Kim, H.S., et al. (2009) O-GlcNAc Protein Modification in Cancer Cells Increases in Response to Glucose Deprivation through Glycogen Degradation. Journal of Biological Chemistry, 284, 34777-34784.
https://doi.org/10.1074/jbc.m109.026351
[43] Taylor, R.P., Geisler, T.S., Chambers, J.H. and McClain, D.A. (2009) Up-Regulation of O-GlcNAc Transferase with Glucose Deprivation in HepG2 Cells Is Mediated by Decreased Hexosamine Pathway Flux. Journal of Biological Chemistry, 284, 3425-3432.
https://doi.org/10.1074/jbc.m803198200
[44] Xiao, Z., Dai, Z. and Locasale, J.W. (2019) Metabolic Landscape of the Tumor Microenvironment at Single Cell Resolution. Nature Communications, 10, Article No. 3763.
https://doi.org/10.1038/s41467-019-11738-0
[45] Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K.J. and Werb, Z. (2020) Concepts of Extracellular Matrix Remodelling in Tumour Progression and Metastasis. Nature Communications, 11, Article No. 5120.
https://doi.org/10.1038/s41467-020-18794-x
[46] Pan, D. and Jia, D. (2021) Application of Single-Cell Multi-Omics in Dissecting Cancer Cell Plasticity and Tumor Heterogeneity. Frontiers in Molecular Biosciences, 8, Article 757024.
https://doi.org/10.3389/fmolb.2021.757024
[47] Jiang, Y., Guo, H., Tong, T., Xie, F., Qin, X., Wang, X., et al. (2022) lncRNA Lnc-POP1-1 Upregulated by VN1R5 Promotes Cisplatin Resistance in Head and Neck Squamous Cell Carcinoma through Interaction with MCM5. Molecular Therapy, 30, 448-467.
https://doi.org/10.1016/j.ymthe.2021.06.006
[48] Su, Y., Wu, C., Chang, Y., Li, L., Chen, Y., Jia, X., et al. (2022) USP17L2-SIRT7 Axis Regulates DNA Damage Repair and Chemoresistance in Breast Cancer Cells. Breast Cancer Research and Treatment, 196, 31-44.
https://doi.org/10.1007/s10549-022-06711-3
[49] Kayagaki, N., Webster, J.D. and Newton, K. (2024) Control of Cell Death in Health and Disease. Annual Review of Pathology: Mechanisms of Disease, 19, 157-180.
https://doi.org/10.1146/annurev-pathmechdis-051022-014433
[50] Shi, L., Tang, X., Qian, M., Liu, Z., Meng, F., Fu, L., et al. (2018) A Sirt1-Centered Circuitry Regulates Breast Cancer Stemness and Metastasis. Oncogene, 37, 6299-6315.
https://doi.org/10.1038/s41388-018-0370-5
[51] Ferrer, C.M., Lu, T.Y., Bacigalupa, Z.A., Katsetos, C.D., Sinclair, D.A. and Reginato, M.J. (2016) O-glcNAcylation Regulates Breast Cancer Metastasis via SIRT1 Modulation of FOXM1 Pathway. Oncogene, 36, 559-569.
https://doi.org/10.1038/onc.2016.228
[52] Yan, W., Cao, M., Ruan, X., Jiang, L., Lee, S., Lemanek, A., et al. (2022) Cancer-Cell-Secreted miR-122 Suppresses O-GlcNAcylation to Promote Skeletal Muscle Proteolysis. Nature Cell Biology, 24, 793-804.
https://doi.org/10.1038/s41556-022-00893-0
[53] Yang, W.H., Kim, J.E., Nam, H.W., Ju, J.W., Kim, H.S., Kim, Y.S., et al. (2006) Modification of P53 with O-Linked N-Acetylglucosamine Regulates P53 Activity and Stability. Nature Cell Biology, 8, 1074-1083.
https://doi.org/10.1038/ncb1470