烟酰胺核糖对非酒精性脂肪肝病影响的研究进展
Research Progress on the Effects of Nicotinamide Riboside on Non-Alcoholic Fatty Liver Disease
摘要: 非酒精性脂肪肝病(nonalcoholic fatty liver disease, NAFLD)已成为全球最常见的慢性肝病,其患病率逐年升高。大多数NAFLD患者只患有简单的脂肪变性,肝脏中脂质积累,但其中一部分人会发展为非酒精性脂肪性肝炎(nonalcoholic steatohepatitis, NASH),其特征是纤维化、炎症和肝细胞死亡。如果放任不管,NASH可能会发展为肝硬化和肝细胞癌,甚至导致死亡。NAFLD患病率的上升导致了严重的社会和经济问题。烟酰胺核糖(Nicotinamide Riboside, NR)是烟酰胺腺嘌呤二核苷酸(Nicotinamide Adenine Dinucleotide, NAD)的前体,在体内可以介导多种健康效应,补充NR可以减轻酒精引起的肝损伤,防止肝纤维化,并促进肝脏再生。本文对烟酰胺核糖用于治疗NAFLD的研究进行综述,旨在为烟酰胺核糖在临床治疗和保健品开发方面提供一定的科学依据。
Abstract: Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide, with its prevalence increasing year by year. Most NAFLD patients suffer from simple fatty degeneration, characterized by lipid accumulation in the liver. However, a portion of these patients may progress to non-alcoholic steatohepatitis (NASH), which is marked by fibrosis, inflammation, and hepatocyte death. If left untreated, NASH can lead to liver cirrhosis and hepatocellular carcinoma, and even result in mortality. The rising prevalence of NAFLD has led to significant social and economic issues. Nicotinamide riboside (NR) is a precursor to nicotinamide adenine dinucleotide (NAD) and can mediate various health effects within the body. Supplementing NR can alleviate alcohol-induced liver injury, prevent liver fibrosis, and promote liver regeneration. This article reviews the research on nicotinamide riboside in the treatment of NAFLD, aiming to provide scientific support for its clinical application and the development of health supplements.
文章引用:卞春勇. 烟酰胺核糖对非酒精性脂肪肝病影响的研究进展[J]. 临床医学进展, 2025, 15(1): 1139-1144. https://doi.org/10.12677/acm.2025.151151

1. 前言

非酒精性脂肪性肝病(NAFLD)是一个常见的健康问题,涵盖广泛的临床病理学谱,从简单的脂肪变性到NASH、纤维化,最后可发展为肝硬化和肝癌[1] [2]。随着生活方式改变,运动时间减少,饮食模式发生变化,NAFLD的全球患病率持续增加[3] [4]。机体许多代谢紊乱的症状,包括高血糖、腹部肥胖、糖尿病、胰岛素抵抗和脂肪因子异常,与NAFLD发病机制密切相关[3]。2020年一项国际共识将NAFLD更名为代谢功能障碍相关脂肪肝病(MAFLD) [5]。尽管近年来通过大量的实验和临床研究对NAFLD进行了深入研究,但其病理生理学和机制尚不完全清楚,NAFLD的治疗选择仍然有限。

烟酰胺核糖是维生素B3的一种特殊形式,可以通过饮食获取,在牛奶,肉类,以及发酵食品中广泛存在[6]。通过膳食获得的NR在进入细胞后,在烟酰胺核苷激酶(NRK)的催化作用下代谢为烟酰胺单核苷酸(NMN),NMN最终代谢为NAD [7]。NR作为NAD的前体之一,通过增加体内NAD含量介导了许多潜在的健康效应。这也是其被大量研究的原因。NAD是一种必需的辅酶,在大多数分解代谢和合成代谢反应中起着重要作用,如三羧酸循环、脂肪酸β氧化、糖酵解、脂肪酸、胆固醇、类固醇等的合成等[8]-[10]。它能够通过从糖酵解和三羧酸循环中以还原形式NADH转移电子来提供线粒体电子传递链。有研究表明NR在啮齿动物中观察到的最低不良反应为1000 mg/kg/day,未观察到的不良反应水平为300 mg/kg/day,具有高安全性的特点[11]。并且NR在人体中的耐受性良好,且没有报告显示有害的副作用。此外,与其他NAD补充剂不同,NR不会引起面部潮红等副作用。NR可以通过胶囊或舌下含服形式提供,其中舌下含服形式可以绕过消化系统和肝脏直接吸收到血液中,从而提高吸收利用率。

本文主要介绍了烟酰胺核糖在NAFLD治疗中发挥的作用及其可能的机制,并分析了相关研究的研究结果,对进一步研究和治疗NAFLD提供基础和依据。

2. 烟酰胺核糖在NAFLD治疗中的作用

2.1. 烟酰胺核糖可以改善代谢功能,减少肝脏中的脂质积累

NAFLD一开始是从单纯的脂肪变性开始的,补充NR可以明显改善HFD (HFD)诱导的肝脏脂质沉积,降低脂质变性程度,减轻肝脏重量和白色脂肪组织重量,显著降低了血清中TG、TC、LDL-C和HDL-C的水平[12]。有研究检测HFD喂养小鼠的肝脏中脂肪酸氧化(FAO)和脂肪分解相关的基因(Cpt1a, Ucp2, Ppara, Pnpla2)、脂肪生成和脂滴(Fasn, Acaca, Pparg, Srebf1, Mlxipl, Plin2, Plin5)以及SIRT1和AMPK通路(Sirt1, Gadd45a, Sod2, Prkaa1, Prkaa2)的相关基因表达水平,HFD喂养的NR小鼠肝脏中Srebf1、Plin2、Mlxipl的表达水平显著降低,Ppara和SIRT1表达水平增加,这些结果可能说明补充NR的小鼠肝脏中脂肪生成或脂滴形成减少和FAO增加并且这些结果可能与SIRT1的激活有关[13]。除此之外,NR是NAD的前体,NAD被NRK和NMNAT代谢成NAD。NAD在各种细胞还原–氧化(redox)反应中接受电子。NADH是NAD的还原形式,是一种普遍存在的细胞电子供体。NAD和NADH构成一个氧化还原对,在控制许多细胞生理反应中起着至关重要的作用。有研究表明NAD/NADH比值的改善涉及脂质代谢紊乱的调节[14]。在HuiZhao等人的研究中[12],高果糖暴露导致肝脏NAD水平显着降低,这可能是由于高果糖暴露通常会诱导高血糖状态,从而抑制丙酮酸脱氢酶复合物,从而导致NAD水平降低[15]。此外,高果糖暴露诱导的营养过剩状态通常会使机体产生过量的NADH,进一步打破NAD和NADH之间的氧化还原平衡,最终导致血脂异常、胰岛素抵抗和肥胖。NR补充剂增加了NAD水平并降低了NADH水平,并逆转了NAD/NADH氧化还原失衡,这是NR调节脂质代谢紊乱的重要环节。

2.2. 烟酰胺核糖对肝脏炎症反应的影响

在HFD、缺乏运动等不良生活习惯的影响下,身体内的脂质代谢会发生紊乱。这会导致脂肪在肝脏中过度堆积,形成脂肪肝。同时,脂质代谢紊乱还会引发氧化应激和脂质过氧化等反应,这些反应会进一步损伤肝脏细胞,促进炎症的形成。与高果糖饮食小鼠相比,补充NR显著降低肝脏中炎性细胞因子IL-1β、IL-6、IL-18和TNF-α的表达水平,并且相关研究发现随着NR组NAD/NADH比值的增加,SIRT1表达显著增加,NF-κB/p65表达显著下调[12]。Sirtuins是一个NAD依赖性脱乙酰酶家族。SIRT1可被增加的NAD/NADH比值激活。NR作为NAD的前体,能通过增加SIRT1和SIRT3的表达水平来促进多种代谢反应。SIRT1能够与NF-κB的RelA/p65亚基结合,并在赖氨酸310位点使RelA/p65去乙酰化,赖氨酸310是NF-κB转录活性的关键位点。所以NR对高果糖诱导的高炎症水平的改善很可能是由SIRT1/NF-κB通路介导的[16] [17]

2.3. 补充烟酰胺核糖可以缓解肝脏纤维化

HFD会诱导小鼠肝脏纤维化加重,但补充NR,可以减轻肝脏中胶原蛋白的积累,降低纤维化标志物mRNA的表达水平如α-平滑肌肌动蛋白(Acta2)、胶原蛋白1α1 (Col1a1)和Col6a1 [18]。肝纤维化一度被认为是不可逆的[19]。然而,目前人们普遍认为,肝纤维化可以通过去除损伤刺激和灭活肝星状细胞(HSC)来逆转,HSC是在肝脏中产生细胞外基质(ECM)的主要细胞类型[20] [21]。HSC在肝纤维化发展中的关键作用在动物和人类研究中得到广泛证实。肝损伤后,qHSCs转分化成αSMA阳性aHSCs,分泌ECM物质,同时抑制其分解,导致胶原蛋白在肝脏中积累[22]。免疫细胞或受损肝细胞释放的多种细胞因子可能会激活HSC [23]。Tho X Pham等人的研究发现[18],在静止状态下原代小鼠HSCs激活期间NR处理抑制了Acta2和Col1a1的表达,表明NR抑制了qHSCs向aHSCs的转分化。此外,我们还证明NR治疗减弱了TGFβ1在原代人HSC中对Acta2和Col1a1的诱导。

2.4. 烟酰胺核糖可以减轻肝脏损伤

肝脏脂质代谢失调在很大程度上与肝损伤有关,丙氨酸转氨酶(ALT)和天冬氨酸转氨酶(AST),这是肝损伤的两种循环标志物,当损伤发生时,它们会从组织中释放到血液中。补充NR可以显著降低HFD小鼠血清中ALT和AST水平[24]。NR通过从酵母到哺乳动物的高度保守路径驱动NAD生物合成。它由NR激酶(NRK1或NRK2)磷酸化NR启动,产生NMN,随后通过NMN腺苷转移酶(NMNAT)转化为NAD [7]。尽管NRK1在各个组织中都表达,但它在肝脏中高度表达,而NRK2蛋白只能在心脏和骨骼肌中检测到。Audrey Sambeat等人通过构建肝脏NRK1特异性敲除小鼠(NRK1 LKO)模型进行实验发现,与HFD喂养的正常小鼠相比,HFD喂养的NRK1 LKO小鼠脂肪变性程度更重,胰岛素抵抗的加剧以及炎症特征的增强表明NRK1 LKO小鼠进展到NAFLD的更晚期。并且HFD喂养的NRK1 LKO小鼠肝脏中凋亡细胞的比例较高20%,Ki-67阳性增殖细胞的比例较高50%。此外NRK1 LKO小鼠的细胞周围和血管周围结构纤维化面积增加2.5倍并且炎症标志物(如Mcp-1、IL-1β或TNF-α)的表达增加。这些结果表明NRK1缺失加剧了HFD对肝脏的影响,促进了从脂肪变性发展为以肝脂肪变性、炎症和纤维化为特征的脂肪性肝炎的进度。

2.5. 烟酰胺核糖可以抑制小鼠肝细胞癌进展

NASH发展到最后可能会导致肝细胞癌症(HCC)从而危及生命。现有证据表明,通过抑制NAD挽救途径消耗NAD可以使癌细胞对抗肿瘤药物敏感,抑制DNA修复,并引发细胞死亡[25]。几项研究报道表明,抗肿瘤药物联合抑制NAMPT (NAD挽救途径中的一种限速酶)可以协同抑制癌细胞增殖[26]。预防与衰老相关的NAD下降可以阻碍肿瘤的代谢重编程,这是肿瘤发生的第一步。此外,相关文献研究表明,抑制NAD从头合成会抑制了PARP-1活性,从而抑制了DNA修复并导致肝脏肿瘤发生[27]。综上所述,NR是一种有效的NAD前体。在小鼠模型中,NR补充剂有助于恢复NAD并防止DNA损伤诱导的肝肿瘤发生。在乳腺癌对象中,补充NAD前体(烟酸或烟酰胺)可以通过诱导自噬抑制肿瘤的肺和多器官转移[28]。Nengzhi Pang等人的研究观察到NR补充剂恢复了NAD池并显着抑制了皮下异种移植和血源性转移模型中的癌症转移,在免疫功能正常的小鼠中建立的皮下同种异体移植模型中,NR补充剂抑制了原位肿瘤生长[29]

3. 结论

在NAFLD的治疗选择仍然有限的情况下,烟酰胺核糖在治疗NAFLD中具有多方面的优势,包括改善代谢功能、抗炎、抗纤维化、促进肝脏再生以及高安全性等。这些优势使得NR成为一种有潜力的治疗NAFLD的药物或保健品。但目前烟酰胺核糖的研究主要在动物实验和体外细胞实验中,临床试验较少,在用于临床干预时,还要多加验证[30]

参考文献

[1] Cohen, J.C., Horton, J.D. and Hobbs, H.H. (2011) Human Fatty Liver Disease: Old Questions and New Insights. Science, 332, 1519-1523.
https://doi.org/10.1126/science.1204265
[2] Chen, F. and Liu, B. (2022) Sleeve Gastrectomy Suppresses Hepatic de Novo Cholesterogenesis and Improves Hepatic Cholesterol Accumulation in Obese Rats with Type 2 Diabetes Mellitus. Nutrition, 94, Article 111531.
https://doi.org/10.1016/j.nut.2021.111531
[3] Byrne, C.D. and Targher, G. (2015) NAFLD: A Multisystem Disease. Journal of Hepatology, 62, S47-S64.
https://doi.org/10.1016/j.jhep.2014.12.012
[4] Allen, A.M., Lazarus, J.V. and Younossi, Z.M. (2023) Healthcare and Socioeconomic Costs of NAFLD: A Global Framework to Navigate the Uncertainties. Journal of Hepatology, 79, 209-217.
https://doi.org/10.1016/j.jhep.2023.01.026
[5] Eslam, M., Newsome, P.N., Sarin, S.K., Anstee, Q.M., Targher, G., Romero-Gomez, M., et al. (2020) A New Definition for Metabolic Dysfunction-Associated Fatty Liver Disease: An International Expert Consensus Statement. Journal of Hepatology, 73, 202-209.
https://doi.org/10.1016/j.jhep.2020.03.039
[6] Alegre, G.F.S. and Pastore, G.M. (2023) NAD+ Precursors Nicotinamide Mononucleotide (NMN) and Nicotinamide Riboside (NR): Potential Dietary Contribution to Health. Current Nutrition Reports, 12, 445-464.
https://doi.org/10.1007/s13668-023-00475-y
[7] Bieganowski, P. and Brenner, C. (2004) Discoveries of Nicotinamide Riboside as a Nutrient and Conserved NRK Genes Establish a Preiss-Handler Independent Route to NAD+ in Fungi and Humans. Cell, 117, 495-502.
https://doi.org/10.1016/s0092-8674(04)00416-7
[8] Haigis, M.C. and Sinclair, D.A. (2010) Mammalian Sirtuins: Biological Insights and Disease Relevance. Annual Review of Pathology: Mechanisms of Disease, 5, 253-295.
https://doi.org/10.1146/annurev.pathol.4.110807.092250
[9] Imai, S. and Yoshino, J. (2013) The Importance of NAMPT/NAD/SIRT1 in the Systemic Regulation of Metabolism and Ageing. Diabetes, Obesity and Metabolism, 15, 26-33.
https://doi.org/10.1111/dom.12171
[10] Verdin, E. (2014) The Many Faces of Sirtuins: Coupling of NAD Metabolism, Sirtuins and Lifespan. Nature Medicine, 20, 25-27.
https://doi.org/10.1038/nm.3447
[11] Conze, D., Crespo-Barreto, J. and Kruger, C. (2016) Safety Assessment of Nicotinamide Riboside, a Form of Vitamin B3. Human & Experimental Toxicology, 35, 1149-1160.
https://doi.org/10.1177/0960327115626254
[12] Zhao, H., Tian, Y., Zuo, Y., Zhang, X., Gao, Y., Wang, P., et al. (2022) Nicotinamide Riboside Ameliorates High-Fructose-Induced Lipid Metabolism Disorder in Mice via Improving FGF21 Resistance in the Liver and White Adipose Tissue. Food & Function, 13, 12400-12411.
https://doi.org/10.1039/d2fo01934e
[13] Serrano, A., Palou, A., Bonet, M.L. and Ribot, J. (2022) Nicotinamide Riboside Supplementation to Suckling Male Mice Improves Lipid and Energy Metabolism in Skeletal Muscle and Liver in Adulthood. Nutrients, 14, Article 2259.
https://doi.org/10.3390/nu14112259
[14] Chen, G., Su, H., Lin, Y., Tsou, P., Chyuan, J. and Chao, P. (2016) A Conjugated Fatty Acid Present at High Levels in Bitter Melon Seed Favorably Affects Lipid Metabolism in Hepatocytes by Increasing NAD+/NADH Ratio and Activating PPARα, AMPK and SIRT1 Signaling Pathway. The Journal of Nutritional Biochemistry, 33, 28-35.
https://doi.org/10.1016/j.jnutbio.2016.03.009
[15] Shi, H., Xu, C., Liu, M., Wang, B., Liu, W., Chen, D., et al. (2018) Resveratrol Improves the Energy Sensing and Glycolipid Metabolism of Blunt Snout Bream Megalobrama amblycephala Fed High-Carbohydrate Diets by Activating the AMPK-SIRT1-PGC-1α Network. Frontiers in Physiology, 9, Article 1258.
https://doi.org/10.3389/fphys.2018.01258
[16] de Gregorio, E., Colell, A., Morales, A. and Marí, M. (2020) Relevance of SIRT1-NF-κB Axis as Therapeutic Target to Ameliorate Inflammation in Liver Disease. International Journal of Molecular Sciences, 21, Article 3858.
https://doi.org/10.3390/ijms21113858
[17] Yeung, F., Hoberg, J.E., Ramsey, C.S., Keller, M.D., Jones, D.R., Frye, R.A., et al. (2004) Modulation of NF-κB-Dependent Transcription and Cell Survival by the SIRT1 Deacetylase. The EMBO Journal, 23, 2369-2380.
https://doi.org/10.1038/sj.emboj.7600244
[18] Pham, T.X., Bae, M., Kim, M., Lee, Y., Hu, S., Kang, H., et al. (2019) Nicotinamide Riboside, an NAD+ Precursor, Attenuates the Development of Liver Fibrosis in a Diet-Induced Mouse Model of Liver Fibrosis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1865, 2451-2463.
https://doi.org/10.1016/j.bbadis.2019.06.009
[19] Pellicoro, A., Ramachandran, P. and Iredale, J.P. (2012) Reversibility of Liver Fibrosis. Fibrogenesis & Tissue Repair, 5, Article No. S26.
https://doi.org/10.1186/1755-1536-5-s1-s26
[20] Troeger, J.S., Mederacke, I., Gwak, G., Dapito, D.H., Mu, X., Hsu, C.C., et al. (2012) Deactivation of Hepatic Stellate Cells during Liver Fibrosis Resolution in Mice. Gastroenterology, 143, 1073-1083.e22.
https://doi.org/10.1053/j.gastro.2012.06.036
[21] Kisseleva, T., Cong, M., Paik, Y., Scholten, D., Jiang, C., Benner, C., et al. (2012) Myofibroblasts Revert to an Inactive Phenotype during Regression of Liver Fibrosis. Proceedings of the National Academy of Sciences, 109, 9448-9453.
https://doi.org/10.1073/pnas.1201840109
[22] Friedman, S.L. (2008) Hepatic Stellate Cells: Protean, Multifunctional, and Enigmatic Cells of the Liver. Physiological Reviews, 88, 125-172.
https://doi.org/10.1152/physrev.00013.2007
[23] Bae, M., Park, Y. and Lee, J. (2018) Food Components with Antifibrotic Activity and Implications in Prevention of Liver Disease. The Journal of Nutritional Biochemistry, 55, 1-11.
https://doi.org/10.1016/j.jnutbio.2017.11.003
[24] Zhang, J. and Chen, F. (2024) Integrated Transcriptome and Metabolome Study Reveal the Therapeutic Effects of Nicotinamide Riboside and Nicotinamide Mononucleotide on Nonalcoholic Fatty Liver Disease. Biomedicine & Pharmacotherapy, 175, Article 116701.
https://doi.org/10.1016/j.biopha.2024.116701
[25] Chiarugi, A., Dölle, C., Felici, R. and Ziegler, M. (2012) The NAD Metabolome—A Key Determinant of Cancer Cell Biology. Nature Reviews Cancer, 12, 741-752.
https://doi.org/10.1038/nrc3340
[26] Wu, L.E., Gomes, A.P. and Sinclair, D.A. (2014) Geroncogenesis: Metabolic Changes during Aging as a Driver of Tumorigenesis. Cancer Cell, 25, 12-19.
https://doi.org/10.1016/j.ccr.2013.12.005
[27] Tummala, K.S., Gomes, A.L., Yilmaz, M., Graña, O., Bakiri, L., Ruppen, I., et al. (2014) Inhibition of de Novo NAD+ Synthesis by Oncogenic URI Causes Liver Tumorigenesis through DNA Damage. Cancer Cell, 26, 826-839.
https://doi.org/10.1016/j.ccell.2014.10.002
[28] Santidrian, A.F., Matsuno-Yagi, A., Ritland, M., Seo, B.B., LeBoeuf, S.E., Gay, L.J., et al. (2013) Mitochondrial Complex I Activity and NAD+/NADH Balance Regulate Breast Cancer Progression. Journal of Clinical Investigation, 123, 1068-1081.
https://doi.org/10.1172/jci64264
[29] Pang, N., Hu, Q., Zhou, Y., Xiao, Y., Li, W., Ding, Y., et al. (2023) Nicotinamide Adenine Dinucleotide Precursor Suppresses Hepatocellular Cancer Progression in Mice. Nutrients, 15, Article 1447.
https://doi.org/10.3390/nu15061447
[30] Li, X., Yang, H., Jin, H., Turkez, H., Ozturk, G., Doganay, H.L., et al. (2023) The Acute Effect of Different NAD+ Precursors Included in the Combined Metabolic Activators. Free Radical Biology and Medicine, 205, 77-89.
https://doi.org/10.1016/j.freeradbiomed.2023.05.032