[1]
|
Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E. and Forman, D. (2011) Global Cancer Statistics. CA: A Cancer Journal for Clinicians, 61, 69-90. https://doi.org/10.3322/caac.20107
|
[2]
|
Bhat, S.A., Mir, M.U.R., Majid, S., Hassan, T., Rehman, M.U. and Kuchy, S. (2018) Diagnostic Utility of Glycosyltransferase mRNA Expression in Gastric Cancer. Hematology/Oncology and Stem Cell Therapy, 11, 158-168. https://doi.org/10.1016/j.hemonc.2018.03.002
|
[3]
|
Ren, H., Xu, Z., Guo, W., Deng, Z. and Yu, X. (2018) Rab3IP Interacts with SSX2 and Enhances the Invasiveness of Gastric Cancer Cells. Biochemical and Biophysical Research Communications, 503, 2563-2568. https://doi.org/10.1016/j.bbrc.2018.07.016
|
[4]
|
Kato, Y., Yashiro, M., Noda, S., Tendo, M., Kashiwagi, S., Doi, Y., et al. (2010) Establishment and Characterization of a New Hypoxia-Resistant Cancer Cell Line, OCUM-12/Hypo, Derived from a Scirrhous Gastric Carcinoma. British Journal of Cancer, 102, 898-907. https://doi.org/10.1038/sj.bjc.6605543
|
[5]
|
Zhang, W. and Song, Y. (2018) LINC00473 Predicts Poor Prognosis and Regulates Cell Migration and Invasion in Gastric Cancer. Biomedicine & Pharmacotherapy, 107, 1-6. https://doi.org/10.1016/j.biopha.2018.07.061
|
[6]
|
Rawicz-Pruszyński, K., van Sandick, J.W., Mielko, J., Ciseł, B. and Polkowski, W.P. (2018) Current Challenges in Gastric Cancer Surgery: European Perspective. Surgical Oncology, 27, 650-656. https://doi.org/10.1016/j.suronc.2018.08.004
|
[7]
|
Liu, J., Chen, Q., Feng, L. and Liu, Z. (2018) Nanomedicine for Tumor Microenvironment Modulation and Cancer Treatment Enhancement. Nano Today, 21, 55-73. https://doi.org/10.1016/j.nantod.2018.06.008
|
[8]
|
Meng, W., Xue, S. and Chen, Y. (2018) The Role of CXCL12 in Tumor Microenvironment. Gene, 641, 105-110. https://doi.org/10.1016/j.gene.2017.10.015
|
[9]
|
Lee, N., Nikfarjam, M. and He, H. (2018) Functions of the CXC Ligand Family in the Pancreatic Tumor Microenvironment. Pancreatology, 18, 705-716. https://doi.org/10.1016/j.pan.2018.07.011
|
[10]
|
Servais, C. and Erez, N. (2012) From Sentinel Cells to Inflammatory Culprits: Cancer-Associated Fibroblasts in Tumour-Related Inflammation. The Journal of Pathology, 229, 198-207. https://doi.org/10.1002/path.4103
|
[11]
|
Grimm, S., Jennek, S., Singh, R., Enkelmann, A., Junker, K., Rippaus, N., et al. (2015) Malignancy of Bladder Cancer Cells Is Enhanced by Tumor-Associated Fibroblasts through a Multifaceted Cytokine-Chemokine Loop. Experimental Cell Research, 335, 1-11. https://doi.org/10.1016/j.yexcr.2015.04.001
|
[12]
|
Tripathi, M., Billet, S. and Bhowmick, N.A. (2012) Understanding the Role of Stromal Fibroblasts in Cancer Progression. Cell Adhesion & Migration, 6, 231-235. https://doi.org/10.4161/cam.20419
|
[13]
|
Saigusa, (2011) Cancer-Associated Fibroblasts Correlate with Poor Prognosis in Rectal Cancer after Chemoradiotherapy. International Journal of Oncology, 38, 655-633. https://doi.org/10.3892/ijo.2011.906
|
[14]
|
Ernsting, M.J., Hoang, B., Lohse, I., Undzys, E., Cao, P., Do, T., et al. (2015) Targeting of Metastasis-Promoting Tumor-Associated Fibroblasts and Modulation of Pancreatic Tumor-Associated Stroma with a Carboxymethylcellulose-Docetaxel Nanoparticle. Journal of Controlled Release, 206, 122-130. https://doi.org/10.1016/j.jconrel.2015.03.023
|
[15]
|
Leef, G. and Thomas, S.M. (2013) Molecular Communication between Tumor-Associated Fibroblasts and Head and Neck Squamous Cell Carcinoma. Oral Oncology, 49, 381-386. https://doi.org/10.1016/j.oraloncology.2012.12.014
|
[16]
|
Zheng, Z., Bu, Z., Liu, X., et al. (2014) Level of Circulating PD-L1 Expression in Patients with Advanced Gastric Cancer and Its Clinical Implications. Chinese Journal of Cancer Research, 26, 104-111.
|
[17]
|
Robert, C., Soria, J. and Eggermont, A.M.M. (2013) Drug of the Year: Programmed Death-1 Receptor/Programmed Death-1 Ligand-1 Receptor Monoclonal Antibodies. European Journal of Cancer, 49, 2968-2971. https://doi.org/10.1016/j.ejca.2013.07.001
|
[18]
|
Alaghehbandan, R., Stehlik, J., Trpkov, K., Magi-Galluzzi, C., Condom Mundo, E., Pane Foix, M., et al. (2017) Programmed Death-1 (PD-1) Receptor/Pd-1 Ligand (PD-L1) Expression in Fumarate Hydratase-Deficient Renal Cell Carcinoma. Annals of Diagnostic Pathology, 29, 17-22. https://doi.org/10.1016/j.anndiagpath.2017.04.007
|
[19]
|
Okuma, Y., Wakui, H., Utsumi, H., Sagawa, Y., Hosomi, Y., Kuwano, K., et al. (2018) Soluble Programmed Cell Death Ligand 1 as a Novel Biomarker for Nivolumab Therapy for Non-Small-Cell Lung Cancer. Clinical Lung Cancer, 19, 410-417.e1. https://doi.org/10.1016/j.cllc.2018.04.014
|
[20]
|
Kim, J., Kim, S., Lee, H.S., Yang, W., Cho, H., Chay, D.B., et al. (2018) Prognostic Implication of Programmed Cell Death 1 Protein and Its Ligand Expressions in Endometrial Cancer. Gynecologic Oncology, 149, 381-387. https://doi.org/10.1016/j.ygyno.2018.02.013
|
[21]
|
Shiraliyeva, N., Friedrichs, J., Buettner, R. and Friedrichs, N. (2017) PD-L1 Expression in HNPCC-Associated Colorectal Cancer. Pathology-Research and Practice, 213, 1552-1555. https://doi.org/10.1016/j.prp.2017.09.012
|
[22]
|
Baptista, M.Z., Sarian, L.O., Derchain, S.F.M., Pinto, G.A. and Vassallo, J. (2016) Prognostic Significance of PD-L1 and PD-L2 in Breast Cancer. Human Pathology, 47, 78-84. https://doi.org/10.1016/j.humpath.2015.09.006
|
[23]
|
Meng, X., Liu, Y., Zhang, J., Teng, F., Xing, L. and Yu, J. (2017) PD-1/PD-L1 Checkpoint Blockades in Non-Small Cell Lung Cancer: New Development and Challenges. Cancer Letters, 405, 29-37. https://doi.org/10.1016/j.canlet.2017.06.033
|
[24]
|
Salgado, R., Denkert, C., Demaria, S., Sirtaine, N., Klauschen, F., Pruneri, G., et al. (2015) The Evaluation of Tumor-Infiltrating Lymphocytes (Tils) in Breast Cancer: Recommendations by an International Tils Working Group 2014. Annals of Oncology, 26, 259-271. https://doi.org/10.1093/annonc/mdu450
|
[25]
|
Vicent, S., Sayles, L.C., Vaka, D., Khatri, P., Gevaert, O., Chen, R., et al. (2012) Cross-Species Functional Analysis of Cancer-Associated Fibroblasts Identifies a Critical Role for CLCF1 and IL-6 in Non-Small Cell Lung Cancer in Vivo. Cancer Research, 72, 5744-5756. https://doi.org/10.1158/0008-5472.can-12-1097
|
[26]
|
Lin, Z., Chuang, Y. and Chuang, W. (2012) Cancer-Associated Fibroblasts Up-Regulate CCL2, CCL26, IL6 and LOXL2 Genes Related to Promotion of Cancer Progression in Hepatocellular Carcinoma Cells. Biomedicine & Pharmacotherapy, 66, 525-529. https://doi.org/10.1016/j.biopha.2012.02.001
|
[27]
|
Chan, J.A., Blaszkowsky, L.S., Enzinger, P.C., Ryan, D.P., Abrams, T.A., Zhu, A.X., et al. (2011) A Multicenter Phase II Trial of Single-Agent Cetuximab in Advanced Esophageal and Gastric Adenocarcinoma. Annals of Oncology, 22, 1367-1373. https://doi.org/10.1093/annonc/mdq604
|
[28]
|
de Haas, S., Delmar, P., Bansal, A.T., Moisse, M., Miles, D.W., Leighl, N., et al. (2014) Genetic Variability of VEGF Pathway Genes in Six Randomized Phase III Trials Assessing the Addition of Bevacizumab to Standard Therapy. Angiogenesis, 17, 909-920. https://doi.org/10.1007/s10456-014-9438-1
|
[29]
|
Noguchi, E., Saito, N., Kobayashi, M. and Kameoka, S. (2015) Clinical Significance of Hepatocyte Growth Factor/c-Met Expression in the Assessment of Gastric Cancer Progression. Molecular Medicine Reports, 11, 3423-3431. https://doi.org/10.3892/mmr.2015.3205
|
[30]
|
Lu, Y., Tang, L., Zhang, Q., Zhang, Z. and Wei, W. (2017) Microrna-613 Inhibits the Progression of Gastric Cancer by Targeting CDK9. Artificial Cells, Nanomedicine, and Biotechnology, 46, 980-984. https://doi.org/10.1080/21691401.2017.1351983
|
[31]
|
Jotzu, C., Alt, E., Welte, G., Li, J., Hennessy, B.T., Devarajan, E., et al. (2010) Adipose Tissue-Derived Stem Cells Differentiate into Carcinoma-Associated Fibroblast-Like Cells under the Influence of Tumor-Derived Factors. Analytical Cellular Pathology, 33, 61-79. https://doi.org/10.1155/2010/695162
|
[32]
|
Orimo, A., Gupta, P.B., Sgroi, D.C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., et al. (2005) Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion. Cell, 121, 335-348. https://doi.org/10.1016/j.cell.2005.02.034
|
[33]
|
Yu, Y., Xiao, C., Tan, L., Wang, Q., Li, X. and Feng, Y. (2013) Cancer-Associated Fibroblasts Induce Epithelial-Mesenchymal Transition of Breast Cancer Cells through Paracrine TGF-Β Signalling. British Journal of Cancer, 110, 724-732. https://doi.org/10.1038/bjc.2013.768
|
[34]
|
Nakazawa, K., Yashiro, M. and Hirakawa, K. (2003) Keratinocyte Growth Factor Produced by Gastric Fibroblasts Specifically Stimulates Proliferation of Cancer Cells from Scirrhous Gastric Carcinoma. Cancer Research, 63, 8848-8854.
|
[35]
|
Zhi, K., Shen, X., Zhang, H. and Bi, J. (2010) Cancer-Associated Fibroblasts Are Positively Correlated with Metastatic Potential of Human Gastric Cancers. Journal of Experimental & Clinical Cancer Research, 29, Article No. 66. https://doi.org/10.1186/1756-9966-29-66
|
[36]
|
Jung, D., Che, Z.M., Kim, J., Kim, K., Kim, K., Williams, D., et al. (2010) Tumor-Stromal Crosstalk in Invasion of Oral Squamous Cell Carcinoma: A Pivotal Role of CCL7. International Journal of Cancer, 127, 332-344. https://doi.org/10.1002/ijc.25060
|
[37]
|
Gharaati-Far, N., Tohidkia, M.R., Dehnad, A. and Omidi, Y. (2017) Efficiency and Cytotoxicity Analysis of Cationic Lipids-Mediated Gene Transfection into AGS Gastric Cancer Cells. Artificial Cells, Nanomedicine, and Biotechnology, 46, 1001-1008. https://doi.org/10.1080/21691401.2017.1355311
|
[38]
|
Wu, M., Hong, H., Hong, T., Chiang, W., Jin, Y. and Chen, Y. (2011) Targeting Galectin-1 in Carcinoma-Associated Fibroblasts Inhibits Oral Squamous Cell Carcinoma Metastasis by Downregulating MCP-1/CCL2 Expression. Clinical Cancer Research, 17, 1306-1316. https://doi.org/10.1158/1078-0432.ccr-10-1824
|
[39]
|
Joyce, J.A. and Pollard, J.W. (2008) Microenvironmental Regulation of Metastasis. Nature Reviews Cancer, 9, 239-252. https://doi.org/10.1038/nrc2618
|
[40]
|
Dong, H., Strome, S.E., Salomao, D.R., Tamura, H., Hirano, F., Flies, D.B., et al. (2002) Tumor-Associated B7-H1 Promotes T-Cell Apoptosis: A Potential Mechanism of Immune Evasion. Nature Medicine, 8, 793-800. https://doi.org/10.1038/nm730
|
[41]
|
Iwai, Y., Ishida, M., Tanaka, Y., Okazaki, T., Honjo, T. and Minato, N. (2002) Involvement of PD-L1 on Tumor Cells in the Escape from Host Immune System and Tumor Immunotherapy by PD-L1 Blockade. Proceedings of the National Academy of Sciences, 99, 12293-12297. https://doi.org/10.1073/pnas.192461099
|
[42]
|
Lei, Z., Tan, I.B., Das, K., Deng, N., Zouridis, H., Pattison, S., et al. (2013) Identification of Molecular Subtypes of Gastric Cancer with Different Responses to PI3-Kinase Inhibitors and 5-Fluorouracil. Gastroenterology, 145, 554-565. https://doi.org/10.1053/j.gastro.2013.05.010
|
[43]
|
Scherz-Shouval, R., Santagata, S., Mendillo, M.L., Sholl, L.M., Ben-Aharon, I., Beck, A.H., et al. (2014) The Reprogramming of Tumor Stroma by HSF1 Is a Potent Enabler of Malignancy. Cell, 158, 564-578. https://doi.org/10.1016/j.cell.2014.05.045
|
[44]
|
Herbst, R.S., Soria, J., Kowanetz, M., Fine, G.D., Hamid, O., Gordon, M.S., et al. (2014) Predictive Correlates of Response to the Anti-Pd-L1 Antibody MPDL3280A in Cancer Patients. Nature, 515, 563-567. https://doi.org/10.1038/nature14011
|
[45]
|
Ghebeh, H., Barhoush, E., Tulbah, A., Elkum, N., Al-Tweigeri, T. and Dermime, S. (2008) FOXP3+ Tregs and B7-H1+/PD-1+T Lymphocytes Co-Infiltrate the Tumor Tissues of High-Risk Breast Cancer Patients: Implication for Immunotherapy. BMC Cancer, 8, Article No. 57. https://doi.org/10.1186/1471-2407-8-57
|
[46]
|
Alsuliman, A., Colak, D., Al-Harazi, O., Fitwi, H., Tulbah, A., Al-Tweigeri, T., et al. (2015) Bidirectional Crosstalk between PD-L1 Expression and Epithelial to Mesenchymal Transition: Significance in Claudin-Low Breast Cancer Cells. Molecular Cancer, 14, Article No. 149. https://doi.org/10.1186/s12943-015-0421-2
|
[47]
|
Muro, K., Bang, Y., Shankaran, V., Geva, R., Catenacci, D.V.T., Gupta, S., et al. (2014) A Phase 1B Study of Pembrolizumab (PEMBRO; MK-3475) in Patients (PTS) with Advanced Gastric Cancer. Annals of Oncology, 25, v1-v41. https://doi.org/10.1093/annonc/mdu438.15
|
[48]
|
Ahmadzadeh, M., Johnson, L.A., Heemskerk, B., Wunderlich, J.R., Dudley, M.E., White, D.E., et al. (2009) Tumor Antigen-Specific CD8 T Cells Infiltrating the Tumor Express High Levels of PD-1 and Are Functionally Impaired. Blood, 114, 1537-1544. https://doi.org/10.1182/blood-2008-12-195792
|
[49]
|
Cho, Y., Yoon, H., Lee, J., Hong, S. and Hong, S. (2011) Relationship between the Expressions of PD-L1 and Tumor-Infiltrating Lymphocytes in Oral Squamous Cell Carcinoma. Oral Oncology, 47, 1148-1153. https://doi.org/10.1016/j.oraloncology.2011.08.007
|