[1]
|
Arabpour, M., Saghazadeh, A. and Rezaei, N. (2021) Anti-Inflammatory and M2 Macrophage Polarization-Promoting Effect of Mesenchymal Stem Cell-Derived Exosomes. International Immunopharmacology, 97, Article ID: 107823. https://doi.org/10.1016/j.intimp.2021.107823
|
[2]
|
Auger, J.P., Gyotoku, K.A., Bansal, R., et al. (2024) Metabolic Rewiring Promotes Anti-Inflammatory Effects of Glucocorticoids. Nature, 629, 184-192.
|
[3]
|
Bai, R., Li, Y., Jian, L., Yang, Y., Zhao, L. and Wei, M. (2022) The Hypoxia-Driven Crosstalk between Tumor and Tumor-Associated Macrophages: Mechanisms and Clinical Treatment Strategies. Molecular Cancer, 21, Article No. 177. https://doi.org/10.1186/s12943-022-01645-2
|
[4]
|
Bansal, R., Kimlinger, T., Gyotoku, K.A., Smith, M., Rajkumar, V. and Kumar, S. (2021) Impact of CD138 Magnetic Bead-Based Positive Selection on Bone Marrow Plasma Cell Surface Markers. Clinical Lymphoma Myeloma and Leukemia, 21, e48-e51. https://doi.org/10.1016/j.clml.2020.08.003
|
[5]
|
Bhatia, D., Capili, A., Nakahira, K., Muthukumar, T., Torres, L.K., Choi, A.M.K., et al. (2022) Conditional Deletion of Myeloid-Specific Mitofusin 2 but Not Mitofusin 1 Promotes Kidney Fibrosis. Kidney International, 101, 963-986. https://doi.org/10.1016/j.kint.2022.01.030
|
[6]
|
Brauneck, F., Fischer, B., Witt, M., Muschhammer, J., Oelrich, J., da Costa Avelar, P.H., et al. (2022) TIGIT Blockade Repolarizes Aml-Associated TIGIT+ M2 Macrophages to an M1 Phenotype and Increases CD47-Mediated Phagocytosis. Journal for ImmunoTherapy of Cancer, 10, e004794. https://doi.org/10.1136/jitc-2022-004794
|
[7]
|
Brennan, F.H., Li, Y., Wang, C., Ma, A., Guo, Q., Li, Y., et al. (2022) Microglia Coordinate Cellular Interactions during Spinal Cord Repair in Mice. Nature Communications, 13, Article No. 4096. https://doi.org/10.1038/s41467-022-31797-0
|
[8]
|
Liu, Q., Yan, X., Yuan, Y., Li, R., Zhao, Y., Fu, J., et al. (2024) HTRA2/OMI-Mediated Mitochondrial Quality Control Alters Macrophage Polarization Affecting Systemic Chronic Inflammation. International Journal of Molecular Sciences, 25, Article 1577. https://doi.org/10.3390/ijms25031577
|
[9]
|
Brennan, F.H., Swarts, E.A., Kigerl, K.A., Mifflin, K.A., Guan, Z., Noble, B.T., et al. (2024) Microglia Promote Maladaptive Plasticity in Autonomic Circuitry after Spinal Cord Injury in Mice. Science Translational Medicine, 16, eadi3259. https://doi.org/10.1126/scitranslmed.adi3259
|
[10]
|
Brockie, S., Hong, J. and Fehlings, M.G. (2021) The Role of Microglia in Modulating Neuroinflammation after Spinal Cord Injury. International Journal of Molecular Sciences, 22, Article 9706. https://doi.org/10.3390/ijms22189706
|
[11]
|
Cai, J., Song, L., Zhang, F., Wu, S., Zhu, G., Zhang, P., et al. (2024) Targeting SRSF10 Might Inhibit M2 Macrophage Polarization and Potentiate Anti‐PD‐1 Therapy in Hepatocellular Carcinoma. Cancer Communications, 44, 1231-1260. https://doi.org/10.1002/cac2.12607
|
[12]
|
Cai, Z., Li, W., Hager, S., Wilson, J.L., Afjehi-Sadat, L., Heiss, E.H., et al. (2024) Targeting PHGDH Reverses the Immunosuppressive Phenotype of Tumor-Associated Macrophages through α-Ketoglutarate and mTORC1 Signaling. Cellular & Molecular Immunology, 21, 448-465. https://doi.org/10.1038/s41423-024-01134-0
|
[13]
|
Cao, Y., Wo, M., Xu, C., Fei, X., Jin, J. and Shan, Z. (2023) An AMPK Agonist Suppresses the Progress of Colorectal Cancer by Regulating the Polarization of TAM to M1 through Inhibition of HIF-1α and mTOR Signal Pathway. Journal of Cancer Research and Therapeutics, 19, 1560-1567. https://doi.org/10.4103/jcrt.jcrt_2670_22
|
[14]
|
Lima, R., Monteiro, A., Salgado, A.J., Monteiro, S. and Silva, N.A. (2022) Pathophysiology and Therapeutic Approaches for Spinal Cord Injury. International Journal of Molecular Sciences, 23, Article 13833. https://doi.org/10.3390/ijms232213833
|
[15]
|
Chen, Y., Wu, G., Li, M., Hesse, M., Ma, Y., Chen, W., et al. (2022) LDHA-Mediated Metabolic Reprogramming Promoted Cardiomyocyte Proliferation by Alleviating ROS and Inducing M2 Macrophage Polarization. Redox Biology, 56, Article ID: 102446. https://doi.org/10.1016/j.redox.2022.102446
|
[16]
|
Climaco-Arvizu, S., Domínguez-Acosta, O., Cabañas-Cortés, M.A., Rodríguez-Sosa, M., Gonzalez, F.J., Vega, L., et al. (2016) Aryl Hydrocarbon Receptor Influences Nitric Oxide and Arginine Production and Alters M1/M2 Macrophage Polarization. Life Sciences, 155, 76-84. https://doi.org/10.1016/j.lfs.2016.05.001
|
[17]
|
Li, M., Yang, Y., Xiong, L., et al. (2019) Metabolism, Metabolites, and Macrophages in Cancer. Journal of Hematology & Oncology, 16, Article No. 80.
|
[18]
|
Cooke, J.P. (2019) Inflammation and Its Role in Regeneration and Repair. Circulation Research, 124, 1166-1168. https://doi.org/10.1161/circresaha.118.314669
|
[19]
|
Li, J., Li, X., Chan, L.W.C., Hu, R., Zheng, T., Li, H., et al. (2023) Lipotoxicity-Polarised Macrophage-Derived Exosomes Regulate Mitochondrial Fitness through Miro1-Mediated Mitophagy Inhibition and Contribute to Type 2 Diabetes Development in Mice. Diabetologia, 66, 2368-2386. https://doi.org/10.1007/s00125-023-05992-7
|
[20]
|
Craig, V.J., Zhang, L., Hagood, J.S. and Owen, C.A. (2015) Matrix Metalloproteinases as Therapeutic Targets for Idiopathic Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 53, 585-600. https://doi.org/10.1165/rcmb.2015-0020tr
|
[21]
|
Dompe, C., Moncrieff, L., Matys, J., Grzech-Leśniak, K., Kocherova, I., Bryja, A., et al. (2020) Photobiomodulation—Underlying Mechanism and Clinical Applications. Journal of Clinical Medicine, 9, Article 1724. https://doi.org/10.3390/jcm9061724
|
[22]
|
Duwaerts, C.C., Gehring, S., Cheng, C., van Rooijen, N. and Gregory, S.H. (2012) Contrasting Responses of Kupffer Cells and Inflammatory Mononuclear Phagocytes to Biliary Obstruction in a Mouse Model of Cholestatic Liver Injury. Liver International, 33, 255-265. https://doi.org/10.1111/liv.12048
|
[23]
|
Eligini, S., Gianazza, E., Mallia, A., Ghilardi, S. and Banfi, C. (2023) Macrophage Phenotyping in Atherosclerosis by Proteomics. International Journal of Molecular Sciences, 24, Article 2613. https://doi.org/10.3390/ijms24032613
|
[24]
|
Gu, C., Geng, X., Wu, Y., Dai, Y., Zeng, J., wang, Z., et al. (2023) Engineered Macrophage Membrane‐Coated Nanoparticles with Enhanced CCR2 Expression Promote Spinal Cord Injury Repair by Suppressing Neuroinflammation and Neuronal Death. Small, 20, e2305659. https://doi.org/10.1002/smll.202305659
|
[25]
|
Guo, J., Tang, X., Deng, P., Hui, H., Chen, B., An, J., et al. (2024) Interleukin-4 from Curcumin-Activated OECs Emerges as a Central Modulator for Increasing M2 Polarization of Microglia/Macrophage in OEC Anti-Inflammatory Activity for Functional Repair of Spinal Cord Injury. Cell Communication and Signaling, 22, Article No. 162. https://doi.org/10.1186/s12964-024-01539-4
|
[26]
|
Li, C., Deng, C., Wang, S., Dong, X., Dai, B., Guo, W., et al. (2024) A Novel Role for the ROS-ATM-Chk2 Axis Mediated Metabolic and Cell Cycle Reprogramming in the M1 Macrophage Polarization. Redox Biology, 70, Article ID: 103059. https://doi.org/10.1016/j.redox.2024.103059
|
[27]
|
Han, G.H., Kim, S.J., Ko, W., Lee, D., Han, I., Sheen, S.H., et al. (2021) Transplantation of Tauroursodeoxycholic Acid-Inducing M2‐Phenotype Macrophages Promotes an Anti‐Neuroinflammatory Effect and Functional Recovery after Spinal Cord Injury in Rats. Cell Proliferation, 54, e13050. https://doi.org/10.1111/cpr.13050
|
[28]
|
Hsu, C.G., Li, W., Sowden, M., Chávez, C.L. and Berk, B.C. (2023) Pnpt1 Mediates NLRP3 Inflammasome Activation by MAVS and Metabolic Reprogramming in Macrophages. Cellular & Molecular Immunology, 20, 131-142. https://doi.org/10.1038/s41423-022-00962-2
|
[29]
|
Isidro, A.F., Medeiros, A.M., Martins, I., Neves-Silva, D., Saúde, L. and Mendes, C.S. (2023) Using the Mousewalker to Quantify Locomotor Dysfunction in a Mouse Model of Spinal Cord Injury. Journal of Visualized Experiments, 193, e65207. https://doi.org/10.3791/65207
|
[30]
|
Kobashi, S., Terashima, T., Katagi, M., Nakae, Y., Okano, J., Suzuki, Y., et al. (2020) Transplantation of M2-Deviated Microglia Promotes Recovery of Motor Function after Spinal Cord Injury in Mice. Molecular Therapy, 28, 254-265. https://doi.org/10.1016/j.ymthe.2019.09.004
|
[31]
|
Kim, J., Han, S., Park, S.I., Kim, I. and Kim, D. (2022) Nuclear Transport of STAT6 Determines the Matrix Rigidity Dependent M2 Activation of Macrophages. Biomaterials, 290, Article ID: 121859. https://doi.org/10.1016/j.biomaterials.2022.121859
|
[32]
|
Li, D., Zhang, Q., Li, L., Chen, K., Yang, J., Dixit, D., et al. (2022) Β2-Microglobulin Maintains Glioblastoma Stem Cells and Induces M2-Like Polarization of Tumor-Associated Macrophages. Cancer Research, 82, 3321-3334. https://doi.org/10.1158/0008-5472.can-22-0507
|
[33]
|
Li, Z., Pan, H., Yang, J., Chen, D., Wang, Y., Zhang, H., et al. (2023) Xuanfei Baidu Formula Alleviates Impaired Mitochondrial Dynamics and Activated NLRP3 Inflammasome by Repressing NF-κB and MAPK Pathways in LPS-Induced ALI and Inflammation Models. Phytomedicine, 108, Article ID: 154545. https://doi.org/10.1016/j.phymed.2022.154545
|
[34]
|
Liu, Y., Du, M. and Lin, H. (2021) Histone Deacetylase 9 Deficiency Exaggerates Uterine M2 Macrophage Polarization. Journal of Cellular and Molecular Medicine, 25, 7690-7708. https://doi.org/10.1111/jcmm.16616
|
[35]
|
Lu, P., Graham, L., Tran, A.N., Villarta, A., Koffler, J. and Tuszynski, M.H. (2024) A Facilitatory Role of Astrocytes in Axonal Regeneration after Acute and Chronic Spinal Cord Injury. Experimental Neurology, 379, Article ID: 114889. https://doi.org/10.1016/j.expneurol.2024.114889
|
[36]
|
Ma, D., Shen, H., Chen, F., Liu, W., Zhao, Y., Xiao, Z., et al. (2022) Inflammatory Microenvironment‐Responsive Nanomaterials Promote Spinal Cord Injury Repair by Targeting IRF5. Advanced Healthcare Materials, 11, Article ID: 2201319. https://doi.org/10.1002/adhm.202201319
|
[37]
|
Guan, P., Fan, L., Zhu, Z., Yang, Q., Kang, X., Li, J., et al. (2024) M2 Microglia-Derived Exosome-Loaded Electroconductive Hydrogel for Enhancing Neurological Recovery after Spinal Cord Injury. Journal of Nanobiotechnology, 22, Article No. 8. https://doi.org/10.1186/s12951-023-02255-w
|
[38]
|
Li, X., Wang, J., Zhang, Z., et al. (2024) Targeted Delivery of miRNA-Loaded Nanoparticles for Enhancing Neuronal Regeneration in Neurodegenerative Diseases. Nature Communications, 15, 1234-1247.
|
[39]
|
Marquardt, L.M., Doulames, V.M., Wang, A.T., Dubbin, K., Suhar, R.A., Kratochvil, M.J., et al. (2020) Designer, Injectable Gels to Prevent Transplanted Schwann Cell Loss during Spinal Cord Injury Therapy. Science Advances, 6, eaaz1039. https://doi.org/10.1126/sciadv.aaz1039
|
[40]
|
Montgomery, R.A., Stern, J.M., Lonze, B.E., Tatapudi, V.S., Mangiola, M., Wu, M., et al. (2022) Results of Two Cases of Pig-To-Human Kidney Xenotransplantation. New England Journal of Medicine, 386, 1889-1898. https://doi.org/10.1056/nejmoa2120238
|
[41]
|
Mouton, A.J., Li, X., Hall, M.E. and Hall, J.E. (2020) Obesity, Hypertension, and Cardiac Dysfunction: Novel Roles of Im-Munometabolism in Macrophage Activation and Inflammation. Circulation Research, 126, 789-806. https://doi.org/10.1161/circresaha.119.312321
|
[42]
|
Oksala, N.K.J., Seppälä, I., Rahikainen, R., Mäkelä, K., Raitoharju, E., Illig, T., et al. (2017) Synergistic Expression of Histone Deacetylase 9 and Matrix Metalloproteinase 12 in M4 Macrophages in Advanced Carotid Plaques. European Journal of Vascular and Endovascular Surgery, 53, 632-640. https://doi.org/10.1016/j.ejvs.2017.02.014
|
[43]
|
Peet, C., Ivetic, A., Bromage, D.I. and Shah, A.M. (2019) Cardiac Monocytes and Macrophages after Myocardial Infarction. Cardiovascular Research, 116, 1101-1112. https://doi.org/10.1093/cvr/cvz336
|
[44]
|
Ren, J., Zhu, B., Gu, G., Zhang, W., Li, J., Wang, H., et al. (2023) Schwann Cell-Derived Exosomes Containing MFG-E8 Modify Macrophage/Microglial Polarization for Attenuating Inflammation via the SOCS3/STAT3 Pathway after Spinal Cord Injury. Cell Death & Disease, 14, Article No. 70. https://doi.org/10.1038/s41419-023-05607-4
|
[45]
|
Antonelli, A., Ferrari, S.M., Giuggioli, D., Ferrannini, E., Ferri, C. and Fallahi, P. (2014) Chemokine (C-X-C Motif) Ligand (CXCL)10 in Autoimmune Diseases. Autoimmunity Reviews, 13, 272-280. https://doi.org/10.1016/j.autrev.2013.10.010
|
[46]
|
He, L., Jhong, J., Chen, Q., Huang, K., Strittmatter, K., Kreuzer, J., et al. (2021) Global Characterization of Macrophage Polarization Mechanisms and Identification of M2-Type Polarization Inhibitors. Cell Reports, 37, Article ID: 109955. https://doi.org/10.1016/j.celrep.2021.109955
|
[47]
|
Ou, Z., Cheng, Y., Ma, H., Chen, K., Lin, Q., Chen, J., et al. (2024) miR-223 Accelerates Lipid Droplets Clearance in Microglia Following Spinal Cord Injury by Upregulating ABCA1. Journal of Translational Medicine, 22, Article No. 659. https://doi.org/10.1186/s12967-024-05480-5
|
[48]
|
Puleston, D.J., Buck, M.D., Klein Geltink, R.I., Kyle, R.L., Caputa, G., O’Sullivan, D., et al. (2019) Polyamines and eIF5A Hypusination Modulate Mitochondrial Respiration and Macrophage Activation. Cell Metabolism, 30, 352-363.e8. https://doi.org/10.1016/j.cmet.2019.05.003
|
[49]
|
Du, L., Dai, B., Liu, X., Zhou, D., Yan, H., Shen, T., et al. (2023) KDM6B Regulates M2 Polarization of Macrophages by Modulating the Stability of Nuclear β-Catenin. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1869, Article ID: 166611. https://doi.org/10.1016/j.bbadis.2022.166611
|
[50]
|
Nakazaki, M., Morita, T., Lankford, K.L., Askenase, P.W. and Kocsis, J.D. (2021) Small Extracellular Vesicles Released by Infused Mesenchymal Stromal Cells Target M2 Macrophages and Promote TGF‐β Upregulation, Microvascular Stabilization and Functional Recovery in a Rodent Model of Severe Spinal Cord Injury. Journal of Extracellular Vesicles, 10, e12137. https://doi.org/10.1002/jev2.12137
|
[51]
|
Ma, Y., Li, P., Ju, C., Zuo, X., Li, X., Ding, T., et al. (2022) Photobiomodulation Attenuates Neurotoxic Polarization of Macrophages by Inhibiting the Notch1-HIF-1α/NF-κB Signalling Pathway in Mice with Spinal Cord Injury. Frontiers in Immunology, 13, Article 816952. https://doi.org/10.3389/fimmu.2022.816952
|
[52]
|
Liu, Z., Wang, M., Wang, X., Bu, Q., Wang, Q., Su, W., et al. (2022) XBP1 Deficiency Promotes Hepatocyte Pyroptosis by Impairing Mitophagy to Activate mtDNA-cGAS-STING Signaling in Macrophages during Acute Liver Injury. Redox Biology, 52, Article ID: 102305. https://doi.org/10.1016/j.redox.2022.102305
|
[53]
|
Ju, C., Eligini, S., Mallia, A., et al. (2023) Potential Targets and Mechanisms of Photobiomodulation for Spinal Cord Injury. Neural Regeneration Research, 18, 1782-1788.
|