[1]
|
Cohen, J.C., Horton, J.D. and Hobbs, H.H. (2011) Human Fatty Liver Disease: Old Questions and New Insights. Science, 332, 1519-1523. https://doi.org/10.1126/science.1204265
|
[2]
|
Chen, F. and Liu, B. (2022) Sleeve Gastrectomy Suppresses Hepatic de Novo Cholesterogenesis and Improves Hepatic Cholesterol Accumulation in Obese Rats with Type 2 Diabetes Mellitus. Nutrition, 94, Article 111531. https://doi.org/10.1016/j.nut.2021.111531
|
[3]
|
Byrne, C.D. and Targher, G. (2015) NAFLD: A Multisystem Disease. Journal of Hepatology, 62, S47-S64. https://doi.org/10.1016/j.jhep.2014.12.012
|
[4]
|
Allen, A.M., Lazarus, J.V. and Younossi, Z.M. (2023) Healthcare and Socioeconomic Costs of NAFLD: A Global Framework to Navigate the Uncertainties. Journal of Hepatology, 79, 209-217. https://doi.org/10.1016/j.jhep.2023.01.026
|
[5]
|
Eslam, M., Newsome, P.N., Sarin, S.K., Anstee, Q.M., Targher, G., Romero-Gomez, M., et al. (2020) A New Definition for Metabolic Dysfunction-Associated Fatty Liver Disease: An International Expert Consensus Statement. Journal of Hepatology, 73, 202-209. https://doi.org/10.1016/j.jhep.2020.03.039
|
[6]
|
Alegre, G.F.S. and Pastore, G.M. (2023) NAD+ Precursors Nicotinamide Mononucleotide (NMN) and Nicotinamide Riboside (NR): Potential Dietary Contribution to Health. Current Nutrition Reports, 12, 445-464. https://doi.org/10.1007/s13668-023-00475-y
|
[7]
|
Bieganowski, P. and Brenner, C. (2004) Discoveries of Nicotinamide Riboside as a Nutrient and Conserved NRK Genes Establish a Preiss-Handler Independent Route to NAD+ in Fungi and Humans. Cell, 117, 495-502. https://doi.org/10.1016/s0092-8674(04)00416-7
|
[8]
|
Haigis, M.C. and Sinclair, D.A. (2010) Mammalian Sirtuins: Biological Insights and Disease Relevance. Annual Review of Pathology: Mechanisms of Disease, 5, 253-295. https://doi.org/10.1146/annurev.pathol.4.110807.092250
|
[9]
|
Imai, S. and Yoshino, J. (2013) The Importance of NAMPT/NAD/SIRT1 in the Systemic Regulation of Metabolism and Ageing. Diabetes, Obesity and Metabolism, 15, 26-33. https://doi.org/10.1111/dom.12171
|
[10]
|
Verdin, E. (2014) The Many Faces of Sirtuins: Coupling of NAD Metabolism, Sirtuins and Lifespan. Nature Medicine, 20, 25-27. https://doi.org/10.1038/nm.3447
|
[11]
|
Conze, D., Crespo-Barreto, J. and Kruger, C. (2016) Safety Assessment of Nicotinamide Riboside, a Form of Vitamin B3. Human & Experimental Toxicology, 35, 1149-1160. https://doi.org/10.1177/0960327115626254
|
[12]
|
Zhao, H., Tian, Y., Zuo, Y., Zhang, X., Gao, Y., Wang, P., et al. (2022) Nicotinamide Riboside Ameliorates High-Fructose-Induced Lipid Metabolism Disorder in Mice via Improving FGF21 Resistance in the Liver and White Adipose Tissue. Food & Function, 13, 12400-12411. https://doi.org/10.1039/d2fo01934e
|
[13]
|
Serrano, A., Palou, A., Bonet, M.L. and Ribot, J. (2022) Nicotinamide Riboside Supplementation to Suckling Male Mice Improves Lipid and Energy Metabolism in Skeletal Muscle and Liver in Adulthood. Nutrients, 14, Article 2259. https://doi.org/10.3390/nu14112259
|
[14]
|
Chen, G., Su, H., Lin, Y., Tsou, P., Chyuan, J. and Chao, P. (2016) A Conjugated Fatty Acid Present at High Levels in Bitter Melon Seed Favorably Affects Lipid Metabolism in Hepatocytes by Increasing NAD+/NADH Ratio and Activating PPARα, AMPK and SIRT1 Signaling Pathway. The Journal of Nutritional Biochemistry, 33, 28-35. https://doi.org/10.1016/j.jnutbio.2016.03.009
|
[15]
|
Shi, H., Xu, C., Liu, M., Wang, B., Liu, W., Chen, D., et al. (2018) Resveratrol Improves the Energy Sensing and Glycolipid Metabolism of Blunt Snout Bream Megalobrama amblycephala Fed High-Carbohydrate Diets by Activating the AMPK-SIRT1-PGC-1α Network. Frontiers in Physiology, 9, Article 1258. https://doi.org/10.3389/fphys.2018.01258
|
[16]
|
de Gregorio, E., Colell, A., Morales, A. and Marí, M. (2020) Relevance of SIRT1-NF-κB Axis as Therapeutic Target to Ameliorate Inflammation in Liver Disease. International Journal of Molecular Sciences, 21, Article 3858. https://doi.org/10.3390/ijms21113858
|
[17]
|
Yeung, F., Hoberg, J.E., Ramsey, C.S., Keller, M.D., Jones, D.R., Frye, R.A., et al. (2004) Modulation of NF-κB-Dependent Transcription and Cell Survival by the SIRT1 Deacetylase. The EMBO Journal, 23, 2369-2380. https://doi.org/10.1038/sj.emboj.7600244
|
[18]
|
Pham, T.X., Bae, M., Kim, M., Lee, Y., Hu, S., Kang, H., et al. (2019) Nicotinamide Riboside, an NAD+ Precursor, Attenuates the Development of Liver Fibrosis in a Diet-Induced Mouse Model of Liver Fibrosis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1865, 2451-2463. https://doi.org/10.1016/j.bbadis.2019.06.009
|
[19]
|
Pellicoro, A., Ramachandran, P. and Iredale, J.P. (2012) Reversibility of Liver Fibrosis. Fibrogenesis & Tissue Repair, 5, Article No. S26. https://doi.org/10.1186/1755-1536-5-s1-s26
|
[20]
|
Troeger, J.S., Mederacke, I., Gwak, G., Dapito, D.H., Mu, X., Hsu, C.C., et al. (2012) Deactivation of Hepatic Stellate Cells during Liver Fibrosis Resolution in Mice. Gastroenterology, 143, 1073-1083.e22. https://doi.org/10.1053/j.gastro.2012.06.036
|
[21]
|
Kisseleva, T., Cong, M., Paik, Y., Scholten, D., Jiang, C., Benner, C., et al. (2012) Myofibroblasts Revert to an Inactive Phenotype during Regression of Liver Fibrosis. Proceedings of the National Academy of Sciences, 109, 9448-9453. https://doi.org/10.1073/pnas.1201840109
|
[22]
|
Friedman, S.L. (2008) Hepatic Stellate Cells: Protean, Multifunctional, and Enigmatic Cells of the Liver. Physiological Reviews, 88, 125-172. https://doi.org/10.1152/physrev.00013.2007
|
[23]
|
Bae, M., Park, Y. and Lee, J. (2018) Food Components with Antifibrotic Activity and Implications in Prevention of Liver Disease. The Journal of Nutritional Biochemistry, 55, 1-11. https://doi.org/10.1016/j.jnutbio.2017.11.003
|
[24]
|
Zhang, J. and Chen, F. (2024) Integrated Transcriptome and Metabolome Study Reveal the Therapeutic Effects of Nicotinamide Riboside and Nicotinamide Mononucleotide on Nonalcoholic Fatty Liver Disease. Biomedicine & Pharmacotherapy, 175, Article 116701. https://doi.org/10.1016/j.biopha.2024.116701
|
[25]
|
Chiarugi, A., Dölle, C., Felici, R. and Ziegler, M. (2012) The NAD Metabolome—A Key Determinant of Cancer Cell Biology. Nature Reviews Cancer, 12, 741-752. https://doi.org/10.1038/nrc3340
|
[26]
|
Wu, L.E., Gomes, A.P. and Sinclair, D.A. (2014) Geroncogenesis: Metabolic Changes during Aging as a Driver of Tumorigenesis. Cancer Cell, 25, 12-19. https://doi.org/10.1016/j.ccr.2013.12.005
|
[27]
|
Tummala, K.S., Gomes, A.L., Yilmaz, M., Graña, O., Bakiri, L., Ruppen, I., et al. (2014) Inhibition of de Novo NAD+ Synthesis by Oncogenic URI Causes Liver Tumorigenesis through DNA Damage. Cancer Cell, 26, 826-839. https://doi.org/10.1016/j.ccell.2014.10.002
|
[28]
|
Santidrian, A.F., Matsuno-Yagi, A., Ritland, M., Seo, B.B., LeBoeuf, S.E., Gay, L.J., et al. (2013) Mitochondrial Complex I Activity and NAD+/NADH Balance Regulate Breast Cancer Progression. Journal of Clinical Investigation, 123, 1068-1081. https://doi.org/10.1172/jci64264
|
[29]
|
Pang, N., Hu, Q., Zhou, Y., Xiao, Y., Li, W., Ding, Y., et al. (2023) Nicotinamide Adenine Dinucleotide Precursor Suppresses Hepatocellular Cancer Progression in Mice. Nutrients, 15, Article 1447. https://doi.org/10.3390/nu15061447
|
[30]
|
Li, X., Yang, H., Jin, H., Turkez, H., Ozturk, G., Doganay, H.L., et al. (2023) The Acute Effect of Different NAD+ Precursors Included in the Combined Metabolic Activators. Free Radical Biology and Medicine, 205, 77-89. https://doi.org/10.1016/j.freeradbiomed.2023.05.032
|