炎症因子与子宫腺肌病发病机制的研究进展
Research Advances in the Pathogenesis of Inflammatory Factors and Adenomyosis
DOI: 10.12677/acm.2025.151174, PDF, HTML, XML,   
作者: 杨 丽:内蒙古医科大学妇产科,内蒙古 呼和浩特;宋建东, 萨日娜:内蒙古医科大学附属医院妇产科,内蒙古 呼和浩特
关键词: 子宫腺肌病免疫炎症因子类白细胞介素类肿瘤坏死因子αAdenomyosis Immunologic Factors Interleukins Tumor Necrosis Factor-Alpha
摘要: 子宫腺肌病(adenomyosis, AM)是指子宫肌层内存在异位子宫内膜腺体和间质,多数异位子宫内膜呈弥漫性生长,子宫呈均匀一致的增大,少数腺肌病病灶呈局限性生长形成结节或团块,镜下表现为肌层内有岛状分布的异位内膜腺体及基质,称为子宫腺肌瘤。随着女性生育年龄的推迟,流产等宫腔操作的增加,影像学诊断手段日益精准,AM发病率逐年提高并呈现年轻化趋势,流行病学研究显示,子宫腺肌病患者中月经过多发生率为40%~50%,表现为月经增多持续数个月经周期,继发性痛经进行性加重的发生率为15%~30%,同时与AM相关的女性不孕症及流产、早产等产科不良结局的发生越来越多见,相当一部分有生育要求的患者需借助辅助生殖技术实现生育,这不仅对女性工作、生活以及社会心理影响较大,也造成了很大的医疗及经济负担。AM的治疗目前尚无理想药物及保守手术治疗方案,亟需深入探索其发病机制以提出更有效的防治手段。近年研究发现多个炎症因子在AM中的表达升高,且与AM临床表现密切相关,子宫腺肌病逐渐被认为是一种慢性免疫炎症性疾病,有时涉及局灶组织中的各种免疫细胞和炎性细胞因子,例如白细胞介素-1β (IL-1β)、IL-6、IL-8、IL-10、肿瘤坏死因子-α (TNF-α)等。因此我们推测继发的炎症反应可能作为主要推动力促使AM发生,从而揭示炎症因子调控AM病灶形成中的潜在分子机制,为AM的治疗提供新的思路。
Abstract: Adenomyosis (AM) is a disease in which the endometrial glands and mesenchyme invade the myometrium to form a diffuse or limited disease. With the delay in the reproductive age of women, the increase of uterine operations such as abortion, and the increasing precision of diagnostic imaging methods, the incidence of AM has been increasing year by year and showing a trend of rejuvenation. Epidemiological studies have shown that about 40% to 60% of patients with AM have had excessive menstruation, and 15% to 30% have had progressive worsening of dysmenorrhea, and infertility and adverse obstetric outcomes related to AM are becoming more common. The treatment of AM is still without ideal drugs and conservative surgical treatment options, and an in-depth exploration of its pathogenesis is urgently needed to propose more effective means of prevention and treatment. In recent years, the expression of several inflammatory factors in AM is elevated and closely related to the clinical manifestations of AM, and adenomyosis has been gradually recognized as a chronic immunoinflammatory disease, sometimes involving various immune cells and inflammatory cytokines in focal tissues, such as interleukin-1β (IL-1β), IL-6, IL-8, IL-10, tumor necrosis factor-α (TNF-α)), etc. Therefore, we hypothesized that the secondary inflammatory response may act as a major driving force for AM development, thus revealing the potential molecular mechanisms in the regulation of AM lesion formation by inflammatory factors and providing new ideas for the treatment of AM.
文章引用:杨丽, 宋建东, 萨日娜. 炎症因子与子宫腺肌病发病机制的研究进展[J]. 临床医学进展, 2025, 15(1): 1303-1310. https://doi.org/10.12677/acm.2025.151174

1. 引言

子宫腺肌病是一种慢性免疫炎症性疾病,有时涉及局灶组织中的各种免疫细胞和炎性细胞因子表达异常,例如白细胞介素-1β (IL-1β)、IL-6、IL-8、IL-10、肿瘤坏死因子-α (TNF-α)等[1]。白细胞介素是一种由多种细胞产生并作用于多种细胞的细胞因子,它可以与多种类型的细胞相互作用,改变免疫系统,并在多种癌症中发挥作用[2]。这些多效性调节因子通过影响上皮细胞、基质细胞或邻近巨噬细胞的特性,在子宫腺肌病病变的发生和维持中起关键作用[3]。炎症介质局部水平的变化与子宫腺肌病的病理生理学有关,包括子宫内膜细胞浸润、巨噬细胞和子宫内膜异位细胞之间的串扰以及子宫内膜容受性的变化[1] [4] [5]

2. IL-1β与子宫腺肌病

白细胞介素-1β (IL-1β)是一种典型的促炎性细胞因子,主要由单核细胞和巨噬细胞表达,其生物学功能主要包括介导炎症反应和先天免疫。IL-1β的合成和修饰由两种信号参与调控,包括启动信号及激活信号。所谓启动信号即IL-1β基因的转录,主要通过脂多糖(LPS)激活Toll样受体(TLRs)诱导,也可通过肿瘤坏死因子α (TNF-α)通过TNF受体(TNFR)或IL-1β本身诱导[6]。脂多糖(LPS)激活Toll样受体(TLRs)主要通过配体与TLRs细胞内toll-白细胞介素1 (IL-1)受体(TIR)结构域的结合激活髓系分化初级反应蛋白88 (MyD88)从而导致IL-1β的产生[7]。所谓激活信号即IL-1β前体转变为成熟IL-1β的过程,蛋白水解酶caspase-1是参与IL-1β成熟的最重要的酶,IL-1β基因由7个外显子和6个内含子编码,在第7外显子的3’非翻译区大量的AU序列导致IL-1β非常不稳定且容易被蛋白水解酶caspase-1降解,并通过非常规分泌机制在细胞外释放[8]

IL-1β的生物学效应取决于其组织浓度,AM患者由于反复出血导致病灶周围纤维组织增生使其与周围肌层无明显界限,在因AM行子宫切除术患者中,其在位子宫内膜或子宫肌层异位子宫内膜的IL-1β mRNA水平升高[4]。异常增高的IL-1β作为一种促炎因子常常被看作是子宫内膜炎症反应的启动因子并能够通过多种途径启动炎症反应。研究发现,人类AM上皮细胞细胞核和细胞质中β-catenin达较正常子宫内膜明显增高,在小鼠实验中,IL-1β刺激可显著增加β-catenin的核转位并提高其靶基因的表达,β-catenin核转位依赖于Wnt信号传导从而激活Wnt-β-catenin信号通路,而口服大黄素能显著的以剂量依赖性方式抑制由IL-1β刺激所引起Wnt-β-catenin信号通路的激活[9]β-catenin被认为是上皮–间质转化(EMT)的一种调节因子,Wnt-β-catenin信号通路的异常激活可能与子宫腺肌病发生过程中的上皮–间质转化、侵入子宫肌层的内膜上皮和腺体细胞的持续存活有关[10],因此大黄素或许能够成为子宫腺肌病的治疗药物之一。在子宫内膜组织创伤和愈合过程中,IL-1β的产生能够上调COX-2启动子活性并通过丝裂原活化蛋白激酶(MAPK)依赖性信号通路促进COX-2启动子与cAMP反应元件位点的结合,从而募集免疫细胞并放大炎症反应[11]。COX-2作为花生四烯酸合成多种内源性前列腺素的关键酶,只有在炎症因素刺激下表达时才能被检测到,而在正常组织中则无法检测到,故又被称为是“压力基因”[12]。在患子宫腺肌病的实验性小鼠中,塞来昔布(COX-2的选择性抑制剂)治疗后子宫内膜的肌层浸润程度明显降低[13]。这为靶向COX-2治疗子宫腺肌症提供了新的策略。IL-1β作为免疫介质诱导经典的NF-κB通路[14],其中IL-1β和IL-1R结合以激活IκB激酶(IKKs)复合物来降解下游NF-κB (IκB)分子抑制剂,将NF-κΒ易位到细胞核中[15],进而激活一系列下游靶点,包括组织基质金属蛋白酶-9 (MMP9)、COX-2、血管内皮生长因子(VEGF)等[16]。VEGF可以促进血管内皮细胞分裂及迁移,刺激血管生成,研究表明在子宫腺肌病病灶中VEGF表达水平明显升高且其升高程度与子宫腺肌病病灶中微血管密度呈正相关。MMP-9高表达可使子宫内膜细胞蛋白水解能力增强,降解局部细胞外基质,促进内膜细胞穿透细胞基底膜,侵入子宫肌层,为其异位种植和转移创造条件,为子宫内膜腺体及基质侵入子宫肌层创造了良好的条件,促进了子宫腺肌病的发生和发展[17] [18]。褪黑素可通过抑制NF-κB信号通路来减少子宫腺肌症小鼠子宫内膜中促炎细胞因子(如IL-1β)的释放,并对子宫发育和子宫内膜容受性具有积极作用,突出了其作为治疗子宫腺肌症的辅助治疗候选药物的潜力[19]。IL-1β的表达增加也可以引起更多的雌激素产生,局部过量产生的雌激素可通过雌激素受体α激活催产素(OT)/催产素受体(OTR)系统,增强子宫内膜与肌层交界区的收缩强度从而诱导持续的肌层亢进状态,这种超生理剂量雌激素驱动的行为进一步增加了自身创伤,形成了一个自我延续的恶性循环,最终导致子宫内膜基底层进入子宫肌层,从而导致子宫腺肌病病变的建立[20] [21]

3. IL-6与子宫腺肌病

IL-6主要由各种类型的淋巴细胞和非淋巴细胞产生,具有与免疫细胞调节、宿主防御、增殖和分化相关的生理功能[22]。在促进细胞增殖、抑制细胞凋亡、参与白细胞趋化、黏附的过程中发挥着重要作用。研究发现,IL-6的生物学效应由两种不同的受体介导[23],经典的IL-6信号转导严格通过膜结合受体IL-6Rα和gp130介导以进行信号转导,发挥其抗炎及防御作用,然而IL-6R在部分细胞中缺乏充分表达,因此受体可用性也可能成为IL-6信号转导的限制因素。故还存在着另一种可以与IL-6结合以活化gp130的受体–可溶性IL-6R (sIL-6R),sIL-6Rα作为IL-6信号传导的激动剂,其存在显著增加了IL-6的效应细胞种类。这种通过可溶性形式的IL-6Rα (sIL-6Rα)介导的反式信号转导可通过募集单核细胞、刺激内皮细胞、T细胞存活和抑制调节性T细胞分化来调节IL-6免疫应答并介导促炎反应。IL-6与受体结合后可磷酸化JAK激酶,并触发信号传感器和STAT3的磷酸化和核定位来调控相关基因的表达,进而激活JAK-STAT信号通路[24] [25]。IL-6-JAK2-STAT3信号通路是目前发现的重要炎症信号通路之一,它参与许多生理和病理过程,如免疫调节、血管生成和细胞增殖和分化,它的激活与肿瘤发生、发展、转移和侵袭等生物学行为密切相关,其异常表达对肿瘤预后具有十分重要的指导意义[26] [27]。研究表明,IL-6-JAK2/-STAT3信号通路在巨噬细胞感染的人子宫内膜细胞中被过度激活,并促进AM的上皮–间质转化(EMT) [28],诱发子宫内膜细胞向子宫肌层的转移和侵袭,从而促进子宫腺肌病的发展。子宫内膜细胞源性外泌体可以通过IL-6-JAK2-STAT3激活促进AM细胞增殖、迁移和细胞周期转变,同时抑制AM细胞凋亡,并增强IL-6的产生和JAK2-STAT3的磷酸化。tocilizumab作为IL-6抑制剂有效地逆转了子宫内膜细胞源性外泌体对AM细胞增殖和迁移的影响,并在G1/S期阻断细胞,同时IL-6-JAK2-STAT3信号显著衰减。子宫内膜细胞外泌体通过IL-6介导子宫内膜与肌层间的联系促进子宫腺肌症的发展,因此IL-6靶向治疗可作为治疗子宫腺肌症的补充途径[29]

4. IL-8与子宫腺肌病

IL-8作为α趋化因子的代表可吸引中性粒细胞、T淋巴细胞及嗜碱性粒细胞等细胞到炎症部位,在中性粒细胞、单核细胞、巨噬细胞等对炎症的反应中释放,并参与中性粒细胞的活化。研究表明,IL-8作为中性粒细胞的趋化因子在女性生殖系统中的表达存在周期性变化,IL-8的表达于分泌晚期明显增加并可在子宫内膜内募集中性粒细胞,这与中性粒细胞在月经开始前积聚现象相一致,而增殖早中期内膜高水平的IL-8表达,可能与子宫内膜重塑、细胞基质增殖及新生血管生成有关。

在子宫腺肌病中TLR4在异位子宫内膜中的表达高于正常子宫内膜,异位组织的表达水平最高[30]。进一步研究发现,TLR4可通过激活p38和ERK来刺激IL-8分泌,IL-8通过FAK信号通路以自分泌的方式增强子宫内膜基质细胞的侵袭和增殖,这些作用可以通过加入抗IL-8中和抗体或FAK抑制剂后消失[31]。此外,HMGB1作为高迁移率组合染色体蛋白(HMGB)家族重要成员,它可以与细胞核中DNA的特定位点结合,并参与DNA的复制、转录、重组和修复以及核小体稳定的调节。细胞外基质HMGBl作为TLR4的内源性配体,刺激TLR4介导的细胞炎症信号传导的激活并参与炎症反应。HMGB1-TLR4介导的炎症信号转导系统已被证明参与多种肿瘤炎症病理微环境的形成,并参与肿瘤炎症增殖、侵袭转移等病理机制[32] [33]。研究发现,HMGB1和TLR4在子宫腺肌病中的过表达与IL-6和IL-8的表达呈正相关。HMGB1-TLR4信号系统可能参与子宫腺肌病发展的炎症病理过程,从而产生局部炎症反应,激活机体特异性免疫系统,在局部病灶内构建和维持持续的炎症微环境。这些结果,为理解子宫腺肌病的发病机制奠定了基础,从而为子宫腺肌病的治疗提供新的思路[34]

5. IL-10与子宫腺肌病

IL-10作为一种有效的抗炎细胞因子,其缺乏或异常表达可增加炎症反应或导致多种自身免疫性疾病的发生。最初,IL-10的产生主要归因于Th2淋巴细胞,但进一步的研究表明,B细胞、T细胞、巨噬细胞以及不直接参与细胞反应的细胞,如角质形成细胞和肿瘤细胞,都可能是IL-10的来源。IL-10对促进伤口愈合、促进脊髓损伤后神经再生及运动功能的恢复、延缓椎间盘退化、防止牙周炎骨质流失等发挥重要作用[35]-[38]

IL-10可通过下调肿瘤微环境中的增殖、瘤内浸润和效应功能来抑制肿瘤微环境中的抗肿瘤免疫细胞活性。此外,IL-10在肿瘤环境中的增强表达将免疫效应表型转化为免疫抑制表型,从而抑制抗肿瘤免疫活性并促进肿瘤生长[39]。在子宫腺肌病患者的在位、异位内膜中已经发现了IL-10水平的异常升高。IL-10的增加可能在子宫内膜异位微环境的免疫调节中具有双重作用。一方面,抗炎细胞因子通过增加肥大细胞、CD8+T细胞、NK细胞和B细胞等免疫细胞的激活和增殖,促进异位子宫内膜细胞的免疫监视逃避和诱导炎症来加速疾病的发展;另一方面,它们通过限制炎症来减少疾病的激活[40]。对子宫内膜细胞因子谱的研究表明,在植入窗口期间,子宫腺肌病女性子宫内膜分泌物中IL-10的表达低于正常对照组,这可能与子宫内膜容受性受损有关[41]

6. TNF-α与子宫腺肌病

TNF细胞因子主要由活化的巨噬细胞、T淋巴细胞和自然杀伤细胞(NK)产生,是一种调节细胞存活、凋亡和坏死的炎症因子。巨噬细胞分泌的TNF-α在正常激活NF-κB后,通过环氧化酶-2 (COX-2)过表达诱导IL-8、IL-6以及前列腺素E2 (PGE2),从而促进子宫内膜异位症的增殖[42]。TNF-α和VEGF还可诱导源自子宫腺肌病患者子宫内膜的人子宫内膜上皮细胞释放CXCL1趋化因子。这种效应在VEGF中更强,并由多种途径介导,包括NF-κB激活和IκB磷酸化。反过来,CXCL1吸引血管内皮细胞迁移,促进局部新生血管形成和子宫腺肌病进展[43]。目前关于子宫腺肌病相关痛经的确切致病机制尚不清楚,而炎症和神经支配可能是关键的致病因素,IL-6、TNF-α、IL-1β和IL-10等炎症介质可通过参与炎症通路导致子宫腺肌病的剧烈疼痛症状。动物研究发现,米非司酮显著降低了百草枯诱导的大鼠肺损伤的肿瘤坏死因子-α (TNF-α)、白细胞介素-1β (IL-1β)和白细胞介素-6 (IL-6)的水平[44]。进一步通过分离来自子宫腺肌病患者的人原代子宫内膜上皮细胞和基质细胞,当以剂量依赖性方式用米非司酮处理时,子宫内膜上皮细胞和基质细胞中细胞培养上清液中IL-6和TNF-α的浓度显着降低。这些结果表明,米非司酮可减少子宫腺肌病中子宫内膜上皮细胞和基质细胞对IL-6和TNF-α的分泌,因此米非司酮可能是子宫腺肌病相关疼痛的新型治疗剂。

7. 其他炎症因子与子宫腺肌病

先前的研究表明,与对照组相比,子宫腺肌病女性的IL-33血清细胞因子水平降低[45]。随后我们通过检测子宫腺肌症患者子宫内膜中IL-33的水平发现,子宫腺肌症患者子宫内膜细胞内IL-33蛋白水平下调,且IL-33表达状态与子宫内膜容受性标志物HOXA10 (关键转录因子同源盒A10)表达水平呈正相关。HOXA10被认为是胚胎植入窗口的生物标志物,在胚胎植入中起关键作用[46]。随后通过进一步探讨IL33促进胚胎粘附的分子机制,我们可以发现IL-33过表达导致HOXA10表达增加,STAT3磷酸化及体外胚胎着床能力增强。在正常妊娠中,子宫内膜上皮中的STAT3磷酸化通过调节子宫容受性来决定胚胎植入的成功。此外,p-STAT3在子宫内膜蜕膜化过程中促进细胞增殖和分化,这对胚胎发育至关重要[47]。同时,在体外实验中发现用p-STAT3抑制剂隐丹参酮(cryptotanshinone)可以显著抑制IL-33过表达引起的HOXA10表达升高和胚胎着床,表明IL-33通过磷酸化STAT3增加子宫内膜容受性[46]。既往研究表明IL-22可通过自分泌的方式上调炎症因子的表达来促进子宫内膜基质细胞的侵袭[48],进一步研究发现,IL-22可以通过上调血管内皮细胞(VEC)上IL-22受体的表达来加强子宫内膜基质细胞(ESC)与血管内皮细胞(VEC)之间的对话之间的串扰进而来促进子宫腺肌病的发展,因此阻断IL-22可能作为子宫腺肌病的潜在治疗策略之一[49]

IL-18系统是由IL-18、IL-18受体(IL-18R)和IL-18结合蛋白(IL-18BP)组成的一组多肽,是人子宫内膜月经周期的主要细胞因子,在子宫腺肌病患者的同位、异位子宫内膜和相应的子宫肌层中表达。可溶性受体蛋白IL-18BP作为IL-18抑制剂而存在,与健康对照组相比,IL-18BP在相应在位、异位子宫内膜及子宫肌层的表达量显著下调。且在子宫腺肌病患者中IL-18BP表达量由高到低分别为异位子宫内膜、子宫肌层及在位子宫内膜。我们进一步证明,IL-18BP的低表达可能会干扰交界区的完整性,导致子宫内膜的侵袭。IL-18可以激活先天免疫以及Th1和Th2介导的反应,IL-18介导的免疫反应间接破坏子宫内膜–基层界面(EMI)可能有助于子宫腺肌病发病机制中的局部免疫调节细胞因子网络[50]

此外,各个免疫因子之间并不是完全独立的,它们相互影响相互促进共同构建起复杂的免疫炎症网络,如活化的巨噬细胞能够分泌TNF-α,TNF-α表达的增加又反过来促使巨噬细胞分泌IL-1,这两者共同发挥促炎作用并诱导IL-6的表达。总之,IL-1β、IL-6、IL-8、IL-10、TNF-α等炎症因子在AM中呈高表达状态,通过相互影响来促进AM的发生发展。

8. 结语

综上所述,AM发病率呈现逐年升高且年轻化的趋势,现关于AM发病机制仍不明确,EMID假说虽然目前被广泛接受,但考虑到剖宫产术中必然会造成EMI损伤,具有剖宫产个人史的患者AM发病率却并非100%等情况,这提示我们EMID假说并不能完全解释AM的发生及发展,在EMI损伤后进展为AM过程中可能存在其他因素的影响与调控。基于近年研究发现AM中各种炎症因子表达存在异常,我们推测在EMI受到损伤后,继发炎症可能作为主要推动力促使AM发生,越来越多的学者通过研究来进一步证实炎症因子之间相互作用的方式及其在AM发展进程中的具体机制。现有研究表明,炎症因子在AM发生发展中占据举足轻重的地位,故着眼于炎症因子的研究可能会为后续AM的发病机制的研究及治疗带来新的突破性进展。

参考文献

[1] Bourdon, M., Santulli, P., Jeljeli, M., Vannuccini, S., Marcellin, L., Doridot, L., et al. (2020) Immunological Changes Associated with Adenomyosis: A Systematic Review. Human Reproduction Update, 27, 108-129.
https://doi.org/10.1093/humupd/dmaa038
[2] Li, J., Huang, L., Zhao, H., Yan, Y. and Lu, J. (2020) The Role of Interleukins in Colorectal Cancer. International Journal of Biological Sciences, 16, 2323-2339.
https://doi.org/10.7150/ijbs.46651
[3] Benagiano, G., Brosens, I. and Habiba, M. (2013) Structural and Molecular Features of the Endomyometrium in Endometriosis and Adenomyosis. Human Reproduction Update, 20, 386-402.
https://doi.org/10.1093/humupd/dmt052
[4] Carrarelli, P., Yen, C., Funghi, L., Arcuri, F., Tosti, C., Bifulco, G., et al. (2017) Expression of Inflammatory and Neurogenic Mediators in Adenomyosis: A Pathogenetic Role. Reproductive Sciences, 24, 369-375.
https://doi.org/10.1177/1933719116657192
[5] AlAshqar, A., Reschke, L., Kirschen, G.W. and Borahay, M.A. (2021) Role of Inflammation in Benign Gynecologic Disorders: From Pathogenesis to Novel Therapies. Biology of Reproduction, 105, 7-31.
https://doi.org/10.1093/biolre/ioab054
[6] Rébé, C. and Ghiringhelli, F. (2020) Interleukin-1β and Cancer. Cancers, 12, Article 1791.
https://doi.org/10.3390/cancers12071791
[7] El-Zayat, S.R., Sibaii, H. and Mannaa, F.A. (2019) Toll-Like Receptors Activation, Signaling, and Targeting: An Overview. Bulletin of the National Research Centre, 43, Article No. 187.
https://doi.org/10.1186/s42269-019-0227-2
[8] Evavold, C.L., Ruan, J., Tan, Y., Xia, S., Wu, H. and Kagan, J.C. (2018) The Pore-Forming Protein Gasdermin D Regulates Interleukin-1 Secretion from Living Macrophages. Immunity, 48, 35-44.
https://doi.org/10.1016/j.immuni.2017.11.013
[9] Feng, T., Wei, S., Wang, Y., Fu, X., Shi, L., Qu, L., et al. (2017) Rhein Ameliorates Adenomyosis by Inhibiting NF-κB and Β-Catenin Signaling Pathway. Biomedicine & Pharmacotherapy, 94, 231-237.
https://doi.org/10.1016/j.biopha.2017.07.089
[10] Guo, J., Chen, L., Luo, N., Li, C., Chen, R., Qu, X., et al. (2016) LPS/TLR4-mediated Stromal Cells Acquire an Invasive Phenotype and Are Implicated in the Pathogenesis of Adenomyosis. Scientific Reports, 6, Article No. 21416.
https://doi.org/10.1038/srep21416
[11] Laganà, A.S., Garzon, S., Götte, M., Viganò, P., Franchi, M., Ghezzi, F., et al. (2019) The Pathogenesis of Endometriosis: Molecular and Cell Biology Insights. International Journal of Molecular Sciences, 20, Article 5615.
https://doi.org/10.3390/ijms20225615
[12] Li, C., Chen, R., Jiang, C., Chen, L. and Cheng, Z. (2018) Correlation of LOX‑5 and COX‑2 Expression with Inflammatory Pathology and Clinical Features of Adenomyosis. Molecular Medicine Reports, 19, 727-733.
https://doi.org/10.3892/mmr.2018.9618
[13] Liang, S., Shi, L.Y., Duan, J.Y., et al. (2021) Celecoxib Reduces Inflammation and Angiogenesis in Mice with Adenomyosis. American Journal of Translational Research, 13, 2858-2866.
[14] Lepetsos, P., Papavassiliou, K.A. and Papavassiliou, A.G. (2019) Redox and NF-κB Signaling in Osteoarthritis. Free Radical Biology and Medicine, 132, 90-100.
https://doi.org/10.1016/j.freeradbiomed.2018.09.025
[15] Surai, P.F., Kochish, I.I. and Kidd, M.T. (2021) Redox Homeostasis in Poultry: Regulatory Roles of NF-κB. Antioxidants, 10, Article 186.
https://doi.org/10.3390/antiox10020186
[16] Kobayashi, H. (2022) Molecular Targets for Nonhormonal Treatment Based on a Multistep Process of Adenomyosis Development. Reproductive Sciences, 30, 743-760.
https://doi.org/10.1007/s43032-022-01036-4
[17] 王珺, 彭学勤, 龚芫, 等. 子宫腺肌病中微血管密度与VEGF和VEGFR2的关系[J]. 遵义医学院学报, 2019, 42(5): 558-560+565.
[18] 马鑫, 梁丽. 子宫腺肌病组织中PEDF、VEGF及MT1-MMP、MMP2的表达关系及其临床意义[J]. 徐州医科大学学报, 2019, 39(5): 323-327.
[19] Guan, X., Liu, D., Zhou, H., Dai, C., Wang, T., Fang, Y., et al. (2022) Melatonin Improves Pregnancy Outcomes in Adenomyosis Mice by Restoring Endometrial Receptivity via NF-κB/Apoptosis Signaling. Annals of Translational Medicine, 10, 1317-1317.
https://doi.org/10.21037/atm-22-5493
[20] Zhai, J., Vannuccini, S., Petraglia, F. and Giudice, L.C. (2020) Adenomyosis: Mechanisms and Pathogenesis. Seminars in Reproductive Medicine, 38, 129-143.
https://doi.org/10.1055/s-0040-1716687
[21] Orazov, M.R., Radzinsky, V.E., Nosenko, E.N., Khamoshina, M.B., Dukhin, A.O. and Lebedeva, M.G. (2017) Immune-inflammatory Predictors of the Pelvic Pain Syndrome Associated with Adenomyosis. Gynecological Endocrinology, 33, 44-46.
https://doi.org/10.1080/09513590.2017.1399696
[22] Ridker, P.M. and Rane, M. (2021) Interleukin-6 Signaling and Anti-Interleukin-6 Therapeutics in Cardiovascular Disease. Circulation Research, 128, 1728-1746.
https://doi.org/10.1161/circresaha.121.319077
[23] Manore, S.G., Doheny, D.L., Wong, G.L. and Lo, H. (2022) IL-6/JAK/STAT3 Signaling in Breast Cancer Metastasis: Biology and Treatment. Frontiers in Oncology, 12, Article 866014.
https://doi.org/10.3389/fonc.2022.866014
[24] Baran, P., Hansen, S., Waetzig, G.H., Akbarzadeh, M., Lamertz, L., Huber, H.J., et al. (2018) The Balance of Interleukin (IL)-6, IL-6·Soluble IL-6 Receptor (sIL-6R), and IL-6·sIL-6R·sgp130 Complexes Allows Simultaneous Classic and Trans-Signaling. Journal of Biological Chemistry, 293, 6762-6775.
https://doi.org/10.1074/jbc.ra117.001163
[25] Candido, S., Tomasello, B.M.R., Lavoro, A., Falzone, L., Gattuso, G. and Libra, M. (2021) Novel Insights into Epigenetic Regulation of IL6 Pathway: In Silico Perspective on Inflammation and Cancer Relationship. International Journal of Molecular Sciences, 22, Article 10172.
https://doi.org/10.3390/ijms221810172
[26] Zhang, X., Lu, H., Hong, W., Liu, L., Wang, S., Zhou, M., et al. (2018) Tyrphostin B42 Attenuates Trichostatin A-Mediated Resistance in Pancreatic Cancer Cells by Antagonizing IL-6/JAK2/STAT3 Signaling. Oncology Reports, 39, 1892-1900.
https://doi.org/10.3892/or.2018.6241
[27] Huang, B., Lang, X. and Li, X. (2022) The Role of IL-6/JAK2/STAT3 Signaling Pathway in Cancers. Frontiers in Oncology, 12, Article 1023177.
https://doi.org/10.3389/fonc.2022.1023177
[28] An, M., Li, D., Yuan, M., et al. (2017) Interaction of Macrophages and Endometrial Cells Induces Epithelial-Mesenchymal Transition-Like Processes in Adenomyosis. Biology of Reproduction, 96, 46-57.
[29] Jiang, X. and Chen, X. (2023) Endometrial Cell‑Derived Exosomes Facilitate the Development of Adenomyosis via the IL‑6/JAK2/STAT3 Pathway. Experimental and Therapeutic Medicine, 26, Article No. 526.
https://doi.org/10.3892/etm.2023.12225
[30] Jiang, C., Liu, C., Guo, J., Chen, L., Luo, N., Qu, X., et al. (2017) The Expression of Toll-Like Receptors in Eutopic and Ectopic Endometrium and Its Implication in the Inflammatory Pathogenesis of Adenomyosis. Scientific Reports, 7, Article No. 7365.
https://doi.org/10.1038/s41598-017-07859-5
[31] Luo, X., Zhou, W., Tao, Y., Wang, X. and Li, D. (2015) TLR4 Activation Promotes the Secretion of IL-8 Which Enhances the Invasion and Proliferation of Endometrial Stromal Cells in an Autocrine Manner via the FAK Signal Pathway. American Journal of Reproductive Immunology, 74, 467-479.
https://doi.org/10.1111/aji.12425
[32] Qu, D., Ling, Z., Tan, X., et al. (2019) High Mobility Group Protein B1 (HMGB1) Interacts with Receptor for Advanced Glycation End Products (RAGE) to Promote Airway Smooth Muscle Cell Proliferation through ERK and NF-κB Pathways. International Journal of Clinical and Experimental Pathology, 12, 3268-3278.
[33] Nan, K., Han, Y., Fang, Q., Huang, C., Yu, L., Ge, W., et al. (2019) HMGB1 Gene Silencing Inhibits Neuroinflammation via Down-Regulation of NF-κB Signaling in Primary Hippocampal Neurons Induced by Aβ25-35. International Immunopharmacology, 67, 294-301.
https://doi.org/10.1016/j.intimp.2018.12.027
[34] Liu, X. and Cheng, Z. (2023) Expression of High-Mobility Group Box-1 in Eutopic/Ectopic Endometrium and Correlations with Inflammation-Related Factors in Adenomyosis. Gynecological Endocrinology, 39, Article 2269265.
https://doi.org/10.1080/09513590.2023.2269265
[35] Shen, H., Xu, B., Yang, C., Xue, W., You, Z., Wu, X., et al. (2022) A Damp-Scavenging, Il-10-Releasing Hydrogel Promotes Neural Regeneration and Motor Function Recovery after Spinal Cord Injury. Biomaterials, 280, Article 121279.
https://doi.org/10.1016/j.biomaterials.2021.121279
[36] Ge, J., Yan, Q., Wang, Y., Cheng, X., Song, D., Wu, C., et al. (2020) IL-10 Delays the Degeneration of Intervertebral Discs by Suppressing the P38 MAPK Signaling Pathway. Free Radical Biology and Medicine, 147, 262-270.
https://doi.org/10.1016/j.freeradbiomed.2019.12.040
[37] Chen, X., Wan, Z., Yang, L., Song, S., Fu, Z., Tang, K., et al. (2022) Exosomes Derived from Reparative M2-Like Macrophages Prevent Bone Loss in Murine Periodontitis Models via IL-10 mRNA. Journal of Nanobiotechnology, 20, Article No. 110.
https://doi.org/10.1186/s12951-022-01314-y
[38] Singampalli, K.L., Balaji, S., Wang, X., Parikh, U.M., Kaul, A., Gilley, J., et al. (2020) The Role of an Il-10/Hyaluronan Axis in Dermal Wound Healing. Frontiers in Cell and Developmental Biology, 8, Article 636.
https://doi.org/10.3389/fcell.2020.00636
[39] Mirlekar, B. (2022) Tumor Promoting Roles of IL-10, TGF-Β, IL-4, and IL-35: Its Implications in Cancer Immunotherapy. SAGE Open Medicine, 10, Article 20503121211069012.
https://doi.org/10.1177/20503121211069012
[40] Zhou, W., Yang, H., Shao, J., Mei, J., Chang, K., Zhu, R., et al. (2019) Anti-Inflammatory Cytokines in Endometriosis. Cellular and Molecular Life Sciences, 76, 2111-2132.
https://doi.org/10.1007/s00018-019-03056-x
[41] Zhihong, N., Yun, F., Pinggui, Z., Sulian, Z. and Zhang, A. (2016) Cytokine Profiling in the Eutopic Endometrium of Adenomyosis during the Implantation Window after Ovarian Stimulation. Reproductive Sciences, 23, 124-133.
https://doi.org/10.1177/1933719115597761
[42] García-Gómez, E., Vázquez-Martínez, E.R., Reyes-Mayoral, C., Cruz-Orozco, O.P., Camacho-Arroyo, I. and Cerbón, M. (2020) Regulation of Inflammation Pathways and Inflammasome by Sex Steroid Hormones in Endometriosis. Frontiers in Endocrinology, 10, Article 935.
https://doi.org/10.3389/fendo.2019.00935
[43] Lai, T., Wu, P. and Wu, W. (2016) Involvement of NADPH Oxidase and NF-κB Activation in CXCL1 Induction by Vascular Endothelial Growth Factor in Human Endometrial Epithelial Cells of Patients with Adenomyosis. Journal of Reproductive Immunology, 118, 61-69.
https://doi.org/10.1016/j.jri.2016.08.011
[44] Hong, G., Cai, Q., Tan, J., Jiang, X., Zhao, G., Wu, B., et al. (2014) Mifepristone-Inducible Recombinant Adenovirus Attenuates Paraquat-Induced Lung Injury in Rats. Human & Experimental Toxicology, 34, 32-43.
https://doi.org/10.1177/0960327114532381
[45] Konheim-Kalkstein, Y.L., Miron-Shatz, T. and Israel, L.J. (2018) How Women Evaluate Birth Challenges: Analysis of Web-Based Birth Stories. JMIR Pediatrics and Parenting, 1, e12206.
https://doi.org/10.2196/12206
[46] Bi, Y., Huang, W., Yuan, L., Chen, S., Liao, S., Fu, X., et al. (2022) HOXA10 Improves Endometrial Receptivity by Upregulating E-Cadherin. Biology of Reproduction, 106, 992-999.
https://doi.org/10.1093/biolre/ioac007
[47] Xu, Y., Wu, F., Qin, C. and Lin, Y. (2023) Paradoxical Role of Phosphorylated STAT3 in Normal Fertility and the Pathogenesis of Adenomyosis and Endometriosis. Biology of Reproduction, 110, 5-13.
https://doi.org/10.1093/biolre/ioad148
[48] Wang, Q., Wang, L., Shao, J., et al. (2014) L-22 Enhances the Invasiveness of Endometrial Stromal Cells of Adenomyosis in an Autocrine Manner. International Journal of Clinical and Experimental Pathology, 7, 5762-5771.
[49] Shang, W.Q., Yu, J.J., Zhu, L., et al. (2015) Blocking IL-22, a Potential Treatment Strategy for Adenomyosis by Inhibiting Crosstalk between Vascular Endothelial and Endometrial Stromal Cells. American Journal of Translational Research, 7, 1782-1797.
[50] Chen, L., Chan, S., Li, C., Wu, H. and Huang, H. (2022) Altered Expression of Interleukin-18 System mRNA at the Level of Endometrial Myometrial Interface in Women with Adenomyosis. Current Issues in Molecular Biology, 44, 5550-5561.
https://doi.org/10.3390/cimb44110376