[1]
|
Bourdon, M., Santulli, P., Jeljeli, M., Vannuccini, S., Marcellin, L., Doridot, L., et al. (2020) Immunological Changes Associated with Adenomyosis: A Systematic Review. Human Reproduction Update, 27, 108-129. https://doi.org/10.1093/humupd/dmaa038
|
[2]
|
Li, J., Huang, L., Zhao, H., Yan, Y. and Lu, J. (2020) The Role of Interleukins in Colorectal Cancer. International Journal of Biological Sciences, 16, 2323-2339. https://doi.org/10.7150/ijbs.46651
|
[3]
|
Benagiano, G., Brosens, I. and Habiba, M. (2013) Structural and Molecular Features of the Endomyometrium in Endometriosis and Adenomyosis. Human Reproduction Update, 20, 386-402. https://doi.org/10.1093/humupd/dmt052
|
[4]
|
Carrarelli, P., Yen, C., Funghi, L., Arcuri, F., Tosti, C., Bifulco, G., et al. (2017) Expression of Inflammatory and Neurogenic Mediators in Adenomyosis: A Pathogenetic Role. Reproductive Sciences, 24, 369-375. https://doi.org/10.1177/1933719116657192
|
[5]
|
AlAshqar, A., Reschke, L., Kirschen, G.W. and Borahay, M.A. (2021) Role of Inflammation in Benign Gynecologic Disorders: From Pathogenesis to Novel Therapies. Biology of Reproduction, 105, 7-31. https://doi.org/10.1093/biolre/ioab054
|
[6]
|
Rébé, C. and Ghiringhelli, F. (2020) Interleukin-1β and Cancer. Cancers, 12, Article 1791. https://doi.org/10.3390/cancers12071791
|
[7]
|
El-Zayat, S.R., Sibaii, H. and Mannaa, F.A. (2019) Toll-Like Receptors Activation, Signaling, and Targeting: An Overview. Bulletin of the National Research Centre, 43, Article No. 187. https://doi.org/10.1186/s42269-019-0227-2
|
[8]
|
Evavold, C.L., Ruan, J., Tan, Y., Xia, S., Wu, H. and Kagan, J.C. (2018) The Pore-Forming Protein Gasdermin D Regulates Interleukin-1 Secretion from Living Macrophages. Immunity, 48, 35-44. https://doi.org/10.1016/j.immuni.2017.11.013
|
[9]
|
Feng, T., Wei, S., Wang, Y., Fu, X., Shi, L., Qu, L., et al. (2017) Rhein Ameliorates Adenomyosis by Inhibiting NF-κB and Β-Catenin Signaling Pathway. Biomedicine & Pharmacotherapy, 94, 231-237. https://doi.org/10.1016/j.biopha.2017.07.089
|
[10]
|
Guo, J., Chen, L., Luo, N., Li, C., Chen, R., Qu, X., et al. (2016) LPS/TLR4-mediated Stromal Cells Acquire an Invasive Phenotype and Are Implicated in the Pathogenesis of Adenomyosis. Scientific Reports, 6, Article No. 21416. https://doi.org/10.1038/srep21416
|
[11]
|
Laganà, A.S., Garzon, S., Götte, M., Viganò, P., Franchi, M., Ghezzi, F., et al. (2019) The Pathogenesis of Endometriosis: Molecular and Cell Biology Insights. International Journal of Molecular Sciences, 20, Article 5615. https://doi.org/10.3390/ijms20225615
|
[12]
|
Li, C., Chen, R., Jiang, C., Chen, L. and Cheng, Z. (2018) Correlation of LOX‑5 and COX‑2 Expression with Inflammatory Pathology and Clinical Features of Adenomyosis. Molecular Medicine Reports, 19, 727-733. https://doi.org/10.3892/mmr.2018.9618
|
[13]
|
Liang, S., Shi, L.Y., Duan, J.Y., et al. (2021) Celecoxib Reduces Inflammation and Angiogenesis in Mice with Adenomyosis. American Journal of Translational Research, 13, 2858-2866.
|
[14]
|
Lepetsos, P., Papavassiliou, K.A. and Papavassiliou, A.G. (2019) Redox and NF-κB Signaling in Osteoarthritis. Free Radical Biology and Medicine, 132, 90-100. https://doi.org/10.1016/j.freeradbiomed.2018.09.025
|
[15]
|
Surai, P.F., Kochish, I.I. and Kidd, M.T. (2021) Redox Homeostasis in Poultry: Regulatory Roles of NF-κB. Antioxidants, 10, Article 186. https://doi.org/10.3390/antiox10020186
|
[16]
|
Kobayashi, H. (2022) Molecular Targets for Nonhormonal Treatment Based on a Multistep Process of Adenomyosis Development. Reproductive Sciences, 30, 743-760. https://doi.org/10.1007/s43032-022-01036-4
|
[17]
|
王珺, 彭学勤, 龚芫, 等. 子宫腺肌病中微血管密度与VEGF和VEGFR2的关系[J]. 遵义医学院学报, 2019, 42(5): 558-560+565.
|
[18]
|
马鑫, 梁丽. 子宫腺肌病组织中PEDF、VEGF及MT1-MMP、MMP2的表达关系及其临床意义[J]. 徐州医科大学学报, 2019, 39(5): 323-327.
|
[19]
|
Guan, X., Liu, D., Zhou, H., Dai, C., Wang, T., Fang, Y., et al. (2022) Melatonin Improves Pregnancy Outcomes in Adenomyosis Mice by Restoring Endometrial Receptivity via NF-κB/Apoptosis Signaling. Annals of Translational Medicine, 10, 1317-1317. https://doi.org/10.21037/atm-22-5493
|
[20]
|
Zhai, J., Vannuccini, S., Petraglia, F. and Giudice, L.C. (2020) Adenomyosis: Mechanisms and Pathogenesis. Seminars in Reproductive Medicine, 38, 129-143. https://doi.org/10.1055/s-0040-1716687
|
[21]
|
Orazov, M.R., Radzinsky, V.E., Nosenko, E.N., Khamoshina, M.B., Dukhin, A.O. and Lebedeva, M.G. (2017) Immune-inflammatory Predictors of the Pelvic Pain Syndrome Associated with Adenomyosis. Gynecological Endocrinology, 33, 44-46. https://doi.org/10.1080/09513590.2017.1399696
|
[22]
|
Ridker, P.M. and Rane, M. (2021) Interleukin-6 Signaling and Anti-Interleukin-6 Therapeutics in Cardiovascular Disease. Circulation Research, 128, 1728-1746. https://doi.org/10.1161/circresaha.121.319077
|
[23]
|
Manore, S.G., Doheny, D.L., Wong, G.L. and Lo, H. (2022) IL-6/JAK/STAT3 Signaling in Breast Cancer Metastasis: Biology and Treatment. Frontiers in Oncology, 12, Article 866014. https://doi.org/10.3389/fonc.2022.866014
|
[24]
|
Baran, P., Hansen, S., Waetzig, G.H., Akbarzadeh, M., Lamertz, L., Huber, H.J., et al. (2018) The Balance of Interleukin (IL)-6, IL-6·Soluble IL-6 Receptor (sIL-6R), and IL-6·sIL-6R·sgp130 Complexes Allows Simultaneous Classic and Trans-Signaling. Journal of Biological Chemistry, 293, 6762-6775. https://doi.org/10.1074/jbc.ra117.001163
|
[25]
|
Candido, S., Tomasello, B.M.R., Lavoro, A., Falzone, L., Gattuso, G. and Libra, M. (2021) Novel Insights into Epigenetic Regulation of IL6 Pathway: In Silico Perspective on Inflammation and Cancer Relationship. International Journal of Molecular Sciences, 22, Article 10172. https://doi.org/10.3390/ijms221810172
|
[26]
|
Zhang, X., Lu, H., Hong, W., Liu, L., Wang, S., Zhou, M., et al. (2018) Tyrphostin B42 Attenuates Trichostatin A-Mediated Resistance in Pancreatic Cancer Cells by Antagonizing IL-6/JAK2/STAT3 Signaling. Oncology Reports, 39, 1892-1900. https://doi.org/10.3892/or.2018.6241
|
[27]
|
Huang, B., Lang, X. and Li, X. (2022) The Role of IL-6/JAK2/STAT3 Signaling Pathway in Cancers. Frontiers in Oncology, 12, Article 1023177. https://doi.org/10.3389/fonc.2022.1023177
|
[28]
|
An, M., Li, D., Yuan, M., et al. (2017) Interaction of Macrophages and Endometrial Cells Induces Epithelial-Mesenchymal Transition-Like Processes in Adenomyosis. Biology of Reproduction, 96, 46-57.
|
[29]
|
Jiang, X. and Chen, X. (2023) Endometrial Cell‑Derived Exosomes Facilitate the Development of Adenomyosis via the IL‑6/JAK2/STAT3 Pathway. Experimental and Therapeutic Medicine, 26, Article No. 526. https://doi.org/10.3892/etm.2023.12225
|
[30]
|
Jiang, C., Liu, C., Guo, J., Chen, L., Luo, N., Qu, X., et al. (2017) The Expression of Toll-Like Receptors in Eutopic and Ectopic Endometrium and Its Implication in the Inflammatory Pathogenesis of Adenomyosis. Scientific Reports, 7, Article No. 7365. https://doi.org/10.1038/s41598-017-07859-5
|
[31]
|
Luo, X., Zhou, W., Tao, Y., Wang, X. and Li, D. (2015) TLR4 Activation Promotes the Secretion of IL-8 Which Enhances the Invasion and Proliferation of Endometrial Stromal Cells in an Autocrine Manner via the FAK Signal Pathway. American Journal of Reproductive Immunology, 74, 467-479. https://doi.org/10.1111/aji.12425
|
[32]
|
Qu, D., Ling, Z., Tan, X., et al. (2019) High Mobility Group Protein B1 (HMGB1) Interacts with Receptor for Advanced Glycation End Products (RAGE) to Promote Airway Smooth Muscle Cell Proliferation through ERK and NF-κB Pathways. International Journal of Clinical and Experimental Pathology, 12, 3268-3278.
|
[33]
|
Nan, K., Han, Y., Fang, Q., Huang, C., Yu, L., Ge, W., et al. (2019) HMGB1 Gene Silencing Inhibits Neuroinflammation via Down-Regulation of NF-κB Signaling in Primary Hippocampal Neurons Induced by Aβ25-35. International Immunopharmacology, 67, 294-301. https://doi.org/10.1016/j.intimp.2018.12.027
|
[34]
|
Liu, X. and Cheng, Z. (2023) Expression of High-Mobility Group Box-1 in Eutopic/Ectopic Endometrium and Correlations with Inflammation-Related Factors in Adenomyosis. Gynecological Endocrinology, 39, Article 2269265. https://doi.org/10.1080/09513590.2023.2269265
|
[35]
|
Shen, H., Xu, B., Yang, C., Xue, W., You, Z., Wu, X., et al. (2022) A Damp-Scavenging, Il-10-Releasing Hydrogel Promotes Neural Regeneration and Motor Function Recovery after Spinal Cord Injury. Biomaterials, 280, Article 121279. https://doi.org/10.1016/j.biomaterials.2021.121279
|
[36]
|
Ge, J., Yan, Q., Wang, Y., Cheng, X., Song, D., Wu, C., et al. (2020) IL-10 Delays the Degeneration of Intervertebral Discs by Suppressing the P38 MAPK Signaling Pathway. Free Radical Biology and Medicine, 147, 262-270. https://doi.org/10.1016/j.freeradbiomed.2019.12.040
|
[37]
|
Chen, X., Wan, Z., Yang, L., Song, S., Fu, Z., Tang, K., et al. (2022) Exosomes Derived from Reparative M2-Like Macrophages Prevent Bone Loss in Murine Periodontitis Models via IL-10 mRNA. Journal of Nanobiotechnology, 20, Article No. 110. https://doi.org/10.1186/s12951-022-01314-y
|
[38]
|
Singampalli, K.L., Balaji, S., Wang, X., Parikh, U.M., Kaul, A., Gilley, J., et al. (2020) The Role of an Il-10/Hyaluronan Axis in Dermal Wound Healing. Frontiers in Cell and Developmental Biology, 8, Article 636. https://doi.org/10.3389/fcell.2020.00636
|
[39]
|
Mirlekar, B. (2022) Tumor Promoting Roles of IL-10, TGF-Β, IL-4, and IL-35: Its Implications in Cancer Immunotherapy. SAGE Open Medicine, 10, Article 20503121211069012. https://doi.org/10.1177/20503121211069012
|
[40]
|
Zhou, W., Yang, H., Shao, J., Mei, J., Chang, K., Zhu, R., et al. (2019) Anti-Inflammatory Cytokines in Endometriosis. Cellular and Molecular Life Sciences, 76, 2111-2132. https://doi.org/10.1007/s00018-019-03056-x
|
[41]
|
Zhihong, N., Yun, F., Pinggui, Z., Sulian, Z. and Zhang, A. (2016) Cytokine Profiling in the Eutopic Endometrium of Adenomyosis during the Implantation Window after Ovarian Stimulation. Reproductive Sciences, 23, 124-133. https://doi.org/10.1177/1933719115597761
|
[42]
|
García-Gómez, E., Vázquez-Martínez, E.R., Reyes-Mayoral, C., Cruz-Orozco, O.P., Camacho-Arroyo, I. and Cerbón, M. (2020) Regulation of Inflammation Pathways and Inflammasome by Sex Steroid Hormones in Endometriosis. Frontiers in Endocrinology, 10, Article 935. https://doi.org/10.3389/fendo.2019.00935
|
[43]
|
Lai, T., Wu, P. and Wu, W. (2016) Involvement of NADPH Oxidase and NF-κB Activation in CXCL1 Induction by Vascular Endothelial Growth Factor in Human Endometrial Epithelial Cells of Patients with Adenomyosis. Journal of Reproductive Immunology, 118, 61-69. https://doi.org/10.1016/j.jri.2016.08.011
|
[44]
|
Hong, G., Cai, Q., Tan, J., Jiang, X., Zhao, G., Wu, B., et al. (2014) Mifepristone-Inducible Recombinant Adenovirus Attenuates Paraquat-Induced Lung Injury in Rats. Human & Experimental Toxicology, 34, 32-43. https://doi.org/10.1177/0960327114532381
|
[45]
|
Konheim-Kalkstein, Y.L., Miron-Shatz, T. and Israel, L.J. (2018) How Women Evaluate Birth Challenges: Analysis of Web-Based Birth Stories. JMIR Pediatrics and Parenting, 1, e12206. https://doi.org/10.2196/12206
|
[46]
|
Bi, Y., Huang, W., Yuan, L., Chen, S., Liao, S., Fu, X., et al. (2022) HOXA10 Improves Endometrial Receptivity by Upregulating E-Cadherin. Biology of Reproduction, 106, 992-999. https://doi.org/10.1093/biolre/ioac007
|
[47]
|
Xu, Y., Wu, F., Qin, C. and Lin, Y. (2023) Paradoxical Role of Phosphorylated STAT3 in Normal Fertility and the Pathogenesis of Adenomyosis and Endometriosis. Biology of Reproduction, 110, 5-13. https://doi.org/10.1093/biolre/ioad148
|
[48]
|
Wang, Q., Wang, L., Shao, J., et al. (2014) L-22 Enhances the Invasiveness of Endometrial Stromal Cells of Adenomyosis in an Autocrine Manner. International Journal of Clinical and Experimental Pathology, 7, 5762-5771.
|
[49]
|
Shang, W.Q., Yu, J.J., Zhu, L., et al. (2015) Blocking IL-22, a Potential Treatment Strategy for Adenomyosis by Inhibiting Crosstalk between Vascular Endothelial and Endometrial Stromal Cells. American Journal of Translational Research, 7, 1782-1797.
|
[50]
|
Chen, L., Chan, S., Li, C., Wu, H. and Huang, H. (2022) Altered Expression of Interleukin-18 System mRNA at the Level of Endometrial Myometrial Interface in Women with Adenomyosis. Current Issues in Molecular Biology, 44, 5550-5561. https://doi.org/10.3390/cimb44110376
|