基于SII和CRP构建颅内血管狭窄风险预测模型
Constructing a Model to Predict the Risk of Intracranial Vascular Stenosis Using SII and CRP
DOI: 10.12677/acm.2025.151160, PDF, HTML, XML,    科研立项经费支持
作者: 李从芳, 林 巧, 潘玺月:青岛大学附属医院全科医学科,山东 青岛;王乃东*:青岛大学附属医院神经介入科,山东 青岛
关键词: 颅内血管狭窄全身免疫炎症指数C反应蛋白预测模型Intracranial Stenosis Systemic Immune-Inflammation Index C-Reactive Protein Prediction Model
摘要: 目的:颅内血管狭窄与脑梗死的严重程度相关,基于患者入院时病史资料、实验室指标开发预测模型识别颅内血管狭窄高危人群。方法:收集2022年9月至2023年4月于青岛大学附属医院住院行MRA的839例患者,使用单因素和多因素Logistics回归分析,筛选与颅内动脉狭窄相关的预测因子,构建颅内动脉狭窄风险预测评估表,并通过模型的区分度、校准度,来评估预测模型的临床实用性,采用1000次Bootstrapping法进行内部验证。结果:根据多因素Logistics筛选得到年龄、高血压、糖尿病、吸烟、体重指数、高脂血症、SII、CRP与颅内血管狭窄相关,构建风险预测模型,该模型有良好的区分度(AUC = 0.816 95%CI 0.787~0.845)和临床预测性(HL = 0.834),内部验证时模型也表现出良好的区分度(AUC = 0.820 95%CI 0.791~0.849)和临床预测性(HL = 0.530)。结论:基于年龄、高血压、糖尿病、吸烟、体重指数、高脂血症、SII、CRP等因素构建的评分表可以用于预测颅内血管狭窄的风险,具有潜在临床应用价值。
Abstract: Objective: Intracranial vascular stenosis is associated with the severity of cerebral infarction. The aim of this study was to develop a user-friendly model for predicting the risk of intracranial arterial stenosis using admission history and laboratory indices. Methods: We conducted a retrospective analysis of clinical data from 839 patients who underwent MRA between September 2022 and April 2023 in Affiliated Hospital of Qingdao University. We identified risk factors associated with intracranial stenosis through univariate and multivariate logistic regression analyses. The prediction and evaluation table of intracranial artery stenosis risk was constructed, and the clinical practicability of the prediction model was evaluated by the degree of differentiation and calibration of the model. The 1000 times Bootstrapping method was used for internal verification. Results: According to multi-factor Logistics screening, age, hypertension, diabetes, smoking, body mass index, hyperlipidemia, SII and CRP are related to intracranial vascular stenosis, and a risk prediction model is constructed. The model had good differentiation (AUC = 0.816 95%CI 0.787~0.845) and clinical prediction (HL = 0.834), the model also showed good differentiation (AUC = 0.820 95%CI 0.791~0.849) and clinical prediction (HL = 0.530) during internal validation. Conclusion: A score scale based on age, hypertension, diabetes, smoking, body mass index, hyperlipidemia, SII, CRP and other factors can be used to predict the risk of intracranial vascular stenosis, which has potential clinical application value.
文章引用:李从芳, 林巧, 潘玺月, 王乃东. 基于SII和CRP构建颅内血管狭窄风险预测模型[J]. 临床医学进展, 2025, 15(1): 1209-1217. https://doi.org/10.12677/acm.2025.151160

1. 引言

脑卒中在世界范围内的医疗保健和社会成本方面构成了巨大的经济负担,颅内动脉粥样硬化性狭窄(intracranial atherosclerotic stenosis, ICAS)是亚洲尤其是中国缺血性脑卒中的主要危险因素[1] [2]。在一项队列研究显示,在健康人群中,即使是轻至中度ICAS也是未来缺血性脑卒中的独立危险因素,与非ICAS志愿者相比,无症状ICAS患者的长期预后更差[3]。因此,早期发现颅内血管狭窄并进行有效的干预可能会降低脑卒中的发生率。传统颅内血管狭窄的危险因素有高血压、糖尿病、血脂异常、肥胖、吸烟。最近的研究表明,除传统危险因素外,炎症反应也与动脉粥样硬化斑块的形成和重塑有关[4] [5]。全身免疫炎症指数(Systemic immune-inflammation index, SII)作为一种新型的炎症指标,综合考虑了血小板、中性粒细胞和淋巴细胞的数量,涵盖炎症、免疫和血栓形成三个方面,在一项针对42,875名美国成年人的20年随访队列研究发现,高SII会增加一般人群的不良心血管事件[6]。C反应蛋白(C-reactive protein, CRP)是一种肝脏合成的急性期反应蛋白,作为一种炎症标志物,是动脉粥样硬化过程炎症反应不可或缺的一部分[7],它可能通过激活炎症级联反应并与内皮细胞和平滑肌细胞相互作用来诱导动脉粥样硬化生成,导致泡沫细胞形成、内皮功能障碍和斑块不稳定[8]。目前已经开发了无症状颈动脉狭窄预测模型,用来识别普通人群中患有颈动脉狭窄患者[9] [10],但对于颅内血管狭窄暂无相关模型。我们希望通过颅内血管狭窄相关危险因素,构建评分表筛选颅内血管狭窄的高风险人群,为脑卒中的一级预防提供理论基础。

2. 对象与方法

2.1. 研究对象

收集2022年9月至2023年4月在青岛大学附属医院住院患者。纳入标准:(1) 入院后行MRA检查;(2) 基线资料完整;(3) 入院后行血脂、空腹血糖、血常规 + CRP检验。排除标准:(1) 脑出血、急性感染、免疫系统疾病、血液系统疾病、肿瘤、肝肾功能不全、妊娠患者;(2) 未满18岁;(3) 既往行颅内动脉支架植入术后;(4) 实验室指标缺失 > 30% (见图1)。

Figure 1. Data filtering flowchart

1. 数据筛选流程图

2.2. 数据收集

收集基线信息,记录患者的性别、年龄和体重指数(BMI)、高血压史、糖尿病史和吸烟史,相关实验室数据包括低密度脂蛋白(LDL)、高密度脂蛋白(HDL)、甘油三酯(TG)、总胆固醇(TC)、空腹血糖(FBG)、中性粒细胞(N)、淋巴细胞(L)、单核细胞(M)、血小板(PLT)和C反应蛋白,并计算全身免疫炎症指数。高血压被定义为有高血压病史、当前使用抗高血压药物、收缩压 ≥ 140 mmHg或舒张压 ≥ 90 mmHg。糖尿病被定义为有糖尿病病史、空腹血糖 ≥ 7.0 mmol/L且目前使用胰岛素或口服降糖药。高脂血症定义为存在任一类型的血脂水平异常,包括总胆固醇(TC) ≥ 6.22 mmol/L、低密度脂蛋白胆固醇(LDL-C) ≥ 4.14 mmol/L、高密度脂蛋白胆固醇(HDL-C) < 1.04 mmol/L、甘油三酯(TG) ≥ 2.26 mmol/L,或目前服用调脂药物。吸烟定义为当前吸烟者或戒烟 < 6个月的患者。全身免疫炎症指数(SII)的计算公式为(血小板 × 中性粒细胞)/淋巴细胞。

2.3. 分组标准

根据MRA图像测量的颅内血管狭窄程度,分为非狭窄组(狭窄 < 50%)、狭窄组(狭窄 ≥ 50%)。采用WASID研究方法,颅内血管狭窄程度 = (1 − Ds/Dn) × 100%,Ds与Dn分别代表颅内动脉最狭窄处和正常管径[11] [12]

2.4. 数据分析

本研究采用SPSS 26.0软件和Stata 17.0软件进行数据分析,缺失数值采用多重插补法进行处理。本研究数值变量均不能同时满足正态分布和方差齐性,数值变量用M(P25, P75)表示,分类变量用n(%)表示。临床特征的组间比较采用数值变量的秩和检验和分类变量的卡方检验,并进行共线性分析。使用单因素和多因素logistic回归分析筛选与颅内血管狭窄相关预测因子,并构建预测模型,采用评分表使预测模型可视化。使用受试者工作特征曲线(ROC曲线)下面积(AUC)评估模型区分度,Hosmer-Lemeshow拟合度检验评估模型校准度,采用1000次Bootstrapping法进行内部验证。显著性水平设定为p < 0.05。

3. 结果

3.1. 基线描述

两组资料的基线比较,发现性别、年龄、高血压、糖尿病、吸烟、高脂血症、体重指数、空腹血糖、SII、CRP有统计学意义(p < 0.05,表1)。对以上变量进行共线性分析,所有变量的方差膨胀因子(VIF) < 5,说明以上变量之间无共线性。通过ROC曲线分析,确定了SII的最佳临界值为467,敏感度为48%,特异度为61%。

Table 1. Comparison of clinical data between two groups

1. 两组临床资料比较

变量

狭窄组(n = 326)

非狭窄组(n = 513)

χ2 (Z)值

p

男性(n, %)

228 (69.9%)

281 (54.8%)

−4.05

<0.001

年龄(岁)

66 (58, 79)

62 (54, 70)

−3.454a

0.001

高血压(n, %)

268 (82.2%)

285 (55.6%)

−7.934

<0.001

糖尿病(n, %)

135 (41.4%)

112 (21.8%)

−6.061

<0.001

吸烟(n, %)

119 (36.5%)

70 (13.6%)

−7.72

<0.001

BMI (kg/m2)

26.1 (24.2, 27.7)

24 (22.5, 26.4)

−6.84a

<0.001

高脂血症(n, %)

204 (62.6%)

201 (39.2%)

−6.606

<0.001

空腹血糖(mmol/L)

5.57 (4.94, 7.22)

5.15 (4.70, 5.84)

−6.305a

<0.001

SII

452.83 (314.89, 656.08)

346.18 (246.99, 476.43)

−11.605 a

<0.001

CRP (mg/L)

1.51 (0.51, 3.81)

0 (0, 1.02)

−6.849a

<0.001

注:aZ值;缩写:体重指数(BMI);C反应蛋白(CRP);全身免疫炎症指数(SII)。BMI = 体重/身高2;SII = (PLT × N)/L,N-中性粒细胞,L-淋巴细胞、PLT-血小板。

3.2. 模型开发及评价

基于单因素和多因素logistic回归分析的结果,年龄、高血压、糖尿病、吸烟、体重指数、高脂血症、SII、CRP是颅内血管狭窄的独立预测因子(见表2)。用上述与颅内血管狭窄相关的8个指标构建模型。通过ROC曲线评估模型的区分度,模型的AUC为0.816 (95%CI 0.787~0.845),内部验证模型的AUC为0.820 (95%CI 0.791~0.849),说明这个模型区分度良好(见图2)。对该模型行HL检验(p = 0.834),内部验证HL检验(p = 0.530),结果表明预测值与实际值较为一致(见图3)。

Figure 2. ROC curve of the model. (a) Training set; (b) Internal verification

2. 模型的ROC曲线。(a) 训练集;(b) 内部验证

Figure 3. Hosmer-Lemeshow calibration diagram of the model. (a) Training set; (b) Internal verification

3. 模型的Hosmer-Lemeshow校准图。(a) 训练集;(b) 内部验证

Table 2. Univariate and multivariate Logistic analysis of risk factors for intracranial vascular stenosis

2. 颅内血管狭窄危险因素的单因素及多因素的Logistic分析

变量

单因素分析

多因素分析

OR (95% CI)

p

OR (95% CI)

p

性别

0.521 (0.388~0.698)

0.039

0.890 (0.606~1.306)

0.552

年龄

1.448 (1.169~1.793)

0.001

1.478 (1.133~1.928)

0.004

高血压

3.697 (2.650~5.157)

<0.001

2.303 (1.566~3.386)

<0.001

糖尿病

2.531 (1.867~3.430)

<0.001

2.108 (1.472~3.018)

<0.001

吸烟

3.638 (2.594~5.102)

<0.001

3.113 (2.031~4.772)

<0.001

BMI

1.933 (1.589~2.351)

<0.001

1.689 (1.340~2.130)

<0.001

高脂血症

2.596 (1.950~3.455)

<0.001

2.033 (1.437~2.884)

<0.001

SII

2.687 (2.004~3.604)

<0.001

2.036 (1.437~2.884)

<0.001

CRP

5.178 (3.700~7.246)

<0.001

3.953 (2.692~5.804)

<0.001

3.3. 临床应用

将最终模型预测因子的回归系数转换为评分系统(见表3),以利于实际应用。例如,一名65岁的男性,既往高血压病史,没有糖尿病,目前吸烟,体重指数22.1 kg/m2,血脂水平正常,SII < 467,CRP < 2 mg/L,总分为6 (2 + 2 + 2 + 0 + 0 + 0 + 0 + 0)。说明此人颅内血管狭窄风险是19%。

Table 3. Scoring system for predicting intracranial vascular stenosis

3. 预测颅内血管狭窄的评分系统

变量

狭窄评分

总分

风险预测概率

年龄(岁)

<40

0

0

0.02

40~59

1

1

0.04

60~79

2

2

0.05

≥80

3

3

0.07

高血压

0

4

0.1

2

5

0.14

糖尿病

0

6

0.19

2

7

0.26

目前吸烟

0

8

0.33

2

9

0.42

BMI (kg/m2)

<24

0

10

0.51

24~27.9

2

11

0.6

≥28

4

12

0.69

高脂血症

0

13

0.76

2

14

0.82

SII

<467

0

15

0.87

≥467

2

16

0.91

CRP (mg/L) [13]

<2

2

17

0.93

≥2

0

18

0.95

3

19

0.97

20

0.98

4. 讨论

本研究通过Logistic回归分析构建了颅内血管狭窄的风险评估系统,该风险系统旨在识别具有临床意义的颅内血管狭窄高风险个体。我们的研究表明年龄、高血压、糖尿病、吸烟、体重指数、高脂血症、SII、CRP与颅内血管狭窄的发生有关,这与以往的研究一致[14]。通过对评分系统进行分析,得到最佳切点为8.5分,约登指数0.48,敏感度74%,特异度74%。早期识别颅内血管狭窄对疾病的预防有重要作用,我们认为当患者得分 ≥ 8分时,患者颅内血管狭窄发生风险较高,需要进行脑卒中的一级预防,包括生活方式或药物干预。该风险评分可能有助于制定具有临床和成本效益的靶向筛查方案,检测到显著颅内血管狭窄高危个体应接受强化心血管风险管理,包括生活方式干预以及抗高血压、降脂和抗炎治疗。

早期筛选出颅内血管狭窄高风险人群,控制ICAS的危险因素对于预防与ICAS病变相关的卒中非常重要,因为大多数危险因素是可以治疗的。在一项前瞻性的研究中表明,早期识别颅内血管狭窄高危人群并进行危险因素干预及抗血小板治疗可以更好地预防卒中[15]。TSA研究结果表明当目标LDL低于70 mg/dL时,颅内动脉狭窄导致卒中或短暂性脑缺血的心血管事件的风险降低[16] [17]。在COSS研究中,血压低于135/80 mmHg与中风复发风险较低相关[18]。来自WASID的数据表明SBP高于140 mmHg会增加前循环和后循环中风的风险[19]。对于糖尿病合并ICAS的患者,目标糖化血红蛋白(HbA1c)应小于7.0% [20]。吸烟与ICAS患病率和ICAS相关心脑血管事件高度相关,研究表明,相对于当前吸烟者,戒烟5年后的不良心血管事件明显减少[21]。体育锻炼对卒中危险因素有积极影响,例如降低血压、胆固醇和体重,能改善内皮功能,减少血小板聚集、纤维蛋白原水平,所以应强调运动作为ICAS患者的一种保护性生活方式改变[22] [23]。早期发现颅内血管狭窄,特别是在一级预防或未发生中风的人群中,关注可改变的危险因素,可能会降低不良心血管事件的发生率,减轻心脑血管损伤。

SII和CRP是重要的炎症标志物,他们易于评估且易于测试,成本效益高,可以很容易地从全血细胞计数中得到。既往多项研究表明,SII和CRP可作为预测心血管事件的发生和预后的炎症标志物[8] [24]-[26]。实验研究数据表明,炎症在动脉粥样硬化斑块的开始、进展、侵蚀和破裂的所有阶段都处于核心地位[27] [28]。根据炎症理论,由诸如糖尿病和高血压的因素诱导的内皮损伤产生淋巴细胞和单核细胞粘附到内皮表面,随后这些细胞迁移到内皮表面之下,在内皮下组织中细胞聚集,并且通过巨噬细胞的脂质摄取形成泡沫细胞,巨噬细胞被激活,生长因子和细胞因子被释放,最后,平滑肌细胞迁移、增殖并形成纤维斑块[29] [30]。已经有几项针对心脏病抗炎治疗的随机对照试验的报道,在超过17,000名患者随机分配降脂药和安慰剂的试验中,首次卒中的相对风险降低了48%。降脂药将LDL-C降低50%,将CRP降低37% [31]。在最近一项针对5项随机对照试验的11,816名冠状动脉疾病患者的荟萃分析中,秋水仙碱治疗患者的卒中风险减半[32]。低剂量秋水仙碱试验表明秋水仙碱对心血管疾病二级预防具有独立的有益作用的临床证据[33] [34]。这些为炎症在卒中发病机制中的作用提供了重要的概念证据,并对抗炎药预防卒中提供了理论基础。

本研究所构建的评分表所包含的变量易于获得,可通过实验室检测和病史采集获得,这使得评分系统的使用更加方便,社区医生可以很容易地使用这种评分表,个体化评估患者罹患颅内血管狭窄的风险,给予健康指导。本研究也具有一些局限性:1. 由于这是一项横断面研究,结果显示SII和CRP与颅内血管狭窄的发生呈正相关,但无法确定SII和CRP与颅内狭窄之间的因果关系,未来仍需要开展大量的大规模、多中心前瞻性研究,以进一步说明这些独立危险因素对颅内血管狭窄发生的预测价值。2. 本研究构建的预测模型的样本量较有限,且为单中心研究,尽管内部验证时显示模型具有良好的稳健性,但仍需要使用外部数据进行外部验证,以进一步评估模型的稳健性及外部有效性。若能克服了上述限制且模型的影响评估表现良好,该评分系统将可能成为预测颅内血管狭窄风险的可靠工具。

作者贡献

李从芳进行文章的构思与设计、统计学处理,对结果进行分析与解释,撰写论文;李从芳、林巧、潘玺月进行数据收集;林巧进行数据整理;王乃东、林巧进行可行性分析;王乃东负责文章的质量控制及审校,对文章整体负责,监督管理。

基金项目

本课题已通过青岛大学附属医院医学伦理委员会的伦理审查(批件号:QDFYWZLL28913)。

NOTES

*通讯作者。

参考文献

[1] 孙瑄, 杨明, 余泽权, 等. 症状性颅内动脉粥样硬化性狭窄血管内治疗中国专家共识2022 [J]. 中国卒中杂志, 2022, 17(8): 863-888.
[2] Dong, X., Nao, J. and Gao, Y. (2019) Peripheral Monocyte Count Predicts Outcomes in Patients with Acute Ischemic Stroke Treated with RTPA Thrombolysis. Neurotoxicity Research, 37, 469-477.
https://doi.org/10.1007/s12640-019-00103-0
[3] Matsui, R., Nakagawa, T., Takayoshi, H., Onoda, K., Oguro, H., Nagai, A., et al. (2016) A Prospective Study of Asymptomatic Intracranial Atherosclerotic Stenosis in Neurologically Normal Volunteers in a Japanese Cohort. Frontiers in Neurology, 7, Article 39.
https://doi.org/10.3389/fneur.2016.00039
[4] Yang, D., Liu, M., Khasiyev, F., Rundek, T., Del Brutto, V.J., Cheung, K., et al. (2023) Immune Markers Are Associated with Asymptomatic Intracranial Large Artery Stenosis and Future Vascular Events in NOMAS. Stroke, 54, 3030-3037.
https://doi.org/10.1161/strokeaha.123.044237
[5] Corriere, T., Di Marca, S., Cataudella, E., Pulvirenti, A., Alaimo, S., Stancanelli, B., et al. (2018) Neutrophil-to-lymphocyte Ratio Is a Strong Predictor of Atherosclerotic Carotid Plaques in Older Adults. Nutrition, Metabolism and Cardiovascular Diseases, 28, 23-27.
https://doi.org/10.1016/j.numecd.2017.10.022
[6] Xia, Y., Xia, C., Wu, L., Li, Z., Li, H. and Zhang, J. (2023) Systemic Immune Inflammation Index (SII), System Inflammation Response Index (SIRI) and Risk of All-Cause Mortality and Cardiovascular Mortality: A 20-Year Follow-Up Cohort Study of 42,875 US Adults. Journal of Clinical Medicine, 12, Article 1128.
https://doi.org/10.3390/jcm12031128
[7] Song, Y., Wang, M., Li, Y. and Lian, Y. (2024) The Evaluation Value of Atherogenic Index of Plasma and High-Sensitivity C-Reactive Protein for the Degree of Coronary Artery Lesion in Premature Coronary Artery Disease. BMC Cardiovascular Disorders, 24, Article No. 410.
https://doi.org/10.1186/s12872-024-04014-7
[8] Hu, X., Sui, Y., Yang, X., Yang, Z., Wang, Q., Yuan, J., et al. (2024) Association of the High-Sensitivity C-Reactive Protein-To-Albumin Ratio with Carotid Atherosclerotic Plaque: A Community-Based Cohort Study. Journal of Inflammation Research, 17, 4027-4036.
https://doi.org/10.2147/jir.s464491
[9] Poorthuis, M.H.F., Sherliker, P., Morris, D.R., Massa, M.S., Clarke, R., Staplin, N., et al. (2021) Development and Internal Validation of a Risk Score to Detect Asymptomatic Carotid Stenosis. European Journal of Vascular and Endovascular Surgery, 61, 365-373.
https://doi.org/10.1016/j.ejvs.2020.11.029
[10] Högberg, D., Mani, K., Wanhainen, A. and Svensjö, S. (2018) Clinical Effect and Cost-Effectiveness of Screening for Asymptomatic Carotid Stenosis: A Markov Model. European Journal of Vascular and Endovascular Surgery, 55, 819-827.
https://doi.org/10.1016/j.ejvs.2018.02.029
[11] Huang, J., Degnan, A.J., Liu, Q., Teng, Z., Yue, C.S., Gillard, J.H., et al. (2012) Comparison of NASCET and WASID Criteria for the Measurement of Intracranial Stenosis Using Digital Subtraction and Computed Tomography Angiography of the Middle Cerebral Artery. Journal of Neuroradiology, 39, 342-345.
https://doi.org/10.1016/j.neurad.2011.11.005
[12] 高鹏. 颅内动脉粥样硬化性狭窄影像学评价专家共识[J]. 中国脑血管病杂志, 2021, 18(8): 575-584.
[13] Arnold, N., Blaum, C., Goßling, A., Brunner, F.J., Bay, B., Ferrario, M.M., et al. (2024) C-Reactive Protein Modifies Lipoprotein(a)-Related Risk for Coronary Heart Disease: The BiomarCaRE Project. European Heart Journal, 45, 1043-1054.
https://doi.org/10.1093/eurheartj/ehad867
[14] Ma, Y., Leng, X., Dong, Y., Xu, W., Cao, X., Ji, X., et al. (2019) Risk Factors for Intracranial Atherosclerosis: A Systematic Review and Meta-Analysis. Atherosclerosis, 281, 71-77.
https://doi.org/10.1016/j.atherosclerosis.2018.12.015
[15] Nahab, F., Kingston, C., Frankel, M.R., Dion, J.E., Cawley, C.M., Mitchell, B., et al. (2013) Early Aggressive Medical Management for Patients with Symptomatic Intracranial Stenosis. Journal of Stroke and Cerebrovascular Diseases, 22, 87-91.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2011.06.012
[16] Miao, H., Yang, Y., Wang, H., Huo, L., Wang, M., Zhou, Y., et al. (2019) Intensive Lipid-Lowering Therapy Ameliorates Asymptomatic Intracranial Atherosclerosis. Aging and disease, 10, 258-266.
https://doi.org/10.14336/ad.2018.0526
[17] Chung, J., Cha, J., Lee, M.J., Yu, I., Park, M., Seo, W., et al. (2019) Intensive Statin Treatment in Acute Ischaemic Stroke Patients with Intracranial Atherosclerosis: A High-Resolution Magnetic Resonance Imaging Study (STAMINA-MRI Study). Journal of Neurology, Neurosurgery & Psychiatry, 91, 204-211.
https://doi.org/10.1136/jnnp-2019-320893
[18] Powers, W.J., Clarke, W.R., Grubb, R.L., Videen, T.O., Adams, H.P. and Derdeyn, C.P. (2014) Lower Stroke Risk with Lower Blood Pressure in Hemodynamic Cerebral Ischemia. Neurology, 82, 1027-1032.
https://doi.org/10.1212/wnl.0000000000000238
[19] Kasner, S.E., Chimowitz, M.I., Lynn, M.J., Howlett-Smith, H., Stern, B.J., Hertzberg, V.S., et al. (2006) Predictors of Ischemic Stroke in the Territory of a Symptomatic Intracranial Arterial Stenosis. Circulation, 113, 555-563.
https://doi.org/10.1161/circulationaha.105.578229
[20] (2019) 6. Glycemic Targets: Standards of Medical Care in Diabetes—2020. Diabetes Care, 43, S66-S76.
https://doi.org/10.2337/dc20-s006
[21] Duncan, M.S., Freiberg, M.S., Greevy, R.A., Kundu, S., Vasan, R.S. and Tindle, H.A. (2019) Association of Smoking Cessation with Subsequent Risk of Cardiovascular Disease. JAMA, 322, 642-650.
https://doi.org/10.1001/jama.2019.10298
[22] Lee, C.D., Folsom, A.R. and Blair, S.N. (2003) Physical Activity and Stroke Risk: A Meta-Analysis. Stroke, 34, 2475-2481.
https://doi.org/10.1161/01.str.0000091843.02517.9d
[23] Kleindorfer, D.O., Towfighi, A., Chaturvedi, S., Cockroft, K.M., Gutierrez, J., Lombardi-Hill, D., et al. (2021) 2021 Guideline for the Prevention of Stroke in Patients with Stroke and Transient Ischemic Attack: A Guideline from the American Heart Association/American Stroke Association. Stroke, 52, e364-e467.
https://doi.org/10.1161/str.0000000000000375
[24] Xu, M., Chen, R., Liu, L., Liu, X., Hou, J., Liao, J., et al. (2021) Systemic Immune-Inflammation Index and Incident Cardiovascular Diseases among Middle-Aged and Elderly Chinese Adults: The Dongfeng-Tongji Cohort Study. Atherosclerosis, 323, 20-29.
https://doi.org/10.1016/j.atherosclerosis.2021.02.012
[25] Ridker, P.M. (2016) From C-Reactive Protein to Interleukin-6 to Interleukin-1: Moving Upstream to Identify Novel Targets for Atheroprotection. Circulation Research, 118, 145-156.
https://doi.org/10.1161/circresaha.115.306656
[26] Song, J., Hwang, J., Ko, H., Park, J., Hong, H. and Kim, A. (2024) Exploring the Correlation between Systemic Inflammatory Markers and Carotid Atherosclerosis Indices in Middle-Aged Adults: A Cross-Sectional Study. Journal of Cardiovascular Development and Disease, 11, Article 73.
https://doi.org/10.3390/jcdd11030073
[27] Libby, P. (2020) Inflammation in Atherosclerosis—No Longer a Theory. Clinical Chemistry, 67, 131-142.
https://doi.org/10.1093/clinchem/hvaa275
[28] Nappi, F. (2023) To Gain Insights into the Pathophysiological Mechanisms of the Thrombo-Inflammatory Process in the Atherosclerotic Plaque. International Journal of Molecular Sciences, 25, Article 47.
https://doi.org/10.3390/ijms25010047
[29] Ross, R. (1993) The Pathogenesis of Atherosclerosis: A Perspective for the 1990s. Nature, 362, 801-809.
https://doi.org/10.1038/362801a0
[30] Gonzalez, N.R., Liebeskind, D.S., Dusick, J.R., Mayor, F. and Saver, J. (2012) Intracranial Arterial Stenoses: Current Viewpoints, Novel Approaches, and Surgical Perspectives. Neurosurgical Review, 36, 175-185.
https://doi.org/10.1007/s10143-012-0432-z
[31] Ridker, P.M., Danielson, E., Fonseca, F.A.H., Genest, J., Gotto, A.M., Kastelein, J.J.P., et al. (2008) Rosuvastatin to Prevent Vascular Events in Men and Women with Elevated C-Reactive Protein. New England Journal of Medicine, 359, 2195-2207.
https://doi.org/10.1056/nejmoa0807646
[32] Katsanos, A.H., Palaiodimou, L., Price, C., Giannopoulos, S., Lemmens, R., Kosmidou, M., et al. (2020) Colchicine for Stroke Prevention in Patients with Coronary Artery Disease: A Systematic Review and Meta‐Analysis. European Journal of Neurology, 27, 1035-1038.
https://doi.org/10.1111/ene.14198
[33] Nidorf, S.M., Eikelboom, J.W., Budgeon, C.A. and Thompson, P.L. (2013) Low-Dose Colchicine for Secondary Prevention of Cardiovascular Disease. Journal of the American College of Cardiology, 61, 404-410.
https://doi.org/10.1016/j.jacc.2012.10.027
[34] Koenig, W. and Nitschmann, S. (2021) [Colchicine in Patients with Coronary Heart Disease: LoDoCo2 Trial]. Der Internist, 62, 333-336.
https://doi.org/10.1007/s00108-021-00954-w