[1]
|
Zhao, J., Chen, J., Li, M., Chen, M. and Sun, C. (2020) Multifaceted Functions of CH25H and 25HC to Modulate the Lipid Metabolism, Immune Responses, and Broadly Antiviral Activities. Viruses, 12, Article 727. https://doi.org/10.3390/v12070727
|
[2]
|
Zmysłowski, A. and Szterk, A. (2017) Current Knowledge on the Mechanism of Atherosclerosis and Pro-Atherosclerotic Properties of Oxysterols. Lipids in Health and Disease, 16, Article No. 188. https://doi.org/10.1186/s12944-017-0579-2
|
[3]
|
Saito, H., Tachiura, W., Nishimura, M., Shimizu, M., Sato, R. and Yamauchi, Y. (2023) Hydroxylation Site-Specific and Production-Dependent Effects of Endogenous Oxysterols on Cholesterol Homeostasis: Implications for SREBP-2 and LXR. Journal of Biological Chemistry, 299, Article ID: 102733. https://doi.org/10.1016/j.jbc.2022.102733
|
[4]
|
Zhao, L., Chen, Y., Tang, R., Chen, Y., Li, Q., Gong, J., et al. (2011) Inflammatory Stress Exacerbates Hepatic Cholesterol Accumulation via Increasing Cholesterol Uptake and De Novo Synthesis. Journal of Gastroenterology and Hepatology, 26, 875-883. https://doi.org/10.1111/j.1440-1746.2010.06560.x
|
[5]
|
Lemaire-Ewing, S., Berthier, A., Royer, M.C., Logette, E., Corcos, L., Bouchot, A., et al. (2008) 7β-Hydroxycholesterol and 25-Hydroxycholesterol-Induced Interleukin-8 Secretion Involves a Calcium-Dependent Activation of C-Fos via the ERK1/2 Signaling Pathway in THP-1 Cells. Cell Biology and Toxicology, 25, 127-139. https://doi.org/10.1007/s10565-008-9063-0
|
[6]
|
Pokharel, S.M., Shil, N.K., GC, J.B., Colburn, Z.T., Tsai, S., Segovia, J.A., et al. (2019) Integrin Activation by the Lipid Molecule 25-Hydroxycholesterol Induces a Proinflammatory Response. Nature Communications, 10, Article No. 1482. https://doi.org/10.1038/s41467-019-09453-x
|
[7]
|
Gold, E.S., Diercks, A.H., Podolsky, I., Podyminogin, R.L., Askovich, P.S., Treuting, P.M., et al. (2014) 25-Hydroxycholesterol Acts as an Amplifier of Inflammatory Signaling. Proceedings of the National Academy of Sciences, 111, 10666-10671. https://doi.org/10.1073/pnas.1404271111
|
[8]
|
Tran, T., Lee, G., Huh, Y.H., Chung, K., Lee, S.Y., Park, K.H., et al. (2023) Disruption of Cholesterol Homeostasis Triggers Periodontal Inflammation and Alveolar Bone Loss. Experimental & Molecular Medicine, 55, 2553-2563. https://doi.org/10.1038/s12276-023-01122-w
|
[9]
|
Wang, F., Xia, W., Liu, F., Li, J., Wang, G. and Gu, J. (2011) Interferon Regulator Factor 1/Retinoic Inducible Gene I (IRF1/RIG-I) Axis Mediates 25-Hydroxycholesterol-Induced Interleukin-8 Production in Atherosclerosis. Cardiovascular Research, 93, 190-199. https://doi.org/10.1093/cvr/cvr260
|
[10]
|
Sugiura, H., Koarai, A., Ichikawa, T., Minakata, Y., Matsunaga, K., Hirano, T., et al. (2012) Increased 25‐Hydroxycholesterol Concentrations in the Lungs of Patients with Chronic Obstructive Pulmonary Disease. Respirology, 17, 533-540. https://doi.org/10.1111/j.1440-1843.2012.02136.x
|
[11]
|
Russo, L., Muir, L., Geletka, L., Delproposto, J., Baker, N., Flesher, C., et al. (2020) Cholesterol 25-Hydroxylase (CH25H) as a Promoter of Adipose Tissue Inflammation in Obesity and Diabetes. Molecular Metabolism, 39, Article ID: 100983. https://doi.org/10.1016/j.molmet.2020.100983
|
[12]
|
Zhou, S., Zhang, D., Li, D., Wang, H., Ding, C., Song, J., et al. (2024) Pathogenic Mycobacterium Upregulates Cholesterol 25-Hydroxylase to Promote Granuloma Development via Foam Cell Formation. iScience, 27, Article ID: 109204. https://doi.org/10.1016/j.isci.2024.109204
|
[13]
|
Sekiya, M., Yamamuro, D., Ohshiro, T., Honda, A., Takahashi, M., Kumagai, M., et al. (2014) Absence of Nceh1 Augments 25-Hydroxycholesterol-Induced ER Stress and Apoptosis in Macrophages. Journal of Lipid Research, 55, 2082-2092. https://doi.org/10.1194/jlr.m050864
|
[14]
|
Li, J., Zheng, X., Lou, N., Zhong, W. and Yan, D. (2016) Oxysterol Binding Protein-Related Protein 8 Mediates the Cytotoxicity of 25-Hydroxycholesterol. Journal of Lipid Research, 57, 1845-1853. https://doi.org/10.1194/jlr.m069906
|
[15]
|
Zhong, W., Pan, G., Wang, L., Li, S., Ou, J., Xu, M., et al. (2016) ORP4L Facilitates Macrophage Survival via G-Protein-Coupled Signaling. Circulation Research, 119, 1296-1312. https://doi.org/10.1161/circresaha.116.309603
|
[16]
|
Gorzelak-Pabiś, P., Broncel, M., Pawlos, A., Wojdan, K., Gajewski, A., Chałubiński, M., et al. (2022) Dabigatran: Its Protective Effect against Endothelial Cell Damage by Oxysterol. Biomedicine & Pharmacotherapy, 147, Article ID: 112679. https://doi.org/10.1016/j.biopha.2022.112679
|
[17]
|
Woźniak, E., Broncel, M., Bukowska, B. and Gorzelak-Pabiś, P. (2020) The Protective Effect of Dabigatran and Rivaroxaban on DNA Oxidative Changes in a Model of Vascular Endothelial Damage with Oxidized Cholesterol. International Journal of Molecular Sciences, 21, Article 1953. https://doi.org/10.3390/ijms21061953
|
[18]
|
Pawlos, A., Broncel, M., Woźniak, E., Markiewicz, Ł., Piastowska-Ciesielska, A. and Gorzelak-Pabiś, P. (2023) SGLT2 Inhibitors May Restore Endothelial Barrier Interrupted by 25-Hydroxycholesterol. Molecules, 28, Article 1112. https://doi.org/10.3390/molecules28031112
|
[19]
|
Ou, Z., Chen, J., Dai, W., Liu, X., Yang, Y., Li, Y., et al. (2016) 25-Hydroxycholesterol Impairs Endothelial Function and Vasodilation by Uncoupling and Inhibiting Endothelial Nitric Oxide Synthase. American Journal of Physiology-Endocrinology and Metabolism, 311, E781-E790. https://doi.org/10.1152/ajpendo.00218.2016
|
[20]
|
Gold, E.S., Ramsey, S.A., Sartain, M.J., Selinummi, J., Podolsky, I., Rodriguez, D.J., et al. (2012) ATF3 Protects against Atherosclerosis by Suppressing 25-Hydroxycholesterol-Induced Lipid Body Formation. Journal of Experimental Medicine, 209, 807-817. https://doi.org/10.1084/jem.20111202
|
[21]
|
Poli, G., Biasi, F. and Leonarduzzi, G. (2013) Oxysterols in the Pathogenesis of Major Chronic Diseases. Redox Biology, 1, 125-130. https://doi.org/10.1016/j.redox.2012.12.001
|
[22]
|
Li, Z., Martin, M., Zhang, J., Huang, H., Bai, L., Zhang, J., et al. (2017) Krüppel-Like Factor 4 Regulation of Cholesterol-25-Hydroxylase and Liver X Receptor Mitigates Atherosclerosis Susceptibility. Circulation, 136, 1315-1330. https://doi.org/10.1161/circulationaha.117.027462
|
[23]
|
Canfrán-Duque, A., Rotllan, N., Zhang, X., Andrés-Blasco, I., Thompson, B.M., Sun, J., et al. (2023) Macrophage-derived 25-Hydroxycholesterol Promotes Vascular Inflammation, Atherogenesis, and Lesion Remodeling. Circulation, 147, 388-408. https://doi.org/10.1161/circulationaha.122.059062
|
[24]
|
Kovács, K.B., Szalai, L., Szabó, P., Gém, J.B., Barsi, S., Szalai, B., et al. (2023) An Unexpected Enzyme in Vascular Smooth Muscle Cells: Angiotensin II Upregulates Cholesterol-25-Hydroxylase Gene Expression. International Journal of Molecular Sciences, 24, Article 3968. https://doi.org/10.3390/ijms24043968
|
[25]
|
Dong, Q., Chen, Y., Liu, W., Liu, X., Chen, A., Yang, X., et al. (2020) 25-Hydroxycholesterol Promotes Vascular Calcification via Activation of Endoplasmic Reticulum Stress. European Journal of Pharmacology, 880, Article ID: 173165. https://doi.org/10.1016/j.ejphar.2020.173165
|
[26]
|
Appukuttan, A., Kasseckert, S.A., Kumar, S., Reusch, H.P. and Ladilov, Y. (2013) Oxysterol-Induced Apoptosis of Smooth Muscle Cells Is under the Control of a Soluble Adenylyl Cyclase. Cardiovascular Research, 99, 734-742. https://doi.org/10.1093/cvr/cvt137
|