细胞衰老相关的CASC15/hsa-miR-30c-5p/ SERPINE1轴影响胃癌的发生发展
Aging-Associated CASC15/hsa-miR-30c-5p/SERPINE1 Axis Affects the Occurrence and Development of Gastric Cancer
DOI: 10.12677/acm.2025.151148, PDF, HTML, XML,    科研立项经费支持
作者: 张康洋, 王子晨, 郭 振, 张 伟, 孙培春*:郑州大学人民医院胃肠外科,河南 郑州
关键词: 胃癌SERPINE1衰老基因ceRNA癌症基因组图谱Gastric Cancer SERPINE1 Aging Genes ceRNA TCGA
摘要: 目的:寻找影响胃癌发生发展的衰老基因,构建内源竞争性RNA (ceRNA)调控网络,为发掘胃癌有效的诊断、预后生物标志物和治疗靶点提供依据。方法:从癌症基因组图谱(TCGA)数据库下载胃癌的表达数据和临床生存数据,在Aging Atlas数据库中获取衰老基因,使用R软件中“DESeq2”程序包进行差异分析并采用Cox回归及Kaplan-Meier生存分析的方法筛选在胃癌中表达差异且与预后相关的衰老基因。通过Starbase数据库筛选具有靶向关系的miRNAs和lncRNAs,分别进行相关性分析和生存分析用于构建ceRNA调控网络。结果:对502个衰老基因分析显示SERPINE1基因在胃癌组织中显著高表达,且其高表达时患者预后较差。之后以SERPINE1作为关键基因构建一个与胃癌患者预后相关的ceRNA网络,其包含1个mRNA、1个miRNA和1个lncRNA,并以此基因构建胃癌的预后风险模型,最后进行通路、功能及免疫相关性分析。结论:本研究对衰老基因的分析及ceRNA网络的构建有助于进一步探索胃癌发生发展的分子机制,对发现预后标志物和治疗靶点至关重要。
Abstract: Objective: Searching for aging genes affecting the occurrence and development of gastric cancer and constructing competitive endogenous RNA (ceRNA) regulatory networks provide evidence for exploring effective diagnostic and prognostic biomarkers and therapeutic targets of gastric cancer. Methods: Expression data and clinical survival data of gastric cancer were downloaded from The Cancer Genome Atlas (TCGA) database. Senescence-related genes were obtained from the Aging Atlas database. Differential analysis was performed using the “DESeq2” package in R software. Cox regression and Kaplan-Meier survival analysis methods were employed to screen for senescence-related genes that are differentially expressed in gastric cancer and associated with prognosis. The Starbase database was used to identify miRNAs and lncRNAs with target relationships. Correlation analysis and survival analysis were conducted to construct the ceRNA regulatory network. Results: The analysis of 502 aging genes showed that the SERPINE1 gene was highly expressed in gastric cancer tissues, and the prognosis of patients was poor when it was highly expressed. Then SERPINE1 was used as the key gene to construct a ceRNA network correlated with survival in gastric cancer patients, which included one mRNA, one miRNA, and one lncRNA. The prognostic risk model of gastric cancer was constructed with the SERPINE1 gene. Finally, the pathway, functional enrichment analysis, and immune correlation analysis were carried out. Conclusion: The analysis of aging genes and the construction of the ceRNA network in this study are helpful to further explore the molecular mechanism of the occurrence and development of gastric cancer, which is crucial for the discovery of the prognostic markers and therapeutic targets.
文章引用:张康洋, 王子晨, 郭振, 张伟, 孙培春. 细胞衰老相关的CASC15/hsa-miR-30c-5p/ SERPINE1轴影响胃癌的发生发展[J]. 临床医学进展, 2025, 15(1): 1110-1124. https://doi.org/10.12677/acm.2025.151148

1. 引言

作为常见的消化道恶性肿瘤之一,全球胃癌发病率和死亡率分别居于所有恶性肿瘤的第5位和第3位[1]。每年全球新诊断为胃癌的患者超过100万例,其中超过40%的新发病例和死亡病例发生在中国[2]。随着手术治疗、放化疗、靶向治疗、免疫治疗等治疗技术的发展,早期胃癌的5年生存率可达到95%,然而大多数患者在确诊时已是晚期阶段,此时患者的预后较差[3] [4]。胃癌的预后好坏与多种因素有关,例如组织学类型、分期、内脏脂肪含量、肿瘤微环境等[5]-[7]。细胞衰老在癌症的发生与诊治中的研究越来越受到重视[8]。永久退出细胞周期的衰老细胞可被巨噬细胞、中性粒细胞或自然杀伤细胞清除[9] [10],但衰老细胞也可以保持多年的衰老状态,随着时间的积累而增多,可能会重新进入细胞周期并促进肿瘤的发生[11]。2011年,Salmena等人[12]首次提出了内源性竞争RNA (ceRNA)假说,长链非编码RNA (lncRNA)可以通过竞争靶miRNA来调节mRNA的表达。本研究利用TCGA数据库中转录组数据对衰老基因进行分析,并构建ceRNA调控网络,对研究胃癌的诊断、治疗和改善预后有重要的临床价值。

2. 资料与方法

2.1. 数据资料的获取

通过TCGA数据库下载胃癌RNA-Seq、miRNA-Seq及临床生存数据。RNA-Seq数据包括373例胃癌样本和32例胃癌患者的癌旁正常组织样本,miRNA-Seq数据包括45例正常样本和446例胃癌样本,并从Aging Atlas数据库中获取502个与细胞衰老相关的人类基因数据。

2.2. 胃癌中差异表达且与生存相关的衰老基因

将获取的衰老基因与RNA-Seq的Counts数据取交集,在R软件中运行“DESeq2”包,以log2FC > 1和padj < 0.05的检验标准,对胃癌组织和癌旁正常组织的RNA测序数据进行统计分析,得到在两组中差异表达的衰老基因。再使用“survival”软件包进行Kaplan-Meier分析和单因素cox回归,得到了有预后价值的衰老基因。最后通过筛选获得了所需基因:SERPINE1。

2.3. 筛选与SERPINE1有靶向关系的miRNA和lncRNA用于构建ceRNA调控网络

通过Starbase数据库检索出与SERPINE1结合的miRNAs,使用R软件进行miRNA-mRNA相关性表达分析,以spearman COR < −0.2和p < 0.05的筛选标准得到与SERPINE1显著负相关的miRNAs。再使用“limma”软件包从与SERPINE1负相关的miRNAs中筛选出差异表达的miRNAs,由于SERPINE1在胃癌中表达上调,为了获得与SERPINE1负相关的miRNA,将差异表达miRNAs的筛选标准设为log2FC < 0且p < 0.05。对所筛选得到的miRNAs进行生存分析,最终得到了与SERPINE1基因呈负相关且与预后相关的差异miRNA:hsa-miR-30c-5p。以同样的方法和筛选标准来获得与hsa-miR-30c-5p表达呈负相关且与预后有关的差异lncRNA。借助Cytoscape软件对所获得的mRNA-miRNA-lncRNA调控网络进行可视化。

2.4. SERPINE1基因在胃癌中的差异分析和生存分析

为了进一步明确SERPINE1在胃癌中差异表达情况和与预后的相关性,运行“limma”软件包分析其在胃癌组织和正常胃粘膜组织中的差异表达情况,并且验证了其在同一患者的肿瘤组织和癌旁组织表达差异性。根据SERPINE1在胃癌患者中的表达量,以中位值为截断点将患者分为高低表达两组,使用R软件分析两组患者的生存情况是否有差异,并在UCSC中下载泛癌的临床数据文件进行无进展生存期分析。

2.5. SERPINE1基因ROC曲线和列线图的绘制及独立预后分析

运行“timeROC”软件包绘制SERPINE1基因相关的受试者工作特征曲线,判断依据SERPINE1基因表达量预测患者生存期的准确性高低。根据患者的临床性状和SERPINE1基因表达量绘制列线图预测患者的生存期并绘制相关校准曲线。对胃癌患者SERPINE1基因表达水平、年龄、分级、分期、性别进行单因素和多因素独立预后分析,得出SERPINE1基因是否可以作为独立的预后因子。

2.6. SERPINE1基因的富集分析

将胃癌患者以SERPINE1基因表达量的中位数为截点分为两组,运行“limma”软件包以|log2FC| > 1和fdr < 0.05的筛选标准得到了在两组中差异表达的基因文件,用于GO富集分析和KEGG通路分析,再使用“clusterProfiler”软件包进行基因集富集分析(GSEA),并通过“enrichplot”软件包可视化。

2.7. 肿瘤微环境(TME)与免疫相关性分析

运行“estimate”软件包对胃癌样本进行肿瘤微环境打分,用于量化每个样品中的免疫浸润和肿瘤纯度。使用cibersort算法计算每个样本中22种免疫细胞的比例,根据SERPINE1基因的表达量将胃癌患者分为两组,将免疫细胞比例在两组中进行差异分析,得到免疫细胞与SERPINE1基因的相关关系,并绘制可视化图形,之后对SERPINE1基因的表达水平与免疫检查点基因的表达水平进行相关性分析。

2.8. 统计学方法

采用R 4.2.1对数据进行统计学分析,P < 0.05时认为差异具有统计学意义。

3. 结果

3.1. 胃癌中差异表达且与生存相关的衰老基因筛选结果

从502个衰老基因中筛选得到了116个在胃癌样本和正常样本中差异表达的基因,经过生存分析得到了5个与预后相关的基因:SERPINE1、EGF、GHR、SNCG和PDGFRB,其中SERPINE1基因在胃癌组织中表达显著上调(log2FC = 2.03)。

3.2. SERPINE1基因在胃癌中差异表达及预后相关性分析

(a) (b)

(c) (d)

Figure 1. Differential expression and survival analysis of SERPINE1 gene in gastric cancer: (a). Differential analysis; (b). Paired difference analysis; (c). Survival analysis (d). Progression-free survival *.p < 0.05, **.p < 0.01, ***.p < 0.001

1. SERPINE1基因在胃癌中差异表达和生存分析:(a). 差异分析;(b). 配对差异分析;(c). 生存分析;(d). 无进展生存期*.p < 0.05,**.p < 0.01,***.p < 0.001

SERPINE1基因在胃癌样本中与正常样本相比呈现出显著高表达(图1(a)),同一患者的胃癌组织中SERPINE1基因表达水平显著高于癌旁组织(图1(b)),生存分析显示SERPINE1低表达组的患者的预后要远远优于高表达组患者(图1(c)图1(d))。

3.3. ceRNA调控网络的构建

在Starbase数据库中检索到了76个与SERPINE1结合的miRNAs,经过筛选只有hsa-miR-30c-5p在肿瘤组织中低表达且存在表达差异,并与SERPINE1基因表达呈负相关且影响胃癌患者的生存预后(图2(a)图2(b))。同样,在Starbase数据库检索到了245个与hsa-miR-30c-5p结合的lncRNAs,筛选得到CASC15在肿瘤组织中高表达且存在表达差异,并与hsa-miR-30c-5p表达呈负相关,而与SERPINE1表达呈正相关,且影响胃癌患者的生存预后(图2(c)~(e))。使用Cytoscape软件绘制mRNA-miRNA-lncRNA ceRNA调控网络(图2(f))。

(a) (b)

(c) (d)

(e) (f)

Figure 2. miRNA, lncRNA correlation analysis and survival analysis and ceRNA regulatory network diagram: (a). Correlation between hsa-miR-30c-5p and SERPINE1; (b). hsa-miR-30c-5p survival analysis; (c). CASC15 and hsa -miR-30c-5p correlation; (d). CASC15 and SERPINE1 correlation; (e). CASC15 survival analysis; (f). ceRNA regulatory network

2. miRNA、lncRNA相关性分析和生存分析及ceRNA调控网络图:(a). hsa-miR-30c-5p与SERPINE1的相关性;(b). hsa-miR-30c-5p生存分析;(c). CASC15与hsa-miR-30c-5p相关性;(d). CASC15与SERPINE1相关性;(e). CASC15生存分析;(f). ceRNA调控网络

3.4. ROC曲线、列线图及独立预后分析结果

ROC曲线下面积(AUC)分别为0.609 (1年)、0.653 (3年)和0.746 (5年),表明根据SERPINE1基因表达水平预测胃癌患者生存期具有良好的灵敏度和特异度(图3(a))。我们构建了一个以患者的临床病理特征(T分期、N分期、N分期、病理分级、肿瘤分期、年龄与性别)和SERPINE1基因表达水平打分的临床预测模型(图3(b),其校准曲线表明此模型具有良好的预测能力(图3(c))。单因素和多因素独立预后分析均显示SERPINE1基因能够区别于其他临床性状作为胃癌的独立预后因子(图3(d)图3(e))。

(a) (b)

(c) (d)

(e)

Figure 3. ROC curve, nomogram and independent prognostic analysis of SERPINE1 gene: (a). ROC curve; (b). Nomogram; (c). Calibration curve; (d). Single-factor independent prognostic analysis; (e). Multi-factor independent prognostic analysis

3. SERPINE1基因的ROC曲线和列线图及独立预后分析:(a). ROC曲线;(b). 列线图;(c). 校准曲线;(d). 单因素独立预后分析;(e). 多因素独立预后分析

3.5. 富集分析

3类GO富集分析:生物过程(BP)、分子功能(MF)和细胞组分(CC)分别展示10个功能富集结果(图4(a)图4(b)),KEGG通路富集分析展示了20个信号通路的基因富集结果(图4(c)图4(d)),基因集富集分析(GSEA)分别展示了功能富集分析和通路富集分析的结果(图4(e)图4(f))。富集分析的结果更形象的展示了,SERPINE1基因通过哪些生物学功能和信号通路对胃癌的发生发展产生影响。

3.6. TME评分和免疫相关性分析结果

对肿瘤微环境评分进行可视化(图5(a)),SERPINE1基因高表达组样本的基质细胞评分、免疫细胞评分和综合评分均显著高于低表达组。对22种免疫细胞在SERPINE1基因高低表达两组进行差异分析(图5(b)),其中有6种免疫细胞有显著差异。分析免疫细胞与SERPINE1基因的相关性结果显示:6种免疫细胞与SERPINE1基因之间呈正调控关系,3种免疫细胞与其呈负调控关系(图5(c))。SERPINE1基因与免疫检查点基因相关性分析结果表明:22个免疫检查点基因均与SERPINE1基因表达水平呈正相关(图5(d))。

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4. Enrichment analysis: (a). GO enrichment analysis circle chart (b). GO enrichment analysis bubble chart (c). KEGG pathway analysis bar chart (d). KEGG pathway analysis bubble chart (e). GSEA pathway enrichment analysis (f). GSEA functional enrichment analyze

4. 富集分析:(a). GO富集分析圈图 (b). GO富集分析气泡图 (c). KEGG通路分析条形图 (d). KEGG通路分析气泡图 (e). GSEA通路富集分析 (f). GSEA功能富集分析

(a)

(b)

(c)

(d)

Figure 5. SERPINE1 gene tumor microenvironment score and immune correlation analysis: (a). TME score (b). Difference analysis of 22 types of immune cells (c). Correlation analysis between SERPINE1 and immune cells (d). Correlation analysis between SERPINE1 and immune checkpoints *.p < 0.05, **.p < 0.01, ***.p < 0.001

5. SERPINE1基因肿瘤微环境评分和免疫相关性分析:(a). TME评分 (b). 22种免疫细胞差异分析 (c). SERPINE1与免疫细胞相关性分析 (d). SERPINE1与免疫检查点相关性分析*.p < 0.05,**.p < 0.01,***.p < 0.001

4. 讨论

我国每年新诊断胃癌患者高达40多万例,病死率占恶性肿瘤的20%以上,并有逐年上升的趋势[13] [14]。由于胃癌总体预后较差,识别胃癌进展和预后的新分子靶点,开展有效的胃癌靶向治疗是迫切需要的[15]。1965年,伦纳德发现正常细胞并不能无休止地进行增殖,会进入休眠老化状态[16]。诱导衰老是癌症治疗中的一种思路,用较低剂量的相同药物可能会诱导癌细胞衰老并避免对正常细胞的毒副作用[17],肿瘤细胞还可以通过衰老相关的分泌表型途径改变肿瘤的免疫微环境从而影响肿瘤的发展[18]。SERPINE1作为衰老基因,在结肠癌、肾透明细胞癌、胶质母细胞瘤等恶性肿瘤中表达上调[19]-[21],并与患者的预后不良相关,SERPINE1基因在胃癌中的生物学功能仍然有待进一步探索。

本研究从502个衰老基因中,筛选得到了在胃癌中表达上调且与生存相关的SERPINE1基因,并构建了包含1个mRNA、1个miRNA和1个lncRNA的ceRNA调控网络。此网络中的mRNA、miRNA和lncRNA之间可以相互调节,其中hsa-miR-30c-5p起着关键作用:hsa-miR-30c-5p能与SERPINE1结合,抑制SERPINE1的表达,CASC15能与hsa-miR-30c-5p结合,从而解除hsa-miR-30c-5p对SERPINE1表达的抑制。这对肿瘤细胞的生长代谢的调控有着重要影响[12]。众多研究显示,ceRNA与多种癌症的启动、进展、侵袭和转移密切相关[22]-[25],ceRNA调控网络的构建可为寻找胃癌诊断和治疗的潜在靶点提供新思路和方向。绘制SERPINE1基因受试者工作特征曲线,可以判断其预测胃癌生存期具有良好的灵敏度和特异度,并以此基因为基础构建了一个临床预测模型,同时,进一步独立预后分析的结果表明,SERPINE1基因可独立于其他临床指标,作为评估胃癌患者预后的独立预测因子。通过GO功能富集分析、KEGG通路富集分析和GSEA基因集富集分析,揭示了SERPINE1基因参与胃癌发生发展的相关生物学过程和途径,进一步验证了SERPINE1对胃癌诊断和治疗的重要机制。肿瘤微环境和免疫细胞浸润在癌症的发生发展中起着重要作用[26] [27]。已有研究证明,针对免疫微环境调节和免疫检查点调节的免疫疗法在癌症的治疗中显示出一定的疗效[28] [29],提示可以通过对SERPINE1基因的研究进一步探索治疗胃癌的新方法。

综上所述,通过对衰老基因的筛选,得到了在胃癌中差异表达且有预后价值的基因SERPINE1,并以此构建了ceRNA调控网络,网络中所有RNAs均与胃癌患者的生存密切相关,同时建立了一个临床预测模型,并对SERPINE1进行富集分析和免疫相关性分析,进一步探索和验证了SERPINE1在胃癌中的潜在价值。SERPINE1基因及其参与构成的ceRNA网络为深入研究胃癌基因间的调控作用提供了参考依据和探索方向,有望成为潜在的诊断生物标志物和治疗靶点。

基金项目

河南省医学科技攻关计划项目(SBGJ202102025)。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Jin, G., Lv, J., Yang, M., Wang, M., Zhu, M., Wang, T., et al. (2020) Genetic Risk, Incident Gastric Cancer, and Healthy Lifestyle: A Meta-Analysis of Genome-Wide Association Studies and Prospective Cohort Study. The Lancet Oncology, 21, 1378-1386.
https://doi.org/10.1016/s1470-2045(20)30460-5
[3] Digklia, A. (2016) Advanced Gastric Cancer: Current Treatment Landscape and Future Perspectives. World Journal of Gastroenterology, 22, 2403-2414.
https://doi.org/10.3748/wjg.v22.i8.2403
[4] Song, Z., Wu, Y., Yang, J., Yang, D. and Fang, X. (2017) Progress in the Treatment of Advanced Gastric Cancer. Tumor Biology, 39, 1-7.
https://doi.org/10.1177/1010428317714626
[5] 李啸文, 仇广林, 王海江, 等. 内脏脂肪面积对胃癌根治术患者预后的影响[J]. 西安交通大学学报, 2022, 43(3): 419-425.
[6] Oya, Y., Hayakawa, Y. and Koike, K. (2020) Tumor Microenvironment in Gastric Cancers. Cancer Science, 111, 2696-2707.
https://doi.org/10.1111/cas.14521
[7] Riihimäki, M., Hemminki, A., Sundquist, K., Sundquist, J. and Hemminki, K. (2016) Metastatic Spread in Patients with Gastric Cancer. Oncotarget, 7, 52307-52316.
https://doi.org/10.18632/oncotarget.10740
[8] Shen, W., Liu, L. and Zeng, S. (2018) Senescence and Cancer. Cancer Translational Medicine, 4, 70-74.
https://doi.org/10.4103/ctm.ctm_22_18
[9] Pérez-Mancera, P.A., Young, A.R.J. and Narita, M. (2014) Inside and out: The Activities of Senescence in Cancer. Nature Reviews Cancer, 14, 547-558.
https://doi.org/10.1038/nrc3773
[10] Xue, W., Zender, L., Miething, C., Dickins, R.A., Hernando, E., Krizhanovsky, V., et al. (2007) Senescence and Tumour Clearance Is Triggered by P53 Restoration in Murine Liver Carcinomas. Nature, 445, 656-660.
https://doi.org/10.1038/nature05529
[11] Baar, M.P., Brandt, R.M.C., Putavet, D.A., Klein, J.D.D., Derks, K.W.J., Bourgeois, B.R.M., et al. (2017) Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell, 169, 132-147.e16.
https://doi.org/10.1016/j.cell.2017.02.031
[12] Salmena, L., Poliseno, L., Tay, Y., Kats, L. and Pandolfi, P.P. (2011) A Cerna Hypothesis: The Rosetta Stone of a Hidden RNA Language? Cell, 146, 353-358.
https://doi.org/10.1016/j.cell.2011.07.014
[13] Din, S.R.U., Nisar, M.A., Ramzan, M.N., Saleem, M.Z., Ghayas, H., Ahmad, B., et al. (2021) Latcripin-7A from Lentinula edodes C91-3 Induces Apoptosis, Autophagy, and Cell Cycle Arrest at G1 Phase in Human Gastric Cancer Cells via Inhibiting PI3K/AKT/mTOR Signaling. European Journal of Pharmacology, 907, Article ID: 174305.
https://doi.org/10.1016/j.ejphar.2021.174305
[14] Li, G., Zhang, Z., Chen, Z., Liu, B. and Wu, H. (2021) LncRNA DLEU2 Is Activated by STAT1 and Induces Gastric Cancer Development via Targeting miR-23b-3p/NOTCH2 Axis and Notch Signaling Pathway. Life Sciences, 277, Article ID: 119419.
https://doi.org/10.1016/j.lfs.2021.119419
[15] Markham, M.J., Wachter, K., Agarwal, N., Bertagnolli, M.M., Chang, S.M., Dale, W., et al. (2020) Clinical Cancer Advances 2020: Annual Report on Progress against Cancer from the American Society of Clinical Oncology. Journal of Clinical Oncology, 38, 1081-1101.
https://doi.org/10.1200/jco.19.03141
[16] Hayflick, L. (1965) The Limited in Vitro Lifetime of Human Diploid Cell Strains. Experimental Cell Research, 37, 614-636.
https://doi.org/10.1016/0014-4827(65)90211-9
[17] Ewald, J.A., Desotelle, J.A., Wilding, G. and Jarrard, D.F. (2010) Therapy-Induced Senescence in Cancer. JNCI: Journal of the National Cancer Institute, 102, 1536-1546.
https://doi.org/10.1093/jnci/djq364
[18] Basisty, N., Kale, A., Jeon, O.H., Kuehnemann, C., Payne, T., Rao, C., et al. (2020) A Proteomic Atlas of Senescence-Associated Secretomes for Aging Biomarker Development. PLOS Biology, 18, e3000599.
https://doi.org/10.1371/journal.pbio.3000599
[19] Hu, B., Chen, Z., Wang, X., Chen, F., Song, Z. and Cao, C. (2021) MicroRNA-148a-3p Directly Targets SERPINE1 to Suppress EMT-Mediated Colon Adenocarcinoma Progression. Cancer Management and Research, 13, 6349-6362.
https://doi.org/10.2147/cmar.s302777
[20] Liu, L., Xiao, S., Wang, Y., Zhu, Z., Cao, Y., Yang, S., et al. (2022) Identification of a Novel Circular RNA circZNF652/miR-486-5p/SERPINE1 Signaling Cascade That Regulates Cancer Aggressiveness in Glioblastoma (GBM). Bioengineered, 13, 1411-1423.
https://doi.org/10.1080/21655979.2021.2018096
[21] Sui, Y., Lu, K. and Fu, L. (2021) Prediction and Analysis of Novel Key Genes ITGAX, LAPTM5, SERPINE1 in Clear Cell Renal Cell Carcinoma through Bioinformatics Analysis. PeerJ, 9, e11272.
https://doi.org/10.7717/peerj.11272
[22] Deng, J., Kong, W., Wang, S., Mou, X. and Zeng, W. (2018) Prior Knowledge Driven Joint NMF Algorithm for Cerna Co-Module Identification. International Journal of Biological Sciences, 14, 1822-1833.
https://doi.org/10.7150/ijbs.27555
[23] Liu, X., Wang, Y., Ouyang, S., Zhu, Y., Li, W., Hong, X., et al. (2018) Evolutionary Conservation of Transferrin Genomic Organization and Expression Characterization in Seven Freshwater Turtles. Biochemical and Biophysical Research Communications, 506, 874-882.
https://doi.org/10.1016/j.bbrc.2018.10.168
[24] Zeng, H., Wang, J., Chen, T., Zhang, K., Chen, J., Wang, L., et al. (2018) Downregulation of Long Non‐Coding RNA Opa Interacting Protein 5‐antisense RNA 1 Inhibits Breast Cancer Progression by Targeting Sex‐Determining Region Y‐Box 2 by MicroRNA‐129‐5p Upregulation. Cancer Science, 110, 289-302.
https://doi.org/10.1111/cas.13879
[25] Zhu, H., Lu, J., Zhao, H., Chen, Z., Cui, Q., Lin, Z., et al. (2018) Functional Long Noncoding RNAs (lncRNAs) in Clear Cell Kidney Carcinoma Revealed by Reconstruction and Comprehensive Analysis of the lncRNA-miRNA-mRNA Regulatory Network. Medical Science Monitor, 24, 8250-8263.
https://doi.org/10.12659/msm.910773
[26] Sharma, P., Hu-Lieskovan, S., Wargo, J.A. and Ribas, A. (2017) Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell, 168, 707-723.
https://doi.org/10.1016/j.cell.2017.01.017
[27] Zhu, J., Petit, P. and Van den Eynde, B.J. (2018) Apoptosis of Tumor-Infiltrating T Lymphocytes: A New Immune Checkpoint Mechanism. Cancer Immunology, Immunotherapy, 68, 835-847.
https://doi.org/10.1007/s00262-018-2269-y
[28] Hinshaw, D.C. and Shevde, L.A. (2019) The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Research, 79, 4557-4566.
https://doi.org/10.1158/0008-5472.can-18-3962
[29] Iwai, Y., Ishida, M., Tanaka, Y., Okazaki, T., Honjo, T. and Minato, N. (2002) Involvement of PD-L1 on Tumor Cells in the Escape from Host Immune System and Tumor Immunotherapy by PD-L1 Blockade. Proceedings of the National Academy of Sciences of the United States of America, 99, 12293-12297.
https://doi.org/10.1073/pnas.192461099