[1]
|
Olsen, J.V. and Mann, M. (2013) Status of Large-Scale Analysis of Post-Translational Modifications by Mass Spectrometry. Molecular & Cellular Proteomics, 12, 3444-3452. https://doi.org/10.1074/mcp.o113.034181
|
[2]
|
Yang, X. and Qian, K. (2017) Protein O-GlcNAcylation: Emerging Mechanisms and Functions. Nature Reviews Molecular Cell Biology, 18, 452-465. https://doi.org/10.1038/nrm.2017.22
|
[3]
|
Whelan, S.A. and Hart, G.W. (2003) Proteomic Approaches to Analyze the Dynamic Relationships between Nucleocytoplasmic Protein Glycosylation and Phosphorylation. Circulation Research, 93, 1047-1058. https://doi.org/10.1161/01.res.0000103190.20260.37
|
[4]
|
Decourcelle, A., Leprince, D. and Dehennaut, V. (2019) Regulation of Polycomb Repression by O-GlcNAcylation: Linking Nutrition to Epigenetic Reprogramming in Embryonic Development and Cancer. Frontiers in Endocrinology, 10, Article 117. https://doi.org/10.3389/fendo.2019.00117
|
[5]
|
Hart, G.W., Housley, M.P. and Slawson, C. (2007) Cycling of O-Linked β-N-Acetylglucosamine on Nucleocytoplasmic Proteins. Nature, 446, 1017-1022. https://doi.org/10.1038/nature05815
|
[6]
|
He, X., Hu, X., Wen, G., Wang, Z. and Lin, W. (2023) O-GlcNAcylation in Cancer Development and Immunotherapy. Cancer Letters, 566, Article ID: 216258. https://doi.org/10.1016/j.canlet.2023.216258
|
[7]
|
Xie, S., Jin, N., Gu, J., Shi, J., Sun, J., Chu, D., et al. (2016) O‐GlcNAcylation of Protein Kinase a Catalytic Subunits Enhances Its Activity: A Mechanism Linked to Learning and Memory Deficits in Alzheimer’s Disease. Aging Cell, 15, 455-464. https://doi.org/10.1111/acel.12449
|
[8]
|
Yang, W.H., Park, S.Y., Nam, H.W., Kim, D.H., Kang, J.G., Kang, E.S., et al. (2008) NFκB Activation Is Associated with Its O-GlcNAcylation State under Hyperglycemic Conditions. Proceedings of the National Academy of Sciences of the United States of America, 105, 17345-17350. https://doi.org/10.1073/pnas.0806198105
|
[9]
|
Yuzwa, S.A., Shan, X., Macauley, M.S., Clark, T., Skorobogatko, Y., Vosseller, K., et al. (2012) Increasing O-GlcNAc Slows Neurodegeneration and Stabilizes Tau against Aggregation. Nature Chemical Biology, 8, 393-399. https://doi.org/10.1038/nchembio.797
|
[10]
|
Yuzwa, S.A. and Vocadlo, D.J. (2014) O-GlcNAc and Neurodegeneration: Biochemical Mechanisms and Potential Roles in Alzheimer’s Disease and Beyond. Chemical Society Reviews, 43, 6839-6858. https://doi.org/10.1039/c4cs00038b
|
[11]
|
Zhang, C., Atasoy, D., Araç, D., Yang, X., Fucillo, M.V., Robison, A.J., et al. (2010) Neurexins Physically and Functionally Interact with GABAA Receptors. Neuron, 66, 403-416. https://doi.org/10.1016/j.neuron.2010.04.008
|
[12]
|
Zhang, Q., Lenardo, M.J. and Baltimore, D. (2017) 30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology. Cell, 168, 37-57. https://doi.org/10.1016/j.cell.2016.12.012
|
[13]
|
Zhang, Z., Tan, E.P., VandenHull, N.J., Peterson, K.R. and Slawson, C. (2014) O-GlcNAcase Expression Is Sensitive to Changes in O-GlcNAc Homeostasis. Frontiers in Endocrinology, 5, Article 206. https://doi.org/10.3389/fendo.2014.00206
|
[14]
|
Zhu, Q., Cheng, X., Cheng, Y., Chen, J., Xu, H., Gao, Y., et al. (2020) O-GlcNAcylation Regulates the Methionine Cycle to Promote Pluripotency of Stem Cells. Proceedings of the National Academy of Sciences of the United States of America, 117, 7755-7763. https://doi.org/10.1073/pnas.1915582117
|
[15]
|
Zhu, Y., Wang, Y., Yao, R., Hao, T., Cao, J., Huang, H., et al. (2017) Enhanced Neuroinflammation Mediated by DNA Methylation of the Glucocorticoid Receptor Triggers Cognitive Dysfunction after Sevoflurane Anesthesia in Adult Rats Subjected to Maternal Separation during the Neonatal Period. Journal of Neuroinflammation, 14, Article 6. https://doi.org/10.1186/s12974-016-0782-5
|
[16]
|
Dong, X., Shu, L., Zhang, J., Yang, X., Cheng, X., Zhao, X., et al. (2023) Ogt-Mediated O-GlcNAcylation Inhibits Astrocytes Activation through Modulating NF-κB Signaling Pathway. Journal of Neuroinflammation, 20, Article No. 146. https://doi.org/10.1186/s12974-023-02824-8
|
[17]
|
Zhang, D., Cai, Y., Chen, M., Gao, L., Shen, Y. and Huang, Z. (2015) Ogt-Mediated O-GlcNAcylation Promotes NF-κB Activation and Inflammation in Acute Pancreatitis. Inflammation Research, 64, 943-952. https://doi.org/10.1007/s00011-015-0877-y
|
[18]
|
Yang, Y.R., Kim, D.H., Seo, Y., Park, D., Jang, H., Choi, S.Y., et al. (2015) Elevated O-GlcNAcylation Promotes Colonic Inflammation and Tumorigenesis by Modulating NF-κB Signaling. Oncotarget, 6, 12529-12542. https://doi.org/10.18632/oncotarget.3725
|
[19]
|
Motolani, A., Martin, M., Wang, B., Jiang, G., Alipourgivi, F., Huang, X., et al. (2023) Critical Role of Novel O-GlcNAcylation of S550 and S551 on the P65 Subunit of NF-κB in Pancreatic Cancer. Cancers, 15, Article 4742. https://doi.org/10.3390/cancers15194742
|
[20]
|
Dong, H., Liu, Z. and Wen, H. (2022) Protein O-GlcNAcylation Regulates Innate Immune Cell Function. Frontiers in Immunology, 13, Article 805018. https://doi.org/10.3389/fimmu.2022.805018
|
[21]
|
Ma, Z., Vocadlo, D.J. and Vosseller, K. (2013) Hyper-O-GlcNAcylation Is Anti-Apoptotic and Maintains Constitutive NF-κB Activity in Pancreatic Cancer Cells. Journal of Biological Chemistry, 288, 15121-15130. https://doi.org/10.1074/jbc.m113.470047
|
[22]
|
Nakagawa, T., Furukawa, Y., Hayashi, T., Nomura, A., Yokoe, S., Moriwaki, K., et al. (2019) Augmented O-GlcNAcylation Attenuates Intermittent Hypoxia-Induced Cardiac Remodeling through the Suppression of NFAT and NF-κB Activities in Mice. Hypertension Research, 42, 1858-1871. https://doi.org/10.1038/s41440-019-0311-x
|
[23]
|
Li, Y., Liu, H., Xu, Q., Du, Y. and Xu, J. (2014) Chitosan Oligosaccharides Block LPS-Induced O-GlcNAcylation of NF-κB and Endothelial Inflammatory Response. Carbohydrate Polymers, 99, 568-578. https://doi.org/10.1016/j.carbpol.2013.08.082
|
[24]
|
Pellegrini, S. and Dusanter‐Fourt, I. (1997) The Structure, Regulation and Function of the Janus Kinases (JAKs) and the Signal Transducers and Activators of Transcription (STATS). European Journal of Biochemistry, 248, 615-633. https://doi.org/10.1111/j.1432-1033.1997.00615.x
|
[25]
|
Liongue, C., O’Sullivan, L.A., Trengove, M.C. and Ward, A.C. (2012) Evolution of JAK-STAT Pathway Components: Mechanisms and Role in Immune System Development. PLOS ONE, 7, e32777. https://doi.org/10.1371/journal.pone.0032777
|
[26]
|
Du, X., Wang, B., Liu, X., Liu, X., He, Y., Zhang, Q., et al. (2017) Comparative Transcriptome Analysis of Ovary and Testis Reveals Potential Sex-Related Genes and Pathways in Spotted Knifejaw Oplegnathus Punctatus. Gene, 637, 203-210. https://doi.org/10.1016/j.gene.2017.09.055
|
[27]
|
Zhang, Z., Ma, P., Li, Q., Xiao, Q., Sun, H., Olasege, B.S., et al. (2018) Exploring the Genetic Correlation between Growth and Immunity Based on Summary Statistics of Genome-Wide Association Studies. Frontiers in Genetics, 9, Article 393. https://doi.org/10.3389/fgene.2018.00393
|
[28]
|
Auernhammer, C.J., Chesnokova, V., Bousquet, C. and Melmed, S. (1998) Pituitary Corticotroph SOCS-3: Novel Intracellular Regulation of Leukemia-Inhibitory Factor-Mediated Proopiomelanocortin Gene Expression and Adrenocorticotropin Secretion. Molecular Endocrinology, 12, 954-961. https://doi.org/10.1210/mend.12.7.0140
|
[29]
|
Herrera, S.C. and Bach, E.A. (2019) JAK/STAT Signaling in Stem Cells and Regeneration: From Drosophila to Vertebrates. Development, 146, dev167643. https://doi.org/10.1242/dev.167643
|
[30]
|
Kornfeld, J. (2008) The Different Functions of Stat5 and Chromatin Alteration through Stat5 Proteins. Frontiers in Bioscience, 13, 6237-6254. https://doi.org/10.2741/3151
|
[31]
|
Briscoe, J., Guschin, D. and Müller, M. (1994) Signal Transduction: Just Another Signalling Pathway. Current Biology, 4, 1033-1035. https://doi.org/10.1016/s0960-9822(00)00236-0
|
[32]
|
Images SSMAFM. https://smart.servier.com
|
[33]
|
Bond, M.R. and Hanover, J.A. (2015) A Little Sugar Goes a Long Way: The Cell Biology of O-GlcNAc. Journal of Cell Biology, 208, 869-880. https://doi.org/10.1083/jcb.201501101
|
[34]
|
Love, D.C. and Hanover, J.A. (2005) The Hexosamine Signaling Pathway: Deciphering the “O-GlcNAc Code”. Science’s STKE, 2005, re13. https://doi.org/10.1126/stke.3122005re13
|
[35]
|
Krämer, O.H. and Moriggl, R. (2012) Acetylation and Sumoylation Control STAT5 Activation Antagonistically. JAK-STAT, 1, 203-207. https://doi.org/10.4161/jkst.21232
|
[36]
|
Liu, J., Qian, C. and Cao, X. (2016) Post-Translational Modification Control of Innate Immunity. Immunity, 45, 15-30. https://doi.org/10.1016/j.immuni.2016.06.020
|
[37]
|
Enchev, R.I., Schulman, B.A. and Peter, M. (2014) Protein Neddylation: Beyond Cullin-Ring Ligases. Nature Reviews Molecular Cell Biology, 16, 30-44. https://doi.org/10.1038/nrm3919
|
[38]
|
Alleyn, M., Breitzig, M., Lockey, R. and Kolliputi, N. (2018) The Dawn of Succinylation: A Posttranslational Modification. American Journal of Physiology-Cell Physiology, 314, C228-C232. https://doi.org/10.1152/ajpcell.00148.2017
|
[39]
|
Van Nguyen, T., Angkasekwinai, P., Dou, H., Lin, F., Lu, L., Cheng, J., et al. (2012) Sumo-Specific Protease 1 Is Critical for Early Lymphoid Development through Regulation of STAT5 Activation. Molecular Cell, 45, 210-221. https://doi.org/10.1016/j.molcel.2011.12.026
|
[40]
|
Rani, A. and Murphy, J.J. (2016) STAT5 in Cancer and Immunity. Journal of Interferon & Cytokine Research, 36, 226-237. https://doi.org/10.1089/jir.2015.0054
|
[41]
|
Chen, P., Chi, J. and Boyce, M. (2018) Functional Crosstalk among Oxidative Stress and O-GlcNAc Signaling Pathways. Glycobiology, 28, 556-564. https://doi.org/10.1093/glycob/cwy027
|
[42]
|
Kang, J.G., Park, S.Y., Ji, S., Jang, I., Park, S., Kim, H.S., et al. (2009) O-GlcNAc Protein Modification in Cancer Cells Increases in Response to Glucose Deprivation through Glycogen Degradation. Journal of Biological Chemistry, 284, 34777-34784. https://doi.org/10.1074/jbc.m109.026351
|
[43]
|
Taylor, R.P., Geisler, T.S., Chambers, J.H. and McClain, D.A. (2009) Up-Regulation of O-GlcNAc Transferase with Glucose Deprivation in HepG2 Cells Is Mediated by Decreased Hexosamine Pathway Flux. Journal of Biological Chemistry, 284, 3425-3432. https://doi.org/10.1074/jbc.m803198200
|
[44]
|
Xiao, Z., Dai, Z. and Locasale, J.W. (2019) Metabolic Landscape of the Tumor Microenvironment at Single Cell Resolution. Nature Communications, 10, Article No. 3763. https://doi.org/10.1038/s41467-019-11738-0
|
[45]
|
Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K.J. and Werb, Z. (2020) Concepts of Extracellular Matrix Remodelling in Tumour Progression and Metastasis. Nature Communications, 11, Article No. 5120. https://doi.org/10.1038/s41467-020-18794-x
|
[46]
|
Pan, D. and Jia, D. (2021) Application of Single-Cell Multi-Omics in Dissecting Cancer Cell Plasticity and Tumor Heterogeneity. Frontiers in Molecular Biosciences, 8, Article 757024. https://doi.org/10.3389/fmolb.2021.757024
|
[47]
|
Jiang, Y., Guo, H., Tong, T., Xie, F., Qin, X., Wang, X., et al. (2022) lncRNA Lnc-POP1-1 Upregulated by VN1R5 Promotes Cisplatin Resistance in Head and Neck Squamous Cell Carcinoma through Interaction with MCM5. Molecular Therapy, 30, 448-467. https://doi.org/10.1016/j.ymthe.2021.06.006
|
[48]
|
Su, Y., Wu, C., Chang, Y., Li, L., Chen, Y., Jia, X., et al. (2022) USP17L2-SIRT7 Axis Regulates DNA Damage Repair and Chemoresistance in Breast Cancer Cells. Breast Cancer Research and Treatment, 196, 31-44. https://doi.org/10.1007/s10549-022-06711-3
|
[49]
|
Kayagaki, N., Webster, J.D. and Newton, K. (2024) Control of Cell Death in Health and Disease. Annual Review of Pathology: Mechanisms of Disease, 19, 157-180. https://doi.org/10.1146/annurev-pathmechdis-051022-014433
|
[50]
|
Shi, L., Tang, X., Qian, M., Liu, Z., Meng, F., Fu, L., et al. (2018) A Sirt1-Centered Circuitry Regulates Breast Cancer Stemness and Metastasis. Oncogene, 37, 6299-6315. https://doi.org/10.1038/s41388-018-0370-5
|
[51]
|
Ferrer, C.M., Lu, T.Y., Bacigalupa, Z.A., Katsetos, C.D., Sinclair, D.A. and Reginato, M.J. (2016) O-glcNAcylation Regulates Breast Cancer Metastasis via SIRT1 Modulation of FOXM1 Pathway. Oncogene, 36, 559-569. https://doi.org/10.1038/onc.2016.228
|
[52]
|
Yan, W., Cao, M., Ruan, X., Jiang, L., Lee, S., Lemanek, A., et al. (2022) Cancer-Cell-Secreted miR-122 Suppresses O-GlcNAcylation to Promote Skeletal Muscle Proteolysis. Nature Cell Biology, 24, 793-804. https://doi.org/10.1038/s41556-022-00893-0
|
[53]
|
Yang, W.H., Kim, J.E., Nam, H.W., Ju, J.W., Kim, H.S., Kim, Y.S., et al. (2006) Modification of P53 with O-Linked N-Acetylglucosamine Regulates P53 Activity and Stability. Nature Cell Biology, 8, 1074-1083. https://doi.org/10.1038/ncb1470
|