[1]
|
Chen, L.N. and Yang, X.H. (2013) Local Renin-Angiotensin System Disequilibrium and Acute Lung Injury. Progress in physiology, 44, 133-137.
|
[2]
|
张连霞, 赵慧霞, 于世杰, 等. 老年慢性阻塞性肺疾病病人中炎症因子、25-羟维生素D3水平变化及急性发作的相关危险因素[J]. 实用老年医学, 2020, 34(3): 250-253.
|
[3]
|
曹校校, 傅安安, 陈荣, 等. 血清高敏C-反应蛋白、肿瘤坏死因子-α联合肺功能检测在诊断慢性阻塞性肺疾病中的应用价值分析[J]. 中国卫生检验杂志, 2020, 30(3): 346-348, 351.
|
[4]
|
Bouhnik, J., Galen, F.X., Menard, J., Corvol, P., Seyer, R., Fehrentz, J.A., et al. (1987) Production and Characterization of Human Renin Antibodies with Region-Oriented Synthetic Peptides. Journal of Biological Chemistry, 262, 2913-2918. https://doi.org/10.1016/s0021-9258(18)61594-7
|
[5]
|
Mirabito Colafella, K.M., Bovée, D.M. and Danser, A.H.J. (2019) The Renin-Angiotensin-Aldosterone System and Its Therapeutic Targets. Experimental Eye Research, 186, Article 107680. https://doi.org/10.1016/j.exer.2019.05.020
|
[6]
|
Cole-Jeffrey, C.T., Liu, M., Katovich, M.J., Raizada, M.K. and Shenoy, V. (2015) ACE2 and Microbiota: Emerging Targets for Cardiopulmonary Disease Therapy. Journal of Cardiovascular Pharmacology, 66, 540-550. https://doi.org/10.1097/fjc.0000000000000307
|
[7]
|
向永红. 慢性间断性低氧大鼠氧化应激状态与RAS相关性研究及NAC干预作用[D]: [硕士学位论文]. 长沙: 中南大学, 2010.
|
[8]
|
Vio, C.P., Salas, D., Cespedes, C., Diaz-Elizondo, J., Mendez, N., Alcayaga, J., et al. (2018) Imbalance in Renal Vasoactive Enzymes Induced by Mild Hypoxia: Angiotensin-Converting Enzyme Increases While Neutral Endopeptidase Decreases. Frontiers in Physiology, 9, Article 1791. https://doi.org/10.3389/fphys.2018.01791
|
[9]
|
Zhang, R., Wu, Y., Zhao, M., Liu, C., Zhou, L., Shen, S., et al. (2009) Role of HIF-1α in the Regulation ACE and ACE2 Expression in Hypoxic Human Pulmonary Artery Smooth Muscle Cells. American Journal of Physiology-Lung Cellular and Molecular Physiology, 297, L631-L640. https://doi.org/10.1152/ajplung.90415.2008
|
[10]
|
Winklewski, P.J., Radkowski, M. and Demkow, U. (2016) Neuroinflammatory Mechanisms of Hypertension: Potential Therapeutic Implications. Current Opinion in Nephrology and Hypertension, 25, 410-416. https://doi.org/10.1097/mnh.0000000000000250
|
[11]
|
叶剑滨, 林锦乐, 张文武. 血管紧张素II及其受体与急性呼吸窘迫综合征关系的研究进展[J]. 中华实用诊断与治疗杂志, 2017, 31(3): 310-312.
|
[12]
|
Hong, S., Jung, H.I., Ahn, T.S., Kim, H., Lee, K., Baek, M., et al. (2017) Expressions and Clinical Significances of Angiopoietin-1, Angiopoietin-2, and Tie-2 Receptor in Patients with Colorectal Cancer. Annals of Coloproctology, 33, 9-15. https://doi.org/10.3393/ac.2017.33.1.9
|
[13]
|
孙会志, 孙海英, 李亚平. 脓毒症并发ARDS患者血清sTM、suPAR、Ang-2水平与炎症因子及预后的关系[J]. 检验医学与临床, 2022, 19(8): 1075-1079.
|
[14]
|
杨逢永, 房东东, 张柄涵, 等. 盐酸戊乙奎醚调控血管生成素2/血管内皮钙黏蛋白(Ang2/VE-Cadherin)通路减轻脂多糖诱导的大鼠肺损伤[J]. 细胞与分子免疫学杂志, 2023, 39(8): 708-713.
|
[15]
|
Mei, D., Tan, W.S.D., Liao, W., Heng, C.K.M. and Wong, W.S.F. (2020) Activation of Angiotensin II Type-2 Receptor Protects against Cigarette Smoke-Induced COPD. Pharmacological Research, 161, Article 105223. https://doi.org/10.1016/j.phrs.2020.105223
|
[16]
|
Sionov, R.V. and Haupt, Y. (1999) The Cellular Response to P53: The Decision between Life and Death. Oncogene, 18, 6145-6157. https://doi.org/10.1038/sj.onc.1203130
|
[17]
|
张建初, 熊先智, 辛建保, 等. P53蛋白调节血管紧张素Ⅱ诱导的内皮细胞凋亡[J]. 华中科技大学学报(医学版), 2002, 31(3): 280-283.
|
[18]
|
Wang, R., Ibarra-Sunga, O., Verlinski, L., Pick, R. and Uhal, B.D. (2000) Abrogation of Bleomycin-Induced Epithelial Apoptosis and Lung Fibrosis by Captopril or by a Caspase Inhibitor. American Journal of Physiology-Lung Cellular and Molecular Physiology, 279, L143-L151. https://doi.org/10.1152/ajplung.2000.279.1.l143
|
[19]
|
Marshall, R.P., Gohlke, P., Chambers, R.C., Howell, D.C., Bottoms, S.E., Unger, T., et al. (2004) Angiotensin II and the Fibroproliferative Response to Acute Lung Injury. American Journal of Physiology-Lung Cellular and Molecular Physiology, 286, L156-L164. https://doi.org/10.1152/ajplung.00313.2002
|
[20]
|
Bullock, G.R., Steyaert, I., Bilbe, G., Carey, R.M., Kips, J., De Paepe, B., et al. (2001) Distribution of Type-1 and Type-2 Angiotensin Receptors in the Normal Human Lung and in Lungs from Patients with Chronic Obstructive Pulmonary Disease. Histochemistry and Cell Biology, 115, 117-124. https://doi.org/10.1007/s004180000235
|
[21]
|
Shenoy, V., Ferreira, A.J., Qi, Y., Fraga-Silva, R.A., Díez-Freire, C., Dooies, A., et al. (2010) The Angiotensin-Converting Enzyme 2/Angiogenesis-(1-7)/Mas Axis Confers Cardiopulmonary Protection against Lung Fibrosis and Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 182, 1065-1072. https://doi.org/10.1164/rccm.200912-1840oc
|
[22]
|
Xue, T., Wei, N., Xin, Z. and Qingyu, X. (2014) Angiotensin-Converting Enzyme-2 Overexpression Attenuates Inflammation in Rat Model of Chronic Obstructive Pulmonary Disease. Inhalation Toxicology, 26, 14-22. https://doi.org/10.3109/08958378.2013.850563
|
[23]
|
Fang, Y., Gao, F. and Liu, Z. (2019) Angiotensin-Converting Enzyme 2 Attenuates Inflammatory Response and Oxidative Stress in Hyperoxic Lung Injury by Regulating NF-κB and Nrf2 Pathways. QJM: An International Journal of Medicine, 112, 914-924. https://doi.org/10.1093/qjmed/hcz206
|
[24]
|
Gopallawa, I. and Uhal, B.D. (2014) Molecular and Cellular Mechanisms of the Inhibitory Effects of ACE-2/ANG1-7/Mas Axis on Lung Injury. Current Topics in Pharmacology, 18, 71-80.
|
[25]
|
Gao, X., Xu, H., Zhang, B., Tao, T., Liu, Y., Xu, D., et al. (2019) Interaction of N‐Acetyl‐Seryl‐Aspartyl‐Lysyl‐Proline with the Angiotensin‐Converting Enzyme 2-Angiotensin‐(1-7)-Mas Axis Attenuates Pulmonary Fibrosis in Silicotic Rats. Experimental Physiology, 104, 1562-1574. https://doi.org/10.1113/ep087515
|
[26]
|
Shao, M., Wen, Z., Yang, H., Zhang, C., Xiong, J., Guan, X., et al. (2019) Exogenous Angiotensin (1-7) Directly Inhibits Epithelial-Mesenchymal Transformation Induced by Transforming Growth Factor-Β1 in Alveolar Epithelial Cells. Biomedicine & Pharmacotherapy, 117, Article 109193. https://doi.org/10.1016/j.biopha.2019.109193
|
[27]
|
Liu, X., Yang, N., Tang, J., Liu, S., Luo, D., Duan, Q., et al. (2014) Downregulation of Angiotensin-Converting Enzyme 2 by the Neuraminidase Protein of Influenza a (H1N1) Virus. Virus Research, 185, 64-71. https://doi.org/10.1016/j.virusres.2014.03.010
|
[28]
|
Tejwani, V., Fawzy, A., Putcha, N., Castaldi, P.J., Cho, M.H., Pratte, K.A., et al. (2021) Emphysema Progression and Lung Function Decline among Angiotensin Converting Enzyme Inhibitors and Angiotensin-Receptor Blockade Users in the COPDGene Cohort. Chest, 160, 1245-1254. https://doi.org/10.1016/j.chest.2021.05.007
|
[29]
|
Song, G., Ouyang, G. and Bao, S. (2005) The Activation of Akt/PKB Signaling Pathway and Cell Survival. Journal of Cellular and Molecular Medicine, 9, 59-71. https://doi.org/10.1111/j.1582-4934.2005.tb00337.x
|
[30]
|
Del Fiorentino, A., Cianchetti, S., Celi, A., Dell’Omo, G. and Pedrinelli, R. (2009) The Effect of Angiotensin Receptor Blockers on C-Reactive Protein and Other Circulating Inflammatory Indices in Man. Vascular Health and Risk Management, 5, 233-242. https://doi.org/10.2147/vhrm.s4800
|
[31]
|
Zahradka, P., Werner, J.P., Buhay, S., Litchie, B., Helwer, G. and Thomas, S. (2002) NF-κB Activation Is Essential for Angiotensin II-Dependent Proliferation and Migration of Vascular Smooth Muscle Cells. Journal of Molecular and Cellular Cardiology, 34, 1609-1621. https://doi.org/10.1006/jmcc.2002.2111
|
[32]
|
王均鹏, 包明威. 培哚普利对慢性阻塞性肺疾病大鼠肺组织PI3K及肺功能的影响[J]. 中国呼吸与危重监护杂志, 2015, 14(3): 260-263.
|
[33]
|
张萍, 邢琳琳, 阮昕, 等. 血管紧张素II受体拮抗剂对慢性阻塞性肺疾病大鼠炎症反应的抑制作用[J]. 中国老年学杂志, 2018, 38(14): 3474-3476.
|
[34]
|
Kanazawa, H., Hirata, K. and Yoshikawa, J. (2003) Effects of Captopril Administration on Pulmonary Haemodynamics and Tissue Oxygenation during Exercise in ACE Gene Subtypes in Patients with COPD: A Preliminary Study. Thorax, 58, 629-631. https://doi.org/10.1136/thorax.58.7.629
|
[35]
|
查震球. 慢性阻塞性肺疾病流行病学研究进展[J]. 安徽预防医学杂志, 2022, 28(3): 171-176.
|
[36]
|
Zhou, M., Wang, H., Zeng, X., Yin, P., Zhu, J., Chen, W., et al. (2019) Mortality, Morbidity, and Risk Factors in China and Its Provinces, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 394, 1145-1158. https://doi.org/10.1016/s0140-6736(19)30427-1
|
[37]
|
Wang, C., Xu, J., Yang, L., Xu, Y., Zhang, X., Bai, C., et al. (2018) Prevalence and Risk Factors of Chronic Obstructive Pulmonary Disease in China (The China Pulmonary Health [CPH] Study): A National Cross-Sectional Study. The Lancet, 391, 1706-1717. https://doi.org/10.1016/s0140-6736(18)30841-9
|
[38]
|
Fang, L., Gao, P., Bao, H., Tang, X., Wang, B., Feng, Y., et al. (2018) Chronic Obstructive Pulmonary Disease in China: A Nationwide Prevalence Study. The Lancet Respiratory Medicine, 6, 421-430. https://doi.org/10.1016/s2213-2600(18)30103-6
|
[39]
|
Paulin, P., Maritano Furcada, J., Ungaro, C.M., Bendelman, G., Waisman, G.D., Castro, H.M., et al. (2017) Effect of Angiotensin 2 Receptor Blockers on Chronic Obstructive Lung Disease Mortality: A Retrospective Cohort Study. Pulmonary Pharmacology & Therapeutics, 44, 78-82. https://doi.org/10.1016/j.pupt.2017.03.007
|
[40]
|
Qaisar, R., Kamli, H., Karim, A., Muhammad, T., Ahmad, F. and Shaikh, A. (2023) Angiotensin Receptor Blockers Restore Skeletal Muscle in Patients with Chronic Obstructive Pulmonary Disease. Archives of Medical Research, 54, Article 102890. https://doi.org/10.1016/j.arcmed.2023.102890
|