[1]
|
Rinella, M.E., Neuschwander-Tetri, B.A., Siddiqui, M.S., Abdelmalek, M.F., Caldwell, S., Barb, D., et al. (2023) AASLD Practice Guidance on the Clinical Assessment and Management of Nonalcoholic Fatty Liver Disease. Hepatology, 77, 1797-1835. https://doi.org/10.1097/hep.0000000000000323
|
[2]
|
Li, W., Liu, J., Cai, J., Zhang, X., Zhang, P., She, Z., et al. (2022) NAFLD as a Continuous Driver in the Whole Spectrum of Vascular Disease. Journal of Molecular and Cellular Cardiology, 163, 118-132. https://doi.org/10.1016/j.yjmcc.2021.10.007
|
[3]
|
Buzzetti, E., Pinzani, M. and Tsochatzis, E.A. (2016) The Multiple-Hit Pathogenesis of Non-Alcoholic Fatty Liver Disease (NAFLD). Metabolism, 65, 1038-1048. https://doi.org/10.1016/j.metabol.2015.12.012
|
[4]
|
Machado, M.V. and Diehl, A.M. (2016) Pathogenesis of Nonalcoholic Steatohepatitis. Gastroenterology, 150, 1769-1777. https://doi.org/10.1053/j.gastro.2016.02.066
|
[5]
|
Karkucinska-Wieckowska, A., Simoes, I.C.M., Kalinowski, P., Lebiedzinska-Arciszewska, M., Zieniewicz, K., Milkiewicz, P., et al. (2021) Mitochondria, Oxidative Stress and Nonalcoholic Fatty Liver Disease: A Complex Relationship. European Journal of Clinical Investigation, 52, e13622. https://doi.org/10.1111/eci.13622
|
[6]
|
Chang, E., Chang, J.S., Kong, I.D., Baik, S.K., Kim, M.Y. and Park, K. (2022) Multidimensional Biomarker Analysis Including Mitochondrial Stress Indicators for Nonalcoholic Fatty Liver Disease. Gut and Liver, 16, 171-189. https://doi.org/10.5009/gnl210106
|
[7]
|
DuPont, H.L. (2015) Introduction: Understanding Mechanisms of the Actions of Rifaximin in Selected Gastrointestinal Diseases. Alimentary Pharmacology & Therapeutics, 43, 1-2. https://doi.org/10.1111/apt.13406
|
[8]
|
Bajaj, J.S., Barbara, G., DuPont, H.L., Mearin, F., Gasbarrini, A. and Tack, J. (2018) New Concepts on Intestinal Microbiota and the Role of the Non-Absorbable Antibiotics with Special Reference to Rifaximin in Digestive Diseases. Digestive and Liver Disease, 50, 741-749. https://doi.org/10.1016/j.dld.2018.04.020
|
[9]
|
Luo, M., Xie, P., Deng, X., Fan, J. and Xiong, L. (2023) Rifaximin Ameliorates Loperamide-Induced Constipation in Rats through the Regulation of Gut Microbiota and Serum Metabolites. Nutrients, 15, Article 4502. https://doi.org/10.3390/nu15214502
|
[10]
|
Abdel-Razik, A., Mousa, N., Shabana, W., Refaey, M., Elzehery, R., Elhelaly, R., et al. (2018) Rifaximin in Nonalcoholic Fatty Liver Disease: Hit Multiple Targets with a Single Shot. European Journal of Gastroenterology & Hepatology, 30, 1237-1246. https://doi.org/10.1097/meg.0000000000001232
|
[11]
|
Gangarapu, V., Ince, A.T., Baysal, B., Kayar, Y., Klç, U., Gök, Ö., et al. (2015) Efficacy of Rifaximin on Circulating Endotoxins and Cytokines in Patients with Nonalcoholic Fatty Liver Disease. European Journal of Gastroenterology & Hepatology, 27, 840-845. https://doi.org/10.1097/meg.0000000000000348
|
[12]
|
Li, S., Han, W., He, Q., Zhang, W. and Zhang, Y. (2022) Relationship between Intestinal Microflora and Hepatocellular Cancer Based on Gut-Liver Axis Theory. Contrast Media & Molecular Imaging, 2022, Article 6533628. https://doi.org/10.1155/2022/6533628
|
[13]
|
Ponziani, F.R., Zocco, M.A., Cerrito, L., Gasbarrini, A. and Pompili, M. (2018) Bacterial Translocation in Patients with Liver Cirrhosis: Physiology, Clinical Consequences, and Practical Implications. Expert Review of Gastroenterology & Hepatology, 12, 641-656. https://doi.org/10.1080/17474124.2018.1481747
|
[14]
|
Fang, J., Yu, C., Li, X., Yao, J., Fang, Z., Yoon, S., et al. (2022) Gut Dysbiosis in Nonalcoholic Fatty Liver Disease: Pathogenesis, Diagnosis, and Therapeutic Implications. Frontiers in Cellular and Infection Microbiology, 12, Article 997018. https://doi.org/10.3389/fcimb.2022.997018
|
[15]
|
Rebelos, E., Iozzo, P., Guzzardi, M.A., Brunetto, M.R. and Bonino, F. (2021) Brain-Gut-Liver Interactions across the Spectrum of Insulin Resistance in Metabolic Fatty Liver Disease. World Journal of Gastroenterology, 27, 4999-5018. https://doi.org/10.3748/wjg.v27.i30.4999
|
[16]
|
Wang, X.X., Zhang, B., Xia, R. and Jia, Q.Y. (2020) Inflammation, Apoptosis and Autophagy as Critical Players in Vascular Dementia. European Review for Medical and Pharmacological Sciences, 24, 9601-9614. https://doi.org/10.26355/eurrev_202009_23048
|
[17]
|
Oh, T.G., Kim, S.M., Caussy, C., Fu, T., Guo, J., Bassirian, S., et al. (2020) A Universal Gut-Microbiome-Derived Signature Predicts Cirrhosis. Cell Metabolism, 32, 878-888.e6. https://doi.org/10.1016/j.cmet.2020.06.005
|
[18]
|
Loomba, R., Seguritan, V., Li, W., Long, T., Klitgord, N., Bhatt, A., et al. (2019) Gut Microbiome-Based Metagenomic Signature for Non-Invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metabolism, 30, Article 607. https://doi.org/10.1016/j.cmet.2019.08.002
|
[19]
|
Jadhav, K. and Cohen, T.S. (2020) Can You Trust Your Gut? Implicating a Disrupted Intestinal Microbiome in the Progression of NAFLD/NASH. Frontiers in Endocrinology, 11, Article 592157. https://doi.org/10.3389/fendo.2020.592157
|
[20]
|
Pettinelli, P., Arendt, B.M., Schwenger, K.J.P., Sivaraj, S., Bhat, M., Comelli, E.M., et al. (2022) Relationship between Hepatic Gene Expression, Intestinal Microbiota and Inferred Functional Metagenomic Analysis in NAFLD. Clinical and Translational Gastroenterology, 13, e00466. https://doi.org/10.14309/ctg.0000000000000466
|
[21]
|
Caussy, C., Hsu, C., Lo, M., Liu, A., Bettencourt, R., Ajmera, V.H., et al. (2018) Link between Gut-Microbiome Derived Metabolite and Shared Gene-Effects with Hepatic Steatosis and Fibrosis in NAFLD. Hepatology, 68, 918-932. https://doi.org/10.1002/hep.29892
|
[22]
|
张丹琴, 杨帆, 李胜保. 非酒精性脂肪性肝病患者血清TLR4、IL-10、IL-22与肠道菌群的相关性[J]. 肝脏, 2019, 24(12): 1432-1434.
|
[23]
|
Albillos, A., de Gottardi, A. and Rescigno, M. (2020) The Gut-Liver Axis in Liver Disease: Pathophysiological Basis for Therapy. Journal of Hepatology, 72, 558-577. https://doi.org/10.1016/j.jhep.2019.10.003
|
[24]
|
Paolella, G. (2014) Gut-Liver Axis and Probiotics: Their Role in Non-Alcoholic Fatty Liver Disease. World Journal of Gastroenterology, 20, Article 15518. https://doi.org/10.3748/wjg.v20.i42.15518
|
[25]
|
Gassler, N. (2017) Paneth Cells in Intestinal Physiology and Pathophysiology. World Journal of Gastrointestinal Pathophysiology, 8, 150-160. https://doi.org/10.4291/wjgp.v8.i4.150
|
[26]
|
Jia, W., Rajani, C., Xu, H. and Zheng, X. (2020) Gut Microbiota Alterations Are Distinct for Primary Colorectal Cancer and Hepatocellular Carcinoma. Protein & Cell, 12, 374-393. https://doi.org/10.1007/s13238-020-00748-0
|
[27]
|
Verdam, F.J., Rensen, S.S., Driessen, A., Greve, J.W. and Buurman, W.A. (2011) Novel Evidence for Chronic Exposure to Endotoxin in Human Nonalcoholic Steatohepatitis. Journal of Clinical Gastroenterology, 45, 149-152. https://doi.org/10.1097/mcg.0b013e3181e12c24
|
[28]
|
Chávez-Carbajal, A., Nirmalkar, K., Pérez-Lizaur, A., Hernández-Quiroz, F., Ramírez-del-Alto, S., García-Mena, J., et al. (2019) Gut Microbiota and Predicted Metabolic Pathways in a Sample of Mexican Women Affected by Obesity and Obesity Plus Metabolic Syndrome. International Journal of Molecular Sciences, 20, Article 438. https://doi.org/10.3390/ijms20020438
|
[29]
|
Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., et al. (2017) Gut Microbiota Functions: Metabolism of Nutrients and Other Food Components. European Journal of Nutrition, 57, 1-24. https://doi.org/10.1007/s00394-017-1445-8
|
[30]
|
Krishnan, S., Ding, Y., Saedi, N., Choi, M., Sridharan, G.V., Sherr, D.H., et al. (2018) Gut Microbiota-Derived Tryptophan Metabolites Modulate Inflammatory Response in Hepatocytes and Macrophages. Cell Reports, 23, 1099-1111. https://doi.org/10.1016/j.celrep.2018.03.109
|
[31]
|
Chi, Y., Lin, Y., Lu, Y., Huang, Q., Ye, G. and Dong, S. (2019) Gut Microbiota Dysbiosis Correlates with a Low-Dose Pcb126-Induced Dyslipidemia and Non-Alcoholic Fatty Liver Disease. Science of the Total Environment, 653, 274-282. https://doi.org/10.1016/j.scitotenv.2018.10.387
|
[32]
|
Miura, K. (2014) Role of Gut Microbiota and Toll-Like Receptors in Nonalcoholic Fatty Liver Disease. World Journal of Gastroenterology, 20, 7381-7391. https://doi.org/10.3748/wjg.v20.i23.7381
|
[33]
|
Tsukamoto, H., Takeuchi, S., Kubota, K., Kobayashi, Y., Kozakai, S., Ukai, I., et al. (2018) Lipopolysaccharide (LPS)-Binding Protein Stimulates CD14-Dependent Toll-Like Receptor 4 Internalization and LPS-Induced TBK1-IKKϵ-IRF3 Axis Activation. Journal of Biological Chemistry, 293, 10186-10201. https://doi.org/10.1074/jbc.m117.796631
|
[34]
|
Li, Y., Zhou, Y., Wang, L., Lin, X., Mao, M., Yin, S., et al. (2022) Emerging Trends and Hotspots in the Links between the Gut Microbiota and MAFLD from 2002 to 2021: A Bibliometric Analysis. Frontiers in Endocrinology, 13, Article 990953. https://doi.org/10.3389/fendo.2022.990953
|
[35]
|
Molinaro, A., Wahlström, A. and Marschall, H. (2018) Role of Bile Acids in Metabolic Control. Trends in Endocrinology & Metabolism, 29, 31-41. https://doi.org/10.1016/j.tem.2017.11.002
|
[36]
|
Duboc, H., Taché, Y. and Hofmann, A.F. (2014) The Bile Acid TGR5 Membrane Receptor: From Basic Research to Clinical Application. Digestive and Liver Disease, 46, 302-312. https://doi.org/10.1016/j.dld.2013.10.021
|
[37]
|
Sayin, S.I., Wahlström, A., Felin, J., Jäntti, S., Marschall, H., Bamberg, K., et al. (2013) Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-Beta-Muricholic Acid, a Naturally Occurring FXR Antagonist. Cell Metabolism, 17, 225-235. https://doi.org/10.1016/j.cmet.2013.01.003
|
[38]
|
Schaap, F.G., Trauner, M. and Jansen, P.L.M. (2013) Bile Acid Receptors as Targets for Drug Development. Nature Reviews Gastroenterology & Hepatology, 11, 55-67. https://doi.org/10.1038/nrgastro.2013.151
|
[39]
|
Pathak, P., Xie, C., Nichols, R.G., Ferrell, J.M., Boehme, S., Krausz, K.W., et al. (2018) Intestine Farnesoid X Receptor Agonist and the Gut Microbiota Activate G-Protein Bile Acid Receptor-1 Signaling to Improve Metabolism. Hepatology, 68, 1574-1588. https://doi.org/10.1002/hep.29857
|
[40]
|
Pineda Torra, I., Claudel, T., Duval, C., Kosykh, V., Fruchart, J. and Staels, B. (2003) Bile Acids Induce the Expression of the Human Peroxisome Proliferator-Activated Receptor Α Gene via Activation of the Farnesoid X Receptor. Molecular Endocrinology, 17, 259-272. https://doi.org/10.1210/me.2002-0120
|
[41]
|
Wiest, R., Albillos, A., Trauner, M., Bajaj, J.S. and Jalan, R. (2017) Targeting the Gut-Liver Axis in Liver Disease. Journal of Hepatology, 67, 1084-1103. https://doi.org/10.1016/j.jhep.2017.05.007
|
[42]
|
Maccaferri, S., Vitali, B., Klinder, A., Kolida, S., Ndagijimana, M., Laghi, L., et al. (2010) Rifaximin Modulates the Colonic Microbiota of Patients with Crohn's Disease: An in Vitro Approach Using a Continuous Culture Colonic Model System. Journal of Antimicrobial Chemotherapy, 65, 2556-2565. https://doi.org/10.1093/jac/dkq345
|
[43]
|
Kamal, F., Khan, M.A., Khan, Z., Cholankeril, G., Hammad, T.A., Lee, W.M., et al. (2017) Rifaximin for the Prevention of Spontaneous Bacterial Peritonitis and Hepatorenal Syndrome in Cirrhosis: A Systematic Review and Meta-Analysis. European Journal of Gastroenterology & Hepatology, 29, 1109-1117. https://doi.org/10.1097/meg.0000000000000940
|
[44]
|
Graziano, T., Amoruso, A., Nicola, S., Deidda, F., Allesina, S., Pane, M., et al. (2016) The Possible Innovative Use of Bifidobacterium Longum W11 in Association with Rifaximin. Journal of Clinical Gastroenterology, 50, S153-S156. https://doi.org/10.1097/mcg.0000000000000683
|
[45]
|
Terc, J., Hansen, A., Alston, L. and Hirota, S.A. (2014) Pregnane X Receptor Agonists Enhance Intestinal Epithelial Wound Healing and Repair of the Intestinal Barrier Following the Induction of Experimental Colitis. European Journal of Pharmaceutical Sciences, 55, 12-19. https://doi.org/10.1016/j.ejps.2014.01.007
|
[46]
|
Hirota, S.A. (2015) Understanding the Molecular Mechanisms of Rifaximin in the Treatment of Gastrointestinal Disorders—A Focus on the Modulation of Host Tissue Function. Mini-Reviews in Medicinal Chemistry, 16, 206-217. https://doi.org/10.2174/1389557515666150722105705
|
[47]
|
Wan, Y.C., Li, T., Han, Y.D., Zhang, H.Y., Lin, H. and Zhang, B. (2015) Effect of Pregnane Xenobiotic Receptor Activation on Inflammatory Bowel Disease Treated with Rifaximin. Journal of Biological Regulators and Homeostatic Agents, 29, 401-410.
|
[48]
|
Dogan, B., Fu, J., Zhang, S., Scherl, E.J. and Simpson, K.W. (2018) Rifaximin Decreases Virulence of Crohn’s Disease-Associated Escherichia coli and Epithelial Inflammatory Responses. The Journal of Antibiotics, 71, 485-494. https://doi.org/10.1038/s41429-017-0022-y
|
[49]
|
Gao, J., Gillilland, M. and Owyang, C. (2014) Rifaximin, Gut Microbes and Mucosal Inflammation: Unraveling a Complex Relationship. Gut Microbes, 5, 571-575. https://doi.org/10.4161/gmic.32130
|
[50]
|
Thomas, C.M., Hong, T., van Pijkeren, J.P., Hemarajata, P., Trinh, D.V., Hu, W., et al. (2012) Histamine Derived from Probiotic Lactobacillus Reuteri Suppresses TNF via Modulation of PKA and ERK Signaling. PLOS ONE, 7, e31951. https://doi.org/10.1371/journal.pone.0031951
|
[51]
|
Pimentel, M. (2015) Review Article: Potential Mechanisms of Action of Rifaximin in the Management of Irritable Bowel Syndrome with Diarrhoea. Alimentary Pharmacology & Therapeutics, 43, 37-49. https://doi.org/10.1111/apt.13437
|
[52]
|
Xu, D., Gao, J., Gillilland, M., Wu, X., Song, I., Kao, J.Y., et al. (2014) Rifaximin Alters Intestinal Bacteria and Prevents Stress-Induced Gut Inflammation and Visceral Hyperalgesia in Rats. Gastroenterology, 146, 484-496.e4. https://doi.org/10.1053/j.gastro.2013.10.026
|
[53]
|
Ponziani, F.R., Scaldaferri, F., Petito, V., Paroni Sterbini, F., Pecere, S., Lopetuso, L.R., et al. (2016) The Role of Antibiotics in Gut Microbiota Modulation: The Eubiotic Effects of Rifaximin. Digestive Diseases, 34, 269-278. https://doi.org/10.1159/000443361
|
[54]
|
Ponziani, F.R., Pecere, S., Lopetuso, L., Scaldaferri, F., Cammarota, G. and Gasbarrini, A. (2016) Rifaximin for the Treatment of Irritable Bowel Syndrome—A Drug Safety Evaluation. Expert Opinion on Drug Safety, 15, 983-991. https://doi.org/10.1080/14740338.2016.1186639
|
[55]
|
Brown, E.L., Xue, Q., Jiang, Z., Xu, Y. and DuPont, H.L. (2010) Pretreatment of Epithelial Cells with Rifaximin Alters Bacterial Attachment and Internalization Profiles. Antimicrobial Agents and Chemotherapy, 54, 388-396. https://doi.org/10.1128/aac.00691-09
|
[56]
|
Du Plessis, J., Vanheel, H., Janssen, C.E.I., Roos, L., Slavik, T., Stivaktas, P.I., et al. (2013) Activated Intestinal Macrophages in Patients with Cirrhosis Release NO and IL-6 That May Disrupt Intestinal Barrier Function. Journal of Hepatology, 58, 1125-1132. https://doi.org/10.1016/j.jhep.2013.01.038
|