利福昔明调节肠道菌群治疗非酒精性脂肪性肝病的研究进展
Research Progress on Rifaximin in Modulating Gut Microbiota for the Treatment of Nonalcoholic Fatty Liver Disease
DOI: 10.12677/acm.2025.151161, PDF, HTML, XML,   
作者: 范裕梅, 杨朝霞*:重庆医科大学附属第二医院消化内科,重庆
关键词: 非酒精性脂肪肝病肠道菌群利福昔明Non-Alcoholic Fatty Liver Disease Intestinal Flora Rifaximin
摘要: 非酒精性脂肪肝病(NAFLD)是一种与代谢相关的常见肝脏疾病,患病率逐年上升。其发生与肠道菌群失衡密切相关,肠–肝轴紊乱、肠屏障受损、内毒素血症等机制在其病理中起关键作用。近年来,调节肠道菌群成为治疗NAFLD的热点,尤其是利福昔明作为一种口服不可吸收抗生素,能够改善肠道微生态,减少内毒素和炎症因子,展现出治疗潜力。尽管短期应用已有积极效果,长期使用的安全性和对益生菌的影响仍需进一步研究。未来的研究应探索优化利福昔明的治疗策略,为NAFLD提供更有效的治疗方案。
Abstract: Non-alcoholic fatty liver disease (NAFLD) is a common liver disorder associated with metabolic abnormalities, and its prevalence is increasing annually. Its development is closely related to gut microbiota imbalance, with mechanisms such as disruption of the gut-liver axis, damage to the intestinal barrier, and endotoxemia playing key roles in its pathogenesis. In recent years, modulation of the gut microbiota has become a hot topic in the treatment of NAFLD. Rifaximin, an orally administered non-absorbable antibiotic, has shown potential in improving gut microbiota, reducing endotoxins, and decreasing inflammatory factors. While short-term use has shown positive effects, the safety of long-term use and its impact on beneficial bacteria still require further investigation. Future research should focus on optimizing rifaximin treatment strategies to provide more effective therapeutic options for NAFLD.
文章引用:范裕梅, 杨朝霞. 利福昔明调节肠道菌群治疗非酒精性脂肪性肝病的研究进展[J]. 临床医学进展, 2025, 15(1): 1218-1225. https://doi.org/10.12677/acm.2025.151161

1. 前言

非酒精性脂肪肝病(non-alcoholic fatty liver disease, NAFLD),是指在很少饮酒或不饮酒的个体中,在没有容易确定的脂肪变性其他原因(如药物、饥饿、单基因疾病)的情况下的人群中,≥5%的肝细胞表现出大泡性脂肪变性,包括单纯性脂肪肝(NAFL)、脂肪性肝炎(NASH)、脂肪性肝纤维化、肝硬化甚至肝癌,是目前最常见的肝脏疾病之一[1] [2]。随着社会经济的发展和生活方式的改变,NAFLD的发病率逐年攀升,已成为全球范围内重要的公共健康问题。尽管NAFLD的研究取得了一定进展,其复杂的发病机制和多重致病因素使得我们对其全面认知仍然不足。既往较为公认的学说主要包括“二次打击”学说和“多重打击”假说;然而,随着研究深入,“双打击”理论已不能完全解释遗传与环境以及不同器官系统之间的相互作用,因此,多重影响理论逐渐被接受[3]-[5]。此外,NAFLD被认为是一种代谢相关性疾病,其发病及进展受种族、遗传易感性、饮食习惯、代谢、免疫及肠道菌群等多种因素的共同影响[6]

特别值得关注的是,越来越多的研究表明肠道菌群与NAFLD之间存在着重要联系,调节肠道菌群可能为NAFLD的治疗提供新的方向。一方面,根据肠–肝轴理论,肠道微生态平衡被破坏时,有害的肠道细菌及其代谢产物能够通过门脉系统进入肝脏,造成机体免疫应答和炎症反应,进而导致NAFLD的发生和发展。另一方面,近年来调节肠道微生物以治疗NAFLD正成为研究热点。然而,目前针对肠道菌群调节在临床应用中的有效性尚未完全探索,仅有一些临床试验探讨了使用益生菌、粪便菌群移植(FMT)等作为干预手段治疗NAFLD的有效性。在此背景下,利福昔明作为一种安全有效的口服不可吸收抗生素,在调节肠道微生物群方面展现出独特的优势,为NAFLD的治疗提供了新的可能性。

利福昔明是一种利福平的类似物,通过抑制细菌RNA合成而发挥抗菌作用,对大多数革兰氏阳性菌和部分革兰氏阴性菌具有抗菌活性[7] [8]。此外,它还能支持乳酸菌等有益细菌的增殖和生长,有助于为肠道益生菌建立有利环境[9]。由于其吸收极低且安全性高,利福昔明已被证明可有效改善局部和全身炎症反应,减少细菌内毒素和炎性细胞因子的产生,同时维持肠黏膜屏障功能[7]。当前的研究已初步验证了利福昔明在NAFLD治疗中的安全性和有效性。例如,Ahmed Abdel-Razik等人的一项临床试验研究结果显示,NASH患者的血浆内毒素水平在利福昔明治疗后显著降低[10]。类似地,Gangarapu等的研究也发现利福昔明治疗NAFLD患者后,血浆内毒素水平显著下降[11]。这种疗效可能与利福昔明对肠道菌群的调节作用密切相关,特别是其对革兰氏阴性菌的抑制作用,从而减少了内毒素的产生[10]

本综述旨在探讨非酒精性脂肪肝病(NAFLD)的发病机制及其与肠道菌群失衡的密切关系,重点评估调节肠道菌群在NAFLD治疗中的潜力。特别是,本文分析了利福昔明这一广谱口服抗生素在改善肠道菌群、降低内毒素水平和减轻炎症反应方面的作用及其临床应用效果。

2. 肠–肝轴与NAFLD的相关性

肠道菌群是人体肠道内的微生物群落,在正常生理条件下约有500~1000种,其中大部分为厌氧菌[12]。这些菌群以共生方式定植于肠道中,参与消化、吸收、代谢、免疫调节等重要生理功能,从而维持人体平衡。因此,肠道菌群的改变是许多疾病致病机制的重要环节。特别是在近年来的研究中,肠道菌群与肝脏之间的相互作用,构成了“肠–肝轴”这一重要概念。肠–肝轴是肠道及其微生物群与肝脏之间的双向作用系统,具有保护宿主免受肠道中潜在有毒物质侵害和维持免疫系统稳定的重要功能[13]。越来越多的研究表明,肠道菌群对肝脏健康的调节作用,使得肠–肝轴在NAFLD的发病机制中占据核心地位。具体而言,肠道菌群的量变和质变及其过度生长引起的生态失调,会导致肠黏膜屏障破坏以及代谢紊乱的发生,从而增加肠道通透性,使内毒素通过门静脉进入肝脏,激活各种炎症信号通路,加速NAFLD的发生和进展[14] [15]。此外,NAFLD患者的饮食习惯也会对肠道菌群产生显著影响。长期高脂饮食可减少肠道菌群的养料来源,其代谢产物又可进一步破坏肠道微生态,导致菌群结构紊乱[16]。目前已有多项研究显示,NAFLD患者存在显著的肠道菌群失调。例如,变形杆菌和肠杆菌的相对丰度增加,而瘤胃球菌和乳酸菌的相对丰度减少,厚壁菌/拟杆菌的比例也呈现下降趋势[17]-[19]。随着单纯性脂肪变性进展为晚期肝纤维化,革兰氏阴性菌(尤其是变形杆菌)的数量进一步增加[20] [21]。此外,张丹琴等[22]研究发现,NAFLD患者粪便菌群中乳酸杆菌和双歧杆菌明显减少,而肠杆菌和肠球菌则显著增多。这些研究共同证实,肠道菌群失调在NAFLD的发生发展中具有重要作用。

综上所述,肠–肝轴的紊乱是NAFLD发病机制中的关键环节,其影响不仅局限于肠道微生态的失衡,还涉及一系列代谢和炎症反应的复杂过程。

3. 肠道微生态影响NAFLD发生的机制

3.1. 肠屏障受损

肠屏障是肠道和肝脏之间相互作用的关键结构,能使营养物质进入循环并到达肝脏,同时也调控着细菌和毒素进入体内的通路[23]-[25]。肠黏膜屏障受损可导致宿主和微生物及其代谢产物,通过门静脉系统到达肝脏,通过激活肝细胞中的Toll样受体(TLR),引发肝脏的炎症反应,最终影响肝功能可致代谢失调[26]。VERDAM等[27]发现,肠道黏膜通透性的改变可导致NASH 患者的内毒素血浆IgG水平的增加,且血浆IgG随着NASH严重程度逐渐升高。所以,肠黏膜屏障发生损伤时可使肠道通透性增加,导致肝脏炎症反应的发生,从而影响NAFLD的发生、发展。

3.2. 内毒素血症

肠道中的细菌及其产物可产生多方面的作用,某些肠源性代谢物调节巨噬细胞和肝细胞中的炎症反应[28]-[30]。近来在Chi等[31]报道PCB126诱导小鼠肠道微生态失调的研究中,检测发现小鼠的肝脏脂质积聚、损伤,提示肠道菌群失调在NAFLD疾病进展过程中起着关键的作用。正常情况下,肝脏作为人体的解毒器官,可将来自肠道由门静脉进入肝脏的有害物质解毒,但当肠道菌群失调时,肠源性内毒素生成增多,超过肝脏对毒素的清除能力范围,将导致库普弗细胞炎症激活,促进短链脂肪酸的产生,改变胆汁酸的肠肝循环,并可能导致炎症,导致肝脂肪变性。肠源性内毒素中,目前研究最广泛的是革兰氏阴性菌产生的脂多糖(LPS) [32]。众多实验研究发现,菌群失调后革兰阴性菌比例增多,可以产生大量脂多糖引起肠道炎症,随后肠道有害菌进入血液和肝脏,通过激活TLR时产生的促炎细胞因子引起NAFLD发生、进展,加速肝损伤和纤维化发生[33] [34]

3.3. 胆汁酸的代谢

胆汁酸经酶促途径由胆固醇合成,可激活许多受体,对能量消耗、脂代谢、肠道运动和通透性的调节均有影响[35] [36]。胆汁酸与肠道微生物之间存在相互作用,一方面,胆汁酸可直接通过膜破坏作用和间接诱导抗菌蛋白的表达,防止肠道细菌过度生长,从而对肠道微生物种类的形成起到重要作用。另一方面,肠内细菌可通过化学修饰胆汁酸和改变胆汁酸池的组合物[37],主要原因是初级胆汁酸合成为次级胆汁酸的限速酶的合成及表达受肠道菌群的影响,因此胆汁酸的合成受肠道菌群的调控。此外胆汁酸还作为分子信号通过法尼醇X受体(farnesoid x nuclearceptor, FXR)介导能量代谢,从而降低血脂水平[38]。另有研究显示FXR也可上调过氧化物酶体增殖激活受体(Peroxisome proliferator-activated receptor-α, PPARa)的表达,调节脂肪酸代谢与转运、胆固醇代谢、炎症反应、葡萄糖代谢影响NAFLD的发生发展[39] [40]

综上,肠屏障受损增加肠道通透性、肠源性内毒素增加、胆汁酸代谢等均会影响NAFLD的发生发展,通过改善肠道微生态可改善NAFLD。利福昔明作为一种肠道抗生素,能够通过改变肠道菌群的组成,减轻肠道内有害细菌的过度生长,进而影响胆汁酸代谢和内毒素血症,从而对NAFLD的发生和进展产生一定的调节作用。

4. 利福昔明改善NAFLD的作用机制

抗生素可以消除有害微生物群,控制其产物异位,延缓肝病进展,其疗效已在研究中得到证实,已成为减少微生物过度增殖和细菌易位、减轻细菌肠道负担的一线用药[41]。特定抗生素,如利福昔明,可减少甲醇、乙醇和谷氨酸盐量等有害物质的产生[42],同时增加乳酸菌、双歧杆菌和奇异菌属等菌属的丰度达到治疗NAFLD的作用。例如,Gan-garapu等[11]的研究就证明了短期服用利福昔明可降低MAFLD/NASH患者血内毒素水平。另有其他研究发现使用利福昔明可使NAFLD患者促炎细胞因子水平[10]。结合目前相关研究,利福昔明可能通过以下机制调节肠道菌群以改善NAFLD。

4.1. 抗炎和免疫调节作用

利福昔明作为肠道抗生素,可减少肠道内毒素及炎症因子的产生,从而降低肠道细菌的毒力,降低致病菌对肠上皮细胞的黏附和内化减少中性粒细胞浸润,明显减轻肠道炎症[43] [44]。目前已有研究表明,利福昔明可作为孕烷X受体(PXR)激动剂,活化的PXR一方面使p38丝裂原活化蛋白激酶(MAPK)活化,进而增强被破坏的肠上皮的愈合能力,改善肠壁通透性,促进肠道屏障的修复,另一方面可通过核因子-κB (NF-κB)和c-Jun氨基端激酶(JNK)通路来调节免疫反应,抑制炎性反应,再一方面可调节外源性物质氧化、特定结合酶及转运体的表达,消除机体潜在的有害化学物质,降低促炎细胞因子的表达,并能诱导解毒基因表达上调机体解毒机制,协同减轻肠道局部炎症,改善黏膜屏障功能[45]-[47]。Wan和Dogan等进行的实验[47] [48]近来研究发现也有相同结论。此外,利福昔明还能抑制致病菌及其产物从正常定居部位转移,通过减少菌群移位发挥免疫调节功能,从而降低肠道易位细菌负荷,可预防炎症的发生[49] [50]

4.2. 调节菌群构成和功能

利福昔明具有调节菌群构成和功能的作用,一方面抑制及杀伤致病菌,如对常见的肠道致病菌如大肠杆菌、肠球菌等均有强大的杀伤作用,口服后可显著降低肠道致病菌负荷,改变肠道远端细菌结构[51] [52],另一方面利福昔明可通过其“益生作用”促进双歧杆菌、乳酸菌、普氏粪杆菌等有益菌的生长[53] [54]。然而,值得注意的是利福昔明最重要的生物学效应似乎与药物的抗微生物特性无关,而与细菌附着和内化[55]以及细菌运动性和毒力基因的降低[48]相关。利福昔明还表现出减少肠道菌群组分驱动的纤维形成的治疗潜力,主要是通过调节脂多糖(LPS)引起的Toll样受体4 (TLR4)活化,导致活化的星状细胞和内皮细胞产生较少的纤连蛋白[56]

5. 总结与展望

非酒精性脂肪肝病(NAFLD)作为全球患病率逐年上升的代谢相关疾病,与肠道菌群失衡密切相关。肠–肝轴紊乱、肠屏障受损、内毒素血症及胆汁酸代谢异常等机制均是NAFLD发生和发展的重要因素。利福昔明作为一种安全有效的不可吸收抗生素,通过调节肠道微生物群、减少内毒素产生、降低炎症因子表达和增强黏膜屏障功能,对NAFLD的治疗展现出良好潜力。然而,其长期使用的安全性和对益生菌的影响尚需深入研究。未来研究应着力于探索利福昔明在NAFLD治疗中的优化使用策略,结合益生菌或其他微生态调节手段,同时揭示其具体分子机制,为NAFLD提供更精准、综合的治疗方案。

NOTES

*通讯作者。

参考文献

[1] Rinella, M.E., Neuschwander-Tetri, B.A., Siddiqui, M.S., Abdelmalek, M.F., Caldwell, S., Barb, D., et al. (2023) AASLD Practice Guidance on the Clinical Assessment and Management of Nonalcoholic Fatty Liver Disease. Hepatology, 77, 1797-1835.
https://doi.org/10.1097/hep.0000000000000323
[2] Li, W., Liu, J., Cai, J., Zhang, X., Zhang, P., She, Z., et al. (2022) NAFLD as a Continuous Driver in the Whole Spectrum of Vascular Disease. Journal of Molecular and Cellular Cardiology, 163, 118-132.
https://doi.org/10.1016/j.yjmcc.2021.10.007
[3] Buzzetti, E., Pinzani, M. and Tsochatzis, E.A. (2016) The Multiple-Hit Pathogenesis of Non-Alcoholic Fatty Liver Disease (NAFLD). Metabolism, 65, 1038-1048.
https://doi.org/10.1016/j.metabol.2015.12.012
[4] Machado, M.V. and Diehl, A.M. (2016) Pathogenesis of Nonalcoholic Steatohepatitis. Gastroenterology, 150, 1769-1777.
https://doi.org/10.1053/j.gastro.2016.02.066
[5] Karkucinska-Wieckowska, A., Simoes, I.C.M., Kalinowski, P., Lebiedzinska-Arciszewska, M., Zieniewicz, K., Milkiewicz, P., et al. (2021) Mitochondria, Oxidative Stress and Nonalcoholic Fatty Liver Disease: A Complex Relationship. European Journal of Clinical Investigation, 52, e13622.
https://doi.org/10.1111/eci.13622
[6] Chang, E., Chang, J.S., Kong, I.D., Baik, S.K., Kim, M.Y. and Park, K. (2022) Multidimensional Biomarker Analysis Including Mitochondrial Stress Indicators for Nonalcoholic Fatty Liver Disease. Gut and Liver, 16, 171-189.
https://doi.org/10.5009/gnl210106
[7] DuPont, H.L. (2015) Introduction: Understanding Mechanisms of the Actions of Rifaximin in Selected Gastrointestinal Diseases. Alimentary Pharmacology & Therapeutics, 43, 1-2.
https://doi.org/10.1111/apt.13406
[8] Bajaj, J.S., Barbara, G., DuPont, H.L., Mearin, F., Gasbarrini, A. and Tack, J. (2018) New Concepts on Intestinal Microbiota and the Role of the Non-Absorbable Antibiotics with Special Reference to Rifaximin in Digestive Diseases. Digestive and Liver Disease, 50, 741-749.
https://doi.org/10.1016/j.dld.2018.04.020
[9] Luo, M., Xie, P., Deng, X., Fan, J. and Xiong, L. (2023) Rifaximin Ameliorates Loperamide-Induced Constipation in Rats through the Regulation of Gut Microbiota and Serum Metabolites. Nutrients, 15, Article 4502.
https://doi.org/10.3390/nu15214502
[10] Abdel-Razik, A., Mousa, N., Shabana, W., Refaey, M., Elzehery, R., Elhelaly, R., et al. (2018) Rifaximin in Nonalcoholic Fatty Liver Disease: Hit Multiple Targets with a Single Shot. European Journal of Gastroenterology & Hepatology, 30, 1237-1246.
https://doi.org/10.1097/meg.0000000000001232
[11] Gangarapu, V., Ince, A.T., Baysal, B., Kayar, Y., Klç, U., Gök, Ö., et al. (2015) Efficacy of Rifaximin on Circulating Endotoxins and Cytokines in Patients with Nonalcoholic Fatty Liver Disease. European Journal of Gastroenterology & Hepatology, 27, 840-845.
https://doi.org/10.1097/meg.0000000000000348
[12] Li, S., Han, W., He, Q., Zhang, W. and Zhang, Y. (2022) Relationship between Intestinal Microflora and Hepatocellular Cancer Based on Gut-Liver Axis Theory. Contrast Media & Molecular Imaging, 2022, Article 6533628.
https://doi.org/10.1155/2022/6533628
[13] Ponziani, F.R., Zocco, M.A., Cerrito, L., Gasbarrini, A. and Pompili, M. (2018) Bacterial Translocation in Patients with Liver Cirrhosis: Physiology, Clinical Consequences, and Practical Implications. Expert Review of Gastroenterology & Hepatology, 12, 641-656.
https://doi.org/10.1080/17474124.2018.1481747
[14] Fang, J., Yu, C., Li, X., Yao, J., Fang, Z., Yoon, S., et al. (2022) Gut Dysbiosis in Nonalcoholic Fatty Liver Disease: Pathogenesis, Diagnosis, and Therapeutic Implications. Frontiers in Cellular and Infection Microbiology, 12, Article 997018.
https://doi.org/10.3389/fcimb.2022.997018
[15] Rebelos, E., Iozzo, P., Guzzardi, M.A., Brunetto, M.R. and Bonino, F. (2021) Brain-Gut-Liver Interactions across the Spectrum of Insulin Resistance in Metabolic Fatty Liver Disease. World Journal of Gastroenterology, 27, 4999-5018.
https://doi.org/10.3748/wjg.v27.i30.4999
[16] Wang, X.X., Zhang, B., Xia, R. and Jia, Q.Y. (2020) Inflammation, Apoptosis and Autophagy as Critical Players in Vascular Dementia. European Review for Medical and Pharmacological Sciences, 24, 9601-9614.
https://doi.org/10.26355/eurrev_202009_23048
[17] Oh, T.G., Kim, S.M., Caussy, C., Fu, T., Guo, J., Bassirian, S., et al. (2020) A Universal Gut-Microbiome-Derived Signature Predicts Cirrhosis. Cell Metabolism, 32, 878-888.e6.
https://doi.org/10.1016/j.cmet.2020.06.005
[18] Loomba, R., Seguritan, V., Li, W., Long, T., Klitgord, N., Bhatt, A., et al. (2019) Gut Microbiome-Based Metagenomic Signature for Non-Invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metabolism, 30, Article 607.
https://doi.org/10.1016/j.cmet.2019.08.002
[19] Jadhav, K. and Cohen, T.S. (2020) Can You Trust Your Gut? Implicating a Disrupted Intestinal Microbiome in the Progression of NAFLD/NASH. Frontiers in Endocrinology, 11, Article 592157.
https://doi.org/10.3389/fendo.2020.592157
[20] Pettinelli, P., Arendt, B.M., Schwenger, K.J.P., Sivaraj, S., Bhat, M., Comelli, E.M., et al. (2022) Relationship between Hepatic Gene Expression, Intestinal Microbiota and Inferred Functional Metagenomic Analysis in NAFLD. Clinical and Translational Gastroenterology, 13, e00466.
https://doi.org/10.14309/ctg.0000000000000466
[21] Caussy, C., Hsu, C., Lo, M., Liu, A., Bettencourt, R., Ajmera, V.H., et al. (2018) Link between Gut-Microbiome Derived Metabolite and Shared Gene-Effects with Hepatic Steatosis and Fibrosis in NAFLD. Hepatology, 68, 918-932.
https://doi.org/10.1002/hep.29892
[22] 张丹琴, 杨帆, 李胜保. 非酒精性脂肪性肝病患者血清TLR4、IL-10、IL-22与肠道菌群的相关性[J]. 肝脏, 2019, 24(12): 1432-1434.
[23] Albillos, A., de Gottardi, A. and Rescigno, M. (2020) The Gut-Liver Axis in Liver Disease: Pathophysiological Basis for Therapy. Journal of Hepatology, 72, 558-577.
https://doi.org/10.1016/j.jhep.2019.10.003
[24] Paolella, G. (2014) Gut-Liver Axis and Probiotics: Their Role in Non-Alcoholic Fatty Liver Disease. World Journal of Gastroenterology, 20, Article 15518.
https://doi.org/10.3748/wjg.v20.i42.15518
[25] Gassler, N. (2017) Paneth Cells in Intestinal Physiology and Pathophysiology. World Journal of Gastrointestinal Pathophysiology, 8, 150-160.
https://doi.org/10.4291/wjgp.v8.i4.150
[26] Jia, W., Rajani, C., Xu, H. and Zheng, X. (2020) Gut Microbiota Alterations Are Distinct for Primary Colorectal Cancer and Hepatocellular Carcinoma. Protein & Cell, 12, 374-393.
https://doi.org/10.1007/s13238-020-00748-0
[27] Verdam, F.J., Rensen, S.S., Driessen, A., Greve, J.W. and Buurman, W.A. (2011) Novel Evidence for Chronic Exposure to Endotoxin in Human Nonalcoholic Steatohepatitis. Journal of Clinical Gastroenterology, 45, 149-152.
https://doi.org/10.1097/mcg.0b013e3181e12c24
[28] Chávez-Carbajal, A., Nirmalkar, K., Pérez-Lizaur, A., Hernández-Quiroz, F., Ramírez-del-Alto, S., García-Mena, J., et al. (2019) Gut Microbiota and Predicted Metabolic Pathways in a Sample of Mexican Women Affected by Obesity and Obesity Plus Metabolic Syndrome. International Journal of Molecular Sciences, 20, Article 438.
https://doi.org/10.3390/ijms20020438
[29] Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., et al. (2017) Gut Microbiota Functions: Metabolism of Nutrients and Other Food Components. European Journal of Nutrition, 57, 1-24.
https://doi.org/10.1007/s00394-017-1445-8
[30] Krishnan, S., Ding, Y., Saedi, N., Choi, M., Sridharan, G.V., Sherr, D.H., et al. (2018) Gut Microbiota-Derived Tryptophan Metabolites Modulate Inflammatory Response in Hepatocytes and Macrophages. Cell Reports, 23, 1099-1111.
https://doi.org/10.1016/j.celrep.2018.03.109
[31] Chi, Y., Lin, Y., Lu, Y., Huang, Q., Ye, G. and Dong, S. (2019) Gut Microbiota Dysbiosis Correlates with a Low-Dose Pcb126-Induced Dyslipidemia and Non-Alcoholic Fatty Liver Disease. Science of the Total Environment, 653, 274-282.
https://doi.org/10.1016/j.scitotenv.2018.10.387
[32] Miura, K. (2014) Role of Gut Microbiota and Toll-Like Receptors in Nonalcoholic Fatty Liver Disease. World Journal of Gastroenterology, 20, 7381-7391.
https://doi.org/10.3748/wjg.v20.i23.7381
[33] Tsukamoto, H., Takeuchi, S., Kubota, K., Kobayashi, Y., Kozakai, S., Ukai, I., et al. (2018) Lipopolysaccharide (LPS)-Binding Protein Stimulates CD14-Dependent Toll-Like Receptor 4 Internalization and LPS-Induced TBK1-IKKϵ-IRF3 Axis Activation. Journal of Biological Chemistry, 293, 10186-10201.
https://doi.org/10.1074/jbc.m117.796631
[34] Li, Y., Zhou, Y., Wang, L., Lin, X., Mao, M., Yin, S., et al. (2022) Emerging Trends and Hotspots in the Links between the Gut Microbiota and MAFLD from 2002 to 2021: A Bibliometric Analysis. Frontiers in Endocrinology, 13, Article 990953.
https://doi.org/10.3389/fendo.2022.990953
[35] Molinaro, A., Wahlström, A. and Marschall, H. (2018) Role of Bile Acids in Metabolic Control. Trends in Endocrinology & Metabolism, 29, 31-41.
https://doi.org/10.1016/j.tem.2017.11.002
[36] Duboc, H., Taché, Y. and Hofmann, A.F. (2014) The Bile Acid TGR5 Membrane Receptor: From Basic Research to Clinical Application. Digestive and Liver Disease, 46, 302-312.
https://doi.org/10.1016/j.dld.2013.10.021
[37] Sayin, S.I., Wahlström, A., Felin, J., Jäntti, S., Marschall, H., Bamberg, K., et al. (2013) Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-Beta-Muricholic Acid, a Naturally Occurring FXR Antagonist. Cell Metabolism, 17, 225-235.
https://doi.org/10.1016/j.cmet.2013.01.003
[38] Schaap, F.G., Trauner, M. and Jansen, P.L.M. (2013) Bile Acid Receptors as Targets for Drug Development. Nature Reviews Gastroenterology & Hepatology, 11, 55-67.
https://doi.org/10.1038/nrgastro.2013.151
[39] Pathak, P., Xie, C., Nichols, R.G., Ferrell, J.M., Boehme, S., Krausz, K.W., et al. (2018) Intestine Farnesoid X Receptor Agonist and the Gut Microbiota Activate G-Protein Bile Acid Receptor-1 Signaling to Improve Metabolism. Hepatology, 68, 1574-1588.
https://doi.org/10.1002/hep.29857
[40] Pineda Torra, I., Claudel, T., Duval, C., Kosykh, V., Fruchart, J. and Staels, B. (2003) Bile Acids Induce the Expression of the Human Peroxisome Proliferator-Activated Receptor Α Gene via Activation of the Farnesoid X Receptor. Molecular Endocrinology, 17, 259-272.
https://doi.org/10.1210/me.2002-0120
[41] Wiest, R., Albillos, A., Trauner, M., Bajaj, J.S. and Jalan, R. (2017) Targeting the Gut-Liver Axis in Liver Disease. Journal of Hepatology, 67, 1084-1103.
https://doi.org/10.1016/j.jhep.2017.05.007
[42] Maccaferri, S., Vitali, B., Klinder, A., Kolida, S., Ndagijimana, M., Laghi, L., et al. (2010) Rifaximin Modulates the Colonic Microbiota of Patients with Crohn's Disease: An in Vitro Approach Using a Continuous Culture Colonic Model System. Journal of Antimicrobial Chemotherapy, 65, 2556-2565.
https://doi.org/10.1093/jac/dkq345
[43] Kamal, F., Khan, M.A., Khan, Z., Cholankeril, G., Hammad, T.A., Lee, W.M., et al. (2017) Rifaximin for the Prevention of Spontaneous Bacterial Peritonitis and Hepatorenal Syndrome in Cirrhosis: A Systematic Review and Meta-Analysis. European Journal of Gastroenterology & Hepatology, 29, 1109-1117.
https://doi.org/10.1097/meg.0000000000000940
[44] Graziano, T., Amoruso, A., Nicola, S., Deidda, F., Allesina, S., Pane, M., et al. (2016) The Possible Innovative Use of Bifidobacterium Longum W11 in Association with Rifaximin. Journal of Clinical Gastroenterology, 50, S153-S156.
https://doi.org/10.1097/mcg.0000000000000683
[45] Terc, J., Hansen, A., Alston, L. and Hirota, S.A. (2014) Pregnane X Receptor Agonists Enhance Intestinal Epithelial Wound Healing and Repair of the Intestinal Barrier Following the Induction of Experimental Colitis. European Journal of Pharmaceutical Sciences, 55, 12-19.
https://doi.org/10.1016/j.ejps.2014.01.007
[46] Hirota, S.A. (2015) Understanding the Molecular Mechanisms of Rifaximin in the Treatment of Gastrointestinal Disorders—A Focus on the Modulation of Host Tissue Function. Mini-Reviews in Medicinal Chemistry, 16, 206-217.
https://doi.org/10.2174/1389557515666150722105705
[47] Wan, Y.C., Li, T., Han, Y.D., Zhang, H.Y., Lin, H. and Zhang, B. (2015) Effect of Pregnane Xenobiotic Receptor Activation on Inflammatory Bowel Disease Treated with Rifaximin. Journal of Biological Regulators and Homeostatic Agents, 29, 401-410.
[48] Dogan, B., Fu, J., Zhang, S., Scherl, E.J. and Simpson, K.W. (2018) Rifaximin Decreases Virulence of Crohn’s Disease-Associated Escherichia coli and Epithelial Inflammatory Responses. The Journal of Antibiotics, 71, 485-494.
https://doi.org/10.1038/s41429-017-0022-y
[49] Gao, J., Gillilland, M. and Owyang, C. (2014) Rifaximin, Gut Microbes and Mucosal Inflammation: Unraveling a Complex Relationship. Gut Microbes, 5, 571-575.
https://doi.org/10.4161/gmic.32130
[50] Thomas, C.M., Hong, T., van Pijkeren, J.P., Hemarajata, P., Trinh, D.V., Hu, W., et al. (2012) Histamine Derived from Probiotic Lactobacillus Reuteri Suppresses TNF via Modulation of PKA and ERK Signaling. PLOS ONE, 7, e31951.
https://doi.org/10.1371/journal.pone.0031951
[51] Pimentel, M. (2015) Review Article: Potential Mechanisms of Action of Rifaximin in the Management of Irritable Bowel Syndrome with Diarrhoea. Alimentary Pharmacology & Therapeutics, 43, 37-49.
https://doi.org/10.1111/apt.13437
[52] Xu, D., Gao, J., Gillilland, M., Wu, X., Song, I., Kao, J.Y., et al. (2014) Rifaximin Alters Intestinal Bacteria and Prevents Stress-Induced Gut Inflammation and Visceral Hyperalgesia in Rats. Gastroenterology, 146, 484-496.e4.
https://doi.org/10.1053/j.gastro.2013.10.026
[53] Ponziani, F.R., Scaldaferri, F., Petito, V., Paroni Sterbini, F., Pecere, S., Lopetuso, L.R., et al. (2016) The Role of Antibiotics in Gut Microbiota Modulation: The Eubiotic Effects of Rifaximin. Digestive Diseases, 34, 269-278.
https://doi.org/10.1159/000443361
[54] Ponziani, F.R., Pecere, S., Lopetuso, L., Scaldaferri, F., Cammarota, G. and Gasbarrini, A. (2016) Rifaximin for the Treatment of Irritable Bowel Syndrome—A Drug Safety Evaluation. Expert Opinion on Drug Safety, 15, 983-991.
https://doi.org/10.1080/14740338.2016.1186639
[55] Brown, E.L., Xue, Q., Jiang, Z., Xu, Y. and DuPont, H.L. (2010) Pretreatment of Epithelial Cells with Rifaximin Alters Bacterial Attachment and Internalization Profiles. Antimicrobial Agents and Chemotherapy, 54, 388-396.
https://doi.org/10.1128/aac.00691-09
[56] Du Plessis, J., Vanheel, H., Janssen, C.E.I., Roos, L., Slavik, T., Stivaktas, P.I., et al. (2013) Activated Intestinal Macrophages in Patients with Cirrhosis Release NO and IL-6 That May Disrupt Intestinal Barrier Function. Journal of Hepatology, 58, 1125-1132.
https://doi.org/10.1016/j.jhep.2013.01.038