脂代谢与原发性肝癌相关性研究进展
Research Progress on the Correlation between Lipid Metabolism and Primary Liver Cancer
摘要: 脂代谢是机体重要代谢之一,肝脏作为脂质合成、储存以及代谢的中心器官,二者相互影响。肿瘤细胞所处的局部环境称为肿瘤微环境,为适应肿瘤微环境而发生的代谢改变称为代谢重编。目前脂代谢与肝癌之间的相关性尚不完全清楚,肝癌脂代谢重编的具体过程亦尚未完全揭示。本文介绍了肝癌发生、发展各阶段脂代谢特点,总结了肝癌脂代谢重编过程的最新发现,旨在探究脂代谢在肝癌发生、发展以及预后中的作用,为肝癌防治提供新的思路与依据。
Abstract: Lipid metabolism is one of the important metabolic processes in the body, and the liver is the central organ for lipid synthesis, storage, and metabolism, with a mutual influence between them. The local environment in which the tumour cells are located is called the tumor microenvironment, and the metabolic changes that occur to adapt to the tumor microenvironment are called metabolic reprogramming. At present, the relationship between lipid metabolism and liver cancer is not completely clear, and the specific process of lipid metabolic reprogramming in liver cancer has not yet been fully elucidated. This review introduces the lipid metabolic characteristics of liver cancer at each stage of its occurrence and development, summarizes the latest findings on the lipid metabolic reprogramming process in liver cancer, and aims to explore the role of lipid metabolism in the occurrence, development, and prognosis of liver cancer, providing new ideas and evidence for the prevention and treatment of liver cancer.
文章引用:邹可, 黄英. 脂代谢与原发性肝癌相关性研究进展[J]. 临床医学进展, 2025, 15(1): 1084-1091. https://doi.org/10.12677/acm.2025.151145

1. 引言

原发性肝癌(以下简称肝癌)系2020年全球常见恶性肿瘤之一,也是全球恶性肿瘤死亡的主要原因之一,死亡率仅次于肺癌以及结直肠癌[1]。自2004年以来,我国肝癌的死亡率虽有所下降,但其与肺癌仍是我国癌症死亡的前两大原因[2]。目前已知慢性肝炎病毒感染、黄曲霉毒素、过量吸烟饮酒等是肝癌的主要危险因素。近年来亦有研究指出代谢综合征(metabolic syndrome, MetS)与肝癌风险显著相关,提示MetS可能从多种代谢途径参与肝癌的发展进程[3]。MetS是一组以高血糖、高血压、肥胖以及血脂异常等聚集发病的临床症候群,这些代谢因素相互影响、相互关联,直接或间接地促进了相关疾病的发生、发展,严重影响着机体健康[4]。国内外许多研究发现肝癌与肥胖以及高血糖之间关系密切,肥胖与高血糖可能导致机体长期处于胰岛素抵抗、慢性炎症、组织慢性缺氧等状态,从而增加肝癌发生风险;而肝癌与血脂异常及高血压之间的关系目前尚不完全清楚,还需进一步研究[5] [6]。机体脂代谢的正常进行依赖于肝脏完好的结构与功能,当肝脏发生病变时,相应脂代谢过程会受到不同程度的影响,而当脂代谢出现异常时,肝脏也可能出现相应病变。肝癌的发展进程涉及多路径、多阶段、多因素交织,在这个复杂的调控过程中常伴随着异常的脂代谢[7]。本文就脂代谢与原发性肝癌之间的相关性及肝癌的脂代谢重编进行阐述,探究脂代谢在肝癌发生、发展以及预后中的作用,为肝癌的防治提供新的思路与依据。

2. 多种致病因素引起脂代谢异常

2.1. 慢性乙肝病毒感染

乙型肝炎病毒(HBV)是常见的嗜肝病毒之一,慢性乙肝病毒感染可导致机体长期处于慢性炎症状态从而对脂代谢产生影响,这是由于HBV感染促使机体产生多种炎症介质而触发机体免疫反应所致[8]。其次,肝脏作为脂代谢中心器官,其结构与功能的完整性很大程度影响着脂质的合成、储存及代谢过程。当嗜肝病毒如HBV感染引起肝细胞损伤时,相应脂类物质水平也会发生变化。有研究发现,在慢性HBV感染相关肝病进展中,脂代谢产物之一长链溶血磷脂酰胆碱(lysoPC)水平是逐渐降低的;同时在HBV相关肝硬化和HBV相关HCC组中,与Child-Pugh A级和Child-Pugh B级相比,Child-Pugh C级中的lysoPC水平更低,这提示lysoPC是监测HBV相关肝病进展的潜在标志物[9]

尽管目前有许多理论解释HBV相关HCC发生机制,但HBV相关肿瘤的驱动机制还有待进一步明确阐述。HBV相关肿瘤发生机制复杂,其中可能包括与抗病毒免疫反应相关的宿主因素和与病毒癌蛋白表达相关的病毒因素[10] [11]。在HBV基因产物中,HBV X蛋白(HBx)是研究最广泛的癌蛋白。Hyun [12]等发现肝脏脂肪酸水平异常会增加HBx的稳定性,从而诱导HBx蛋白和肝脏炎症基因表达。在一项HBx转基因小鼠模型研究[13]中观察到脂质(甘油三酯、胆固醇和脂肪酸)谱在肿瘤发生过程中显示出双相反应模式,即早期阶段,脂质水平有所上升,形成所谓小峰值,考虑系氧化应激和促炎反应所致;而在肿瘤阶段,脂质水平显著升高,形成更大的峰值,而这可能与肿瘤组织的终末代谢变化有关。在该研究中还发现肿瘤期多个脂质代谢相关基因如花生四烯酸5脂加氧酶(ALOX5)、载脂蛋白A-IV (APOA4)以及脂蛋白脂肪酶(LPL)等被显著激活,且通过降低这些基因的表达水平,可以发现HBx引起的体外增殖现象减少,HBx蛋白对脂质合成的影响也因此减轻。此外,有研究提示HBx能够调节肝细胞核因子3β (HNF3β)、CCAAT增强子结合蛋白α (C/EBPα)、过氧化物酶体增殖物激活受体α (PPARα)以及脂肪酸结合蛋白1 (FABP1)的表达,导致肝细胞脂肪变性,促进肝脏脂质积累,从而增加肝癌发生风险[14]

HBV慢性感染不仅会导致机体长期处于慢性炎症及氧化应激状态,还可通过多种机制导致机体脂代谢紊乱,体内众多因素交织促使肝硬化及肝癌的发生。

2.2. 黄曲霉毒素

黄曲霉毒素是曲霉属真菌产生的一种代谢产物,其主要危害包括急性毒性、慢性毒性以及致癌性。黄曲霉毒素B1 (AFB1)是所有黄曲霉毒素中毒性最大、最常见、浓度最高的,对人类健康的风险最大,已被世界卫生组织国际癌症研究机构列为I类致癌物[15]。研究[16]发现AFB1会通过干扰肝细胞鞘脂代谢、甘油酯代谢以及甘油磷脂代谢导致肝细胞不可逆性损伤,肝细胞凋亡相关通路被显著激活。此外,通过诱导氧化应激、脂质过氧化和胆固醇水平升高,AFB1及其代谢物对肝脏毒性加剧,肝细胞恶变几率明显增加[17]

2.3. 酒精

肝脏是人体主要代谢器官,尽管其承担着分解代谢体内绝大部分酒精的重任,但有研究[18]发现每天摄入酒精超过80 ml即会导致酒精代谢产物乙醛在体内积聚,这提示肝脏代谢酒精的能力也是有限的。同时,乙醛已被明确证实是致癌物[19],故长期大量饮酒不仅会对肝脏造成损伤,还可能增加基因突变和患癌的风险,并且肝癌发生风险与饮酒量密切相关。

长期酗酒会导致体内一种氧化型辅酶烟酰胺腺嘌呤二核苷酸(Nicotinamide Adenine Dinucleotide, NAD+)降低,NAD+会转化为还原态(NADH),NADH/NAD+比例增加,肝细胞长期处于还原状态,同时机体内需要NAD+作为辅助因子的去乙酰化酶无法对乙酰化蛋白进行去乙酰化,造成许多过度乙酰化的蛋白质在肝脏中积聚,如H3、AMPK、SREBP-1、lipin-1 PCG-1、PPARα等,上述异常变化会激活脂肪生成的途径,同时抑制脂肪酸的氧化过程,减少脂肪的动员,并引发炎症反应。这些变化共同导致肝细胞脂肪变,肝脏脂质积累,加速肝细胞坏死与凋亡,增加患癌风险[20] [21]。此外,酗酒还会导致线粒体氧化损伤,从而导致线粒体功能障碍,ATP合成减少,影响脂肪酸正常氧化,促进肝脏脂质积聚,这与慢性酒精摄入导致肝脏缺氧密切相关[22]

2.4. 吸烟

众所周知烟草中含有多种致癌物,而肝脏是机体主要解毒器官,长期吸烟会使肝脏长期暴露于这些致癌物,增加肝脏的负担,增加患癌风险。研究发现吸烟与肝癌发病密切相关,且每天吸入香烟量越多、开始吸烟年龄越早,肝癌发病风险越高[23]。此外,吸烟与饮酒在肝癌风险中具有协同效应,这在伴有代谢综合征的男性中更加明显[24]

吸烟导致肝癌风险增加的具体机制目前尚不完全清楚,有研究[25]发现长期暴露于烟草致癌物可能干扰细胞信号传导通路,引起DNA损伤,这些损伤进一步导致机体内炎症因子持续激活,进而促进胰岛素抵抗以及肝纤维化的发展,而这些变化协同增加机体患癌风险。

3. 不同血脂成分在肝癌中的表达特点

3.1. 胆固醇

总胆固醇(Total Cholesterol, TC)包括胆固醇酯和游离胆固醇,前者是由胆固醇和长链脂肪酸组成的复合物,占TC的70%。肝脏在胆固醇的合成、分泌、清除以及代谢调控中扮演着重要角色,胆固醇代谢异常也会对肝脏的结构与功能产生相应影响,胆固醇代谢调控在肝癌发生发展中起具有重要意义。在一项研究[26]中发现,对甘油三酯及脂肪酸正常的小鼠进行高胆固醇饮食喂养,并且向该类小鼠体内注射肝癌细胞或化学致癌物后,会产生更少和更小的肿瘤。此外,在缺乏NK细胞的小鼠中,高胆固醇饮食诱导的抗肿瘤效果将被逆转。该研究提示高血清胆固醇水平可能与降低肝癌风险相关,且这种作用可能是通过增强NK细胞的抗肿瘤活性来实现的。国内外还有许多研究均提示胆固醇水平与肝癌风险呈负相关[27]-[29],这为肝癌防治提供了新的思路。Krautbauer [30]等发现,肝癌患者的血清中胆固醇酯与游离胆固醇的比率显著高于健康对照组和肝硬化患者。此外,过量胆固醇也会对机体造成一定影响,尤其是其向线粒体运输导致线粒体内胆固醇过量累积,扰乱线粒体功能,导致氧化应激和线粒体谷胱甘肽耗竭,使肝脂肪变性和肝损伤,这是肝癌的潜在危险因素[31]

所以,目前胆固醇水平与肝癌风险之间的关系尚不完全明确,高水平胆固醇可能通过免疫反应实现抗肿瘤作用,且由于受累肝细胞脂质合成受限、肿瘤细胞能量需求增加等原因,血清胆固醇水平可能相应降低。但当肝细胞受损时,以肝脏为中心的胆固醇分解代谢过程亦会受阻,增大的肿瘤组织压迫胆道系统导致胆固醇进入血循环,可能导致血清胆固醇水平相应升高。此外,上述研究结果的不一致性可能是由于动物实验与临床研究之间存在一定差异所致。因此,胆固醇与肝癌二者之间的关系仍需更多研究来进一步验证。

3.2. 甘油三酯

甘油三酯是机体脂肪酸的储存形式,也是机体主要储能形式之一。当机体需要能量时,甘油三酯水解成脂肪酸和甘油,脂肪酸将在线粒体中进行β氧化为机体提供能量,当肿瘤细胞代谢需求明显增加时,会导致机体脂肪酸代谢失衡。国外有学者[32]发现,相较于健康对照者,慢性肝病与肝癌患者的血清甘油三酯水平均是升高的,提示甘油三酯水平可能与慢性肝病及肝癌风险具有一定相关性。此外,由于肝癌细胞长期处于缺氧微环境中,缺氧诱导基因2 (hypoxia-inducible gene 2, HIG2)被异常激活,诱导甘油三酯的合成与水解失衡,细胞内甘油三酯堆积,为肝癌细胞提供了额外的能量,增强了肝癌细胞对缺氧和氧化应激的抵抗力,从而促进肝癌细胞的发展、侵袭及转移潜能[33] [34]

3.3. 脂蛋白

脂蛋白是血脂在血液中的主要存在形式,由脂质和蛋白质组成。脂蛋白根据密度不同分为乳糜微粒(CM)、极低密度脂蛋白(VLDL)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)和中间密度脂蛋白(IDL)。既往有研究[35]提示HDL-C水平与多种恶性肿瘤风险呈负相关,但其抗肿瘤机制尚不完全清楚。在一项韩国的队列研究[36]中发现,与中等水平的HDL-C相比,低和极高的HDL-C水平都与肝癌风险增加相关,这种相关性在吸烟者和绝经女性中更为显著。我国一项临床研究[37]发现术前HDL-C水平升高与无病生存期(DFS)及总生存期(OS)升高显著相关,提示术前HDL-C水平的高低对肝癌术后患者的预后判断具有重要意义。

HDL将血管中的胆固醇逆向转运至肝脏,经肝脏代谢为胆汁酸或以游离胆固醇形式随胆汁排出体外,防止胆固醇在血中积聚,因此HDL有“血管清道夫”之称。此外,HDL-C代谢受细胞因子调节[38]。目前HDL-C抗肿瘤尚不完全清除,相关研究[39]-[41]提示HDL-C抗肿瘤机制可能通过抗炎、免疫调节、影响胆固醇代谢等途径实现。

4. 脂代谢重编在肝癌中的意义

肿瘤微环境(Tumor Microenvironment, TME)是指肿瘤细胞所处的局部环境,既包括肿瘤细胞本身,还涉及其周围支持细胞、细胞外基质、血管、免疫细胞等。TME是一个活跃的、多组分相互作用的生态系统,其特性和变化对肿瘤生长、侵袭、转移等生物学行为和肿瘤治疗敏感性有重要影响。机体为适应TME中缺氧、酸性以及营养缺乏等状态而出现的代谢重编近年来备受关注,肝癌的脂代谢重编是研究热点之一。

肝癌的脂代谢重编主要涉及脂肪酸代谢异常,脂肪酸是细胞能量代谢、膜结构构建和信号传递过程中不可或缺的,在肿瘤生物学行为中扮演重要角色[42] [43]。脂肪酸代谢主要包括脂肪酸合成(fatty acid synthesis, FAS)和脂肪酸氧化(fatty acid oxidation FAO)两个过程。脂肪酸合成是以糖酵解产生的乙酰辅酶A为底物,经过羧化、还原、去饱和等一系列过程生成不饱和脂肪酸。当细胞能量充足时,脂肪酸被合成甘油三酯作为能量来源储存在脂滴中,当能量需求增加时,甘油三酯再次水解为脂肪酸,脂肪酸进入线粒体进行β氧化为机体供能[44]。研究发现肝癌细胞脂质从头合成率相较于正常细胞更高,而正常细胞倾向利用外源性脂质,提示脂肪酸在肿瘤细胞堆积可能[45]。国内亦有学者发现[46]单纯抑制脂肪酸从头合成过程中的关键酶之一脂肪酸合酶(FASN),肝癌细胞的生长并没有被完全遏制,这提示外源性脂肪酸可能对肝癌细胞的发生发展有着重要支持作用。

4.1. ACC

乙酰辅酶A羧化酶(acetyl-CoA carboxylase, ACC)是脂肪酸合成的关键酶,ACC包含ACC1和ACC2两种亚型。Wang [47]等发现,在代谢应激条件下,ACC1促进脂肪酸的从头合成,增强肝癌细胞在这些应激状态下的生存能力,提示ACC1是HCC患者的独立预后指标。当肝癌细胞处于缺氧缺糖的应激状态时,缺氧通过诱导ACC2的抑制性磷酸化来增加肉碱棕榈酰转移酶1 (carnitine palmitoyl Transferase1, CPT-1)活性,而CPT-1是FAO过程中的关键酶,由此促进FAO进程,将葡萄糖依赖性代谢转变为脂质依赖性代谢,使肝癌细胞在应激状态下维持自身代谢需求[48]

4.2. FASN

脂肪酸合酶(fatty acid synthase, FASN)在脂肪酸合成中负责将乙酰辅酶A和丙二酰辅酶A合成饱和脂肪酸棕榈酸酯,是脂肪酸合成的又一关键酶。当肝癌细胞处于缺氧应激状态时,缺氧诱导固醇调节结合元件蛋白-1 (sterol regulatory element binding proteins 1, SREBP-1)表达,进而使FASN的表达显著上调,维持肝癌细胞生存需求[49]。许多研究[50]-[52]发现,敲除或抑制FASN可抑制体外肝癌的生长,FASN的基因沉默或药理抑制不仅减少了肝癌细胞的脂质合成,而且还通过阻断Akt信号通路来抑制肝癌的发展。

4.3. SCD

硬脂酰辅酶A去饱和酶(stearoyl-CoA desaturase, SCD)是单不饱和脂肪酸生物合成的关键酶,尽管SCD已被发现有多种亚型,但在人类中表达的主要是SCD1和SCD5两种亚型[47]。Budhu [45]等发现SCD在肝癌进展中扮演重要角色,SCD的生物终产物之一棕榈油酸(C16:1)会促进肝癌细胞的迁移能力,通过降低SCD的表达会减少细胞迁移行为,并抑制异种植物的形成。SCD1在肝癌中被发现表达水平上调,SCD1过度表达考虑与肿瘤分化和更短的无病生存期相关[53]。增强SCD活性引起单不饱和脂肪酸积累促进了肝癌的发生,而通过抑制SCD使脂肪酸平衡重新向饱和方向转变可能是肝癌的潜在治疗策略[44]

5. 总结与展望

肝癌因其早期症状不明显,多数病人诊断时已发展至晚期,且肝癌恶性程度高、预后差以及治疗方案有限,所以多年来肝癌始终威胁着人类的生命健康。随着生活水平的提高,代谢综合征患病率呈逐年上升趋势[54]。本文通过对代谢综合征中的脂代谢异常与肝癌之间的相关性进行综述提示脂代谢与肝癌发生、发展密切相关。肝癌的发展进程涉及多路径、多阶段、多因素交织,脂代谢为适应肝癌细胞微环境而发生的脂代谢重编对肝癌发展进程具有重要影响,目前肝癌脂代谢重编的具体过程及机制尚未完全揭示,我们仍需进一步探索。综上所述,由于脂代谢与肝癌密切相关,且脂代谢重编是肝癌肿瘤微环境的重要代谢改变,对脂代谢进程进行调节可能成为肝癌治疗的新方向。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Feng, R., Su, Q., Huang, X., Basnet, T., Xu, X. and Ye, W. (2022) Cancer Situation in China: What Does the China Cancer Map Indicate from the First National Death Survey to the Latest Cancer Registration? Cancer Communications, 43, 75-86.
https://doi.org/10.1002/cac2.12393
[3] Jinjuvadia, R., Patel, S. and Liangpunsakul, S. (2014) The Association between Metabolic Syndrome and Hepatocellular Carcinoma. Journal of Clinical Gastroenterology, 48, 172-177.
https://doi.org/10.1097/mcg.0b013e3182a030c4
[4] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版) [J]. 中华糖尿病杂志, 2018, 10(1): 4-67.
[5] Chavez-Tapia, N.C., Murúa-Beltrán Gall, S., Ordoñez-Vázquez, A.L., Nuño-Lambarri, N., Vidal-Cevallos, P. and Uribe, M. (2022) Understanding the Role of Metabolic Syndrome as a Risk Factor for Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 9, 583-593.
https://doi.org/10.2147/jhc.s283840
[6] 陈小彬, 高帅, 梅学鹏, 等. 代谢综合征与肝细胞癌的关系及机制研究进展[J]. 中国普外基础与临床杂志, 2021, 28(7): 969-973.
[7] Brault, C. and Schulze, A. (2016) The Role of Glucose and Lipid Metabolism in Growth and Survival of Cancer Cells. In: Cramer, T. and Schmitt, C.A., Eds., Recent Results in Cancer Research, Springer International Publishing, 1-22.
https://doi.org/10.1007/978-3-319-42118-6_1
[8] 冯洁, 潘勤聪. 血清总胆汁酸及血脂对慢性乙型肝炎肝纤维化的诊断效能[J]. 中西医结合肝病杂志, 2021, 31(10): 930-932.
[9] Wu, T., Zheng, X., Yang, M., Zhao, A., Li, M., Chen, T., et al. (2017) Serum Lipid Alterations Identified in Chronic Hepatitis B, Hepatitis B Virus-Associated Cirrhosis and Carcinoma Patients. Scientific Reports, 7, Article No. 42710.
https://doi.org/10.1038/srep42710
[10] Sitia, G., Aiolfi, R., Di Lucia, P., Mainetti, M., Fiocchi, A., Mingozzi, F., et al. (2012) Antiplatelet Therapy Prevents Hepatocellular Carcinoma and Improves Survival in a Mouse Model of Chronic Hepatitis B. Proceedings of the National Academy of Sciences, 109, 2165-2172.
https://doi.org/10.1073/pnas.1209182109
[11] Su, I.J., Hsieh, W.C., Tsai, H.W., et al. (2013) Chemoprevention and Novel Therapy for Hepatocellular Carcinoma Associated with Chronic Hepatitis B Virus Infection. Hepatobiliary Surgery and Nutrition, 2, 37-39.
[12] Cho, H.K., Kim, S.Y., Yoo, S.K., Choi, Y.H. and Cheong, J. (2014) Fatty Acids Increase Hepatitis B Virus X Protein Stabilization and HBX‐Induced Inflammatory Gene Expression. The FEBS Journal, 281, 2228-2239.
https://doi.org/10.1111/febs.12776
[13] Teng, C., Hsieh, W., Yang, C., Su, H., Tsai, T., Sung, W., et al. (2015) A Biphasic Response Pattern of Lipid Metabolomics in the Stage Progression of Hepatitis B Virus X Tumorigenesis. Molecular Carcinogenesis, 55, 105-114.
https://doi.org/10.1002/mc.22266
[14] Wu, Y., Peng, X., Zhu, Y., Yan, X., Chen, W. and Lin, X. (2016) Hepatitis B Virus X Protein Induces Hepatic Steatosis by Enhancing the Expression of Liver Fatty Acid Binding Protein. Journal of Virology, 90, 1729-1740.
https://doi.org/10.1128/jvi.02604-15
[15] Braun, D., Abia, W.A., Šarkanj, B., Sulyok, M., Waldhoer, T., Erber, A.C., et al. (2022) Mycotoxin-Mixture Assessment in Mother-Infant Pairs in Nigeria: From Mothers’ Meal to Infants’ Urine. Chemosphere, 287, Article ID: 132226.
https://doi.org/10.1016/j.chemosphere.2021.132226
[16] Wang, T., Li, X., Liao, G., Wang, Z., Han, X., Gu, J., et al. (2024) AFB1 Triggers Lipid Metabolism Disorders through the PI3K/AKT Pathway and Mediates Apoptosis Leading to Hepatotoxicity. Foods, 13, Article No. 163.
https://doi.org/10.3390/foods13010163
[17] Eraslan, G., Sarıca, Z.S., Bayram, L.Ç., Tekeli, M.Y., Kanbur, M. and Karabacak, M. (2017) The Effects of Diosmin on Aflatoxin-Induced Liver and Kidney Damage. Environmental Science and Pollution Research, 24, 27931-27941.
https://doi.org/10.1007/s11356-017-0232-7
[18] Tan, S., Qiu, X., Yu, H., Zeng, X., Xiao, Z., Li, L., et al. (2009) Synergistic Action of Clonorchiasis, HBV Infection and Alcohol Consumption on Primary Hepatocellular Carcinoma. Clinical Oncology and Cancer Research, 6, 104-112.
https://doi.org/10.1007/s11805-009-0104-0
[19] Marié, C., Fouquet, G., Courtois, A., Amrathlal, R.S., Jankovsky, N., Ouled-Haddou, H., et al. (2022) Mechanisms of Chronic Alcohol Exposure-Induced Aggressiveness in Cellular Model of HCC and Recovery after Alcohol Withdrawal. Cellular and Molecular Life Sciences, 79, Article No. 366.
https://doi.org/10.1007/s00018-022-04387-y
[20] French, S.W. (2016) Chronic Alcohol Binging Injures the Liver and Other Organs by Reducing NAD+ Levels Required for Sirtuin’s Deacetylase Activity. Experimental and Molecular Pathology, 100, 303-306.
https://doi.org/10.1016/j.yexmp.2016.02.004
[21] You, M., Jogasuria, A., Taylor, C., et al. (2015) Sirtuin 1 Signaling and Alcoholic Fatty Liver Disease. HepatoBiliary Surgery and Nutrition, 4, 88-100.
[22] Ma, G., Liu, Y., Zhang, Q., Zhang, B., Zhao, N., Wang, Q., et al. (2014) Pre-Endurance Training Prevents Acute Alcoholic Liver Injury in Rats through the Regulation of Damaged Mitochondria Accumulation and Mitophagy Balance. Hepatology International, 8, 425-435.
https://doi.org/10.1007/s12072-014-9529-5
[23] Wen, Q., Chan, K.H., Shi, K., Lv, J., Guo, Y., Pei, P., et al. (2022) Tobacco Smoking and Solid Fuels for Cooking and Risk of Liver Cancer: A Prospective Cohort Study of 0.5 Million Chinese Adults. International Journal of Cancer, 151, 181-190.
https://doi.org/10.1002/ijc.33977
[24] Bui, T.T., Park, E., Kang, H. and Oh, J. (2024) Combined Effects of Smoking and Alcohol Consumption on the Risk of Liver Cancer According to Metabolic Syndrome: A Nested Case-Control Study in south Korea. International Journal of Cancer, 155, 654-665.
https://doi.org/10.1002/ijc.34935
[25] Zabala, V., Tong, M., Yu, R., Ramirez, T., Yalcin, E.B., Balbo, S., et al. (2015) Potential Contributions of the Tobacco Nicotine-Derived Nitrosamine Ketone (NNK) in the Pathogenesis of Steatohepatitis in a Chronic Plus Binge Rat Model of Alcoholic Liver Disease. Alcohol and Alcoholism, 50, 118-131.
https://doi.org/10.1093/alcalc/agu083
[26] Qin, W., Yang, Z., Li, M., Chen, Y., Zhao, X., Qin, Y., et al. (2020) High Serum Levels of Cholesterol Increase Antitumor Functions of Nature Killer Cells and Reduce Growth of Liver Tumors in Mice. Gastroenterology, 158, 1713-1727.
https://doi.org/10.1053/j.gastro.2020.01.028
[27] 陈欢, 李秀惠. 急、慢性乙型肝炎及乙肝肝硬化患者肝功能及血脂水平分析[J]. 医学信息, 2019, 32(12): 67-69.
[28] Ma, X., Cui, H., Sun, M., Liu, Q., Liu, X., Li, G., et al. (2021) Fasting Blood Glucose, Cholesterol, and Risk of Primary Liver Cancer: The Kailuan Study. Cancer Research and Treatment, 53, 1113-1122.
https://doi.org/10.4143/crt.2020.817
[29] Sun, M., Wang, W., Liu, X., Wang, Y., Cui, H., Liu, S., et al. (2021) Total Cholesterol, Alanine Aminotransferase and the Risk of Primary Liver Cancer: A Population-Based Prospective Study. Medicine, 100, e25746.
https://doi.org/10.1097/md.0000000000025746
[30] Krautbauer, S., Weiss, T.S., Wiest, R., et al. (2017) Diagnostic Value of Systemic Cholesteryl Ester/Free Cholesterol Ratio in Hepatocellular Carcinoma. Anticancer Research, 37, 3527-3535.
[31] Solsona-Vilarrasa, E., Fucho, R., Torres, S., Nuñez, S., Nuño-Lámbarri, N., Enrich, C., et al. (2019) Cholesterol Enrichment in Liver Mitochondria Impairs Oxidative Phosphorylation and Disrupts the Assembly of Respiratory Supercomplexes. Redox Biology, 24, Article ID: 101214.
https://doi.org/10.1016/j.redox.2019.101214
[32] Ismail, I.T., Elfert, A., Helal, M., Salama, I., El-Said, H. and Fiehn, O. (2020) Remodeling Lipids in the Transition from Chronic Liver Disease to Hepatocellular Carcinoma. Cancers, 13, Article No. 88.
https://doi.org/10.3390/cancers13010088
[33] Gimm, T., Wiese, M., Teschemacher, B., Deggerich, A., Schödel, J., Knaup, K.X., et al. (2010) Hypoxia‐Inducible Protein 2 Is a Novel Lipid Droplet Protein and a Specific Target Gene of Hypoxia‐Inducible Factor‐1. The FASEB Journal, 24, 4443-4458.
https://doi.org/10.1096/fj.10-159806
[34] 刘咏真, 康静波, 杜锐, 等. 缺氧诱导基因2甘油三酯堆积稳态失衡促进肝癌发生的研究[J]. 转化医学杂志, 2020, 9(3): 137-146.
[35] Ahn, J., Lim, U., Weinstein, S.J., Schatzkin, A., Hayes, R.B., Virtamo, J., et al. (2009) Prediagnostic Total and High-Density Lipoprotein Cholesterol and Risk of Cancer. Cancer Epidemiology, Biomarkers & Prevention, 18, 2814-2821.
https://doi.org/10.1158/1055-9965.epi-08-1248
[36] Nam, S.Y., Jo, J., Lee, W.K. and Cho, C.M. (2024) Factor Modification in the Association between High-Density Lipoprotein Cholesterol and Liver Cancer Risk in a Nationwide Cohort. International Journal of Epidemiology, 53, dyae053.
https://doi.org/10.1093/ije/dyae053
[37] Jiang, S., Weng, D., Jiang, L., Zhang, Y., Pan, K., Pan, Q., et al. (2016) The Clinical Significance of Preoperative Serum Cholesterol and High-Density Lipoprotein-Cholesterol Levels in Hepatocellular Carcinoma. Journal of Cancer, 7, 626-632.
https://doi.org/10.7150/jca.13837
[38] Esteve, E., Ricart, W. and Fernández-Real, J.M. (2005) Dyslipidemia and Inflammation: An Evolutionary Conserved Mechanism. Clinical Nutrition, 24, 16-31.
https://doi.org/10.1016/j.clnu.2004.08.004
[39] Sugano, M., Tsuchida, K. and Makino, N. (2000) High-Density Lipoproteins Protect Endothelial Cells from Tumor Necrosis Factor-Α-Induced Apoptosis. Biochemical and Biophysical Research Communications, 272, 872-876.
https://doi.org/10.1006/bbrc.2000.2877
[40] Lupattelli, G., Marchesi, S., Lombardini, R., Siepi, D., Bagaglia, F., Pirro, M., et al. (2003) Mechanisms of High-Density Lipoprotein Cholesterol Effects on the Endothelial Function in Hyperlipemia. Metabolism, 52, 1191-1195.
https://doi.org/10.1016/s0026-0495(03)00157-4
[41] Catapano, A.L., Pirillo, A., Bonacina, F. and Norata, G.D. (2014) HDL in Innate and Adaptive Immunity. Cardiovascular Research, 103, 372-383.
https://doi.org/10.1093/cvr/cvu150
[42] Menendez, J.A. and Lupu, R. (2007) Fatty Acid Synthase and the Lipogenic Phenotype in Cancer Pathogenesis. Nature Reviews Cancer, 7, 763-777.
https://doi.org/10.1038/nrc2222
[43] Swinnen, J.V., Brusselmans, K. and Verhoeven, G. (2006) Increased Lipogenesis in Cancer Cells: New Players, Novel Targets. Current Opinion in Clinical Nutrition & Metabolic Care, 9, 358-365.
https://doi.org/10.1097/01.mco.0000232894.28674.30
[44] Nakagawa, H., Hayata, Y., Kawamura, S., Yamada, T., Fujiwara, N. and Koike, K. (2018) Lipid Metabolic Reprogramming in Hepatocellular Carcinoma. Cancers, 10, Article No. 447.
https://doi.org/10.3390/cancers10110447
[45] Budhu, A., Roessler, S., Zhao, X., Yu, Z., Forgues, M., Ji, J., et al. (2013) Integrated Metabolite and Gene Expression Profiles Identify Lipid Biomarkers Associated with Progression of Hepatocellular Carcinoma and Patient Outcomes. Gastroenterology, 144, 1066-1075.e1.
https://doi.org/10.1053/j.gastro.2013.01.054
[46] Cao, D., Song, X., Che, L., Li, X., Pilo, M.G., Vidili, G., et al. (2016) Both de Novo Synthetized and Exogenous Fatty Acids Support the Growth of Hepatocellular Carcinoma Cells. Liver International, 37, 80-89.
https://doi.org/10.1111/liv.13183
[47] Wang, M., Wu, H., Fu, G., Zhang, H., Zhou, X., Tang, L., et al. (2016) Acetyl‐Coenzyme a Carboxylase Alpha Promotion of Glucose‐Mediated Fatty Acid Synthesis Enhances Survival of Hepatocellular Carcinoma in Mice and Patients. Hepatology, 63, 1272-1286.
https://doi.org/10.1002/hep.28415
[48] Iwamoto, H., Abe, M., Yang, Y., Cui, D., Seki, T., Nakamura, M., et al. (2018) Cancer Lipid Metabolism Confers Antiangiogenic Drug Resistance. Cell Metabolism, 28, 104-117.e5.
https://doi.org/10.1016/j.cmet.2018.05.005
[49] Hu, B., Lin, J., Yang, X. and Sang, X. (2020) Aberrant Lipid Metabolism in Hepatocellular Carcinoma Cells as Well as Immune Microenvironment: A Review. Cell Proliferation, 53, e12772.
https://doi.org/10.1111/cpr.12772
[50] Calvisi, D.F., Wang, C., Ho, C., Ladu, S., Lee, S.A., Mattu, S., et al. (2011) Increased Lipogenesis, Induced by AKT-mTORC1-RPS6 Signaling, Promotes Development of Human Hepatocellular Carcinoma. Gastroenterology, 140, 1071-1083.e5.
https://doi.org/10.1053/j.gastro.2010.12.006
[51] Li, L., Pilo, G.M., Li, X., Cigliano, A., Latte, G., Che, L., et al. (2016) Inactivation of Fatty Acid Synthase Impairs Hepatocarcinogenesis Driven by AKT in Mice and Humans. Journal of Hepatology, 64, 333-341.
https://doi.org/10.1016/j.jhep.2015.10.004
[52] HAO, Q., LI, T., ZHANG, X., GAO, P., QIAO, P., LI, S., et al. (2014) Expression and Roles of Fatty Acid Synthase in Hepatocellular Carcinoma. Oncology Reports, 32, 2471-2476.
https://doi.org/10.3892/or.2014.3484
[53] Ma, M.K.F., Lau, E.Y.T., Leung, D.H.W., Lo, J., Ho, N.P.Y., Cheng, L.K.W., et al. (2017) Stearoyl-COA Desaturase Regulates Sorafenib Resistance via Modulation of ER Stress-Induced Differentiation. Journal of Hepatology, 67, 979-990.
https://doi.org/10.1016/j.jhep.2017.06.015
[54] Yao, F., Bo, Y., Zhao, L., Li, Y., Ju, L., Fang, H., et al. (2021) Prevalence and Influencing Factors of Metabolic Syndrome among Adults in China from 2015 to 2017. Nutrients, 13, Article No. 4475.
https://doi.org/10.3390/nu13124475