[1]
|
Yuan, Z., Li, Y., Zhang, S., Wang, X., Dou, H., Yu, X., et al. (2023) Extracellular Matrix Remodeling in Tumor Progression and Immune Escape: From Mechanisms to Treatments. Molecular Cancer, 22, Article No. 48. https://doi.org/10.1186/s12943-023-01744-8
|
[2]
|
Wang, L., Wu, C., Rajasekaran, N. and Shin, Y.K. (2018) Loss of Tumor Suppressor Gene Function in Human Cancer: An Overview. Cellular Physiology and Biochemistry, 51, 2647-2693. https://doi.org/10.1159/000495956
|
[3]
|
Bienertova-Vasku, J., Sana, J. and Slaby, O. (2013) The Role of MicroRNAs in Mitochondria in Cancer. Cancer Letters, 336, 1-7. https://doi.org/10.1016/j.canlet.2013.05.001
|
[4]
|
Rencelj, A., Gvozdenovic, N. and Cemazar, M. (2021) MitomiRs: Their Roles in Mitochondria and Importance in Cancer Cell Metabolism. Radiology and Oncology, 55, 379-392. https://doi.org/10.2478/raon-2021-0042
|
[5]
|
Loh, H., Norman, B.P., Lai, K., Rahman, N.M.A.N.A., Alitheen, N.B.M. and Osman, M.A. (2019) The Regulatory Role of Micrornas in Breast Cancer. International Journal of Molecular Sciences, 20, Article 4940. https://doi.org/10.3390/ijms20194940
|
[6]
|
Petrovic, N., Davidovic, R., Bajic, V., Obradovic, M. and Isenovic, R.E. (2017) MicroRNA in Breast Cancer: The Association with BRCA1/2. Cancer Biomarkers, 19, 119-128. https://doi.org/10.3233/cbm-160319
|
[7]
|
Zong, W., Rabinowitz, J.D. and White, E. (2016) Mitochondria and Cancer. Molecular Cell, 61, 667-676. https://doi.org/10.1016/j.molcel.2016.02.011
|
[8]
|
Mercer, T.R., Neph, S., Dinger, M.E., Crawford, J., Smith, M.A., Shearwood, A.J., et al. (2011) The Human Mitochondrial Transcriptome. Cell, 146, 645-658. https://doi.org/10.1016/j.cell.2011.06.051
|
[9]
|
Nunnari, J. and Suomalainen, A. (2012) Mitochondria: In Sickness and in Health. Cell, 148, 1145-1159. https://doi.org/10.1016/j.cell.2012.02.035
|
[10]
|
Jeong, S. and Seol, D. (2008) The Role of Mitochondria in Apoptosis. BMB Reports, 41, 11-22. https://doi.org/10.5483/bmbrep.2008.41.1.011
|
[11]
|
Adams, J.M. and Cory, S. (2007) The Bcl-2 Apoptotic Switch in Cancer Development and Therapy. Oncogene, 26, 1324-1337. https://doi.org/10.1038/sj.onc.1210220
|
[12]
|
Geiger, J. and Dalgaard, L.T. (2016) Interplay of Mitochondrial Metabolism and MicroRNAs. Cellular and Molecular Life Sciences, 74, 631-646. https://doi.org/10.1007/s00018-016-2342-7
|
[13]
|
Ziemann, M., Lim, S.C., Kang, Y., Samuel, S., Sanchez, I.L., Gantier, M., et al. (2022) MicroRNA-101-3p Modulates Mitochondrial Metabolism via the Regulation of Complex II Assembly. Journal of Molecular Biology, 434, Article 167361. https://doi.org/10.1016/j.jmb.2021.167361
|
[14]
|
Zheng, J. (2012) Energy Metabolism of Cancer: Glycolysis versus Oxidative Phosphorylation (Review). Oncology Letters, 4, 1151-1157. https://doi.org/10.3892/ol.2012.928
|
[15]
|
Willers, I.M., Martínez-Reyes, I., Martínez-Diez, M. and Cuezva, J.M. (2012) miR-127-5p Targets the 3’UTR of Human β-F1-ATPase mRNA and Inhibits Its Translation. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817, 838-848. https://doi.org/10.1016/j.bbabio.2012.03.005
|
[16]
|
Carrer, M., Liu, N., Grueter, C.E., Williams, A.H., Frisard, M.I., Hulver, M.W., et al. (2012) Control of Mitochondrial Metabolism and Systemic Energy Homeostasis by MicroRNAs 378 and 378*. Proceedings of the National Academy of Sciences, 109, 15330-15335. https://doi.org/10.1073/pnas.1207605109
|
[17]
|
Bandiera, S., Rüberg, S., Girard, M., Cagnard, N., Hanein, S., Chrétien, D., et al. (2011) Nuclear Outsourcing of RNA Interference Components to Human Mitochondria. PLOS ONE, 6, e20746. https://doi.org/10.1371/journal.pone.0020746
|
[18]
|
Das, S., Ferlito, M., Kent, O.A., Fox-Talbot, K., Wang, R., Liu, D., et al. (2012) Nuclear miRNA Regulates the Mitochondrial Genome in the Heart. Circulation Research, 110, 1596-1603. https://doi.org/10.1161/circresaha.112.267732
|
[19]
|
Rayner, K.J., Esau, C.C., Hussain, F.N., McDaniel, A.L., Marshall, S.M., van Gils, J.M., et al. (2011) Inhibition of miR-33a/b in Non-Human Primates Raises Plasma HDL and Lowers VLDL Triglycerides. Nature, 478, 404-407. https://doi.org/10.1038/nature10486
|
[20]
|
Xu, Y., Fang, F., Zhang, J., Josson, S., St. Clair, W.H. and St. Clair, D.K. (2010) miR-17* Suppresses Tumorigenicity of Prostate Cancer by Inhibiting Mitochondrial Antioxidant Enzymes. PLOS ONE, 5, e14356. https://doi.org/10.1371/journal.pone.0014356
|
[21]
|
Marwarha, G., Røsand, Ø., Slagsvold, K.H. and Høydal, M.A. (2022) GSK3β Inhibition Is the Molecular Pivot That Underlies the miR-210-Induced Attenuation of Intrinsic Apoptosis Cascade during Hypoxia. International Journal of Molecular Sciences, 23, Article 9375. https://doi.org/10.3390/ijms23169375
|
[22]
|
Fang, J., Song, X., Tian, J., Chen, H., Li, D., Wang, J., et al. (2011) Overexpression of MicroRNA-378 Attenuates Ischemia-Induced Apoptosis by Inhibiting Caspase-3 Expression in Cardiac Myocytes. Apoptosis, 17, 410-423. https://doi.org/10.1007/s10495-011-0683-0
|
[23]
|
Cheng, Y., Zhang, D., Zhu, M., Wang, Y., Guo, S., Xu, B., et al. (2018) Liver X Receptor Α Is Targeted by MicroRNA-1 to Inhibit Cardiomyocyte Apoptosis through a Ros-Mediated Mitochondrial Pathway. Biochemistry and Cell Biology, 96, 11-18. https://doi.org/10.1139/bcb-2017-0154
|
[24]
|
Liu, L., Zhang, G., Liang, Z., Liu, X., Li, T., Fan, J., et al. (2013) MicroRNA-15b Enhances Hypoxia/Reoxygenation-Induced Apoptosis of Cardiomyocytes via a Mitochondrial Apoptotic Pathway. Apoptosis, 19, 19-29. https://doi.org/10.1007/s10495-013-0899-2
|
[25]
|
Pandey, A., Pain, J., Ghosh, A.K., Dancis, A. and Pain, D. (2015) Fe-S Cluster Biogenesis in Isolated Mammalian Mitochondria: Coordinated Use of Persulfide Sulfur and Iron and Requirements for GTP, NADH, and ATP. Journal of Biological Chemistry, 290, 640-657. https://doi.org/10.1074/jbc.m114.610402
|
[26]
|
Gee, H.E., Ivan, C., Calin, G.A. and Ivan, M. (2014) HypoxamiRs and Cancer: From Biology to Targeted Therapy. Antioxidants & Redox Signaling, 21, 1220-1238. https://doi.org/10.1089/ars.2013.5639
|
[27]
|
Yoshioka, Y., Kosaka, N., Ochiya, T. and Kato, T. (2012) Micromanaging Iron Homeostasis: Hypoxia-Inducible Micro-RNA-210 Suppresses Iron Homeostasis-Related Proteins. Journal of Biological Chemistry, 287, 34110-34119. https://doi.org/10.1074/jbc.m112.356717
|
[28]
|
Hale, A., Lee, C., Annis, S., Min, P., Pande, R., Creager, M.A., et al. (2014) An Argonaute 2 Switch Regulates Circulating miR-210 to Coordinate Hypoxic Adaptation across Cells. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1843, 2528-2542. https://doi.org/10.1016/j.bbamcr.2014.06.012
|
[29]
|
Komatsu, S., Kitai, H. and Suzuki, H.I. (2023) Network Regulation of MicroRNA Biogenesis and Target Interaction. Cells, 12, Article 306. https://doi.org/10.3390/cells12020306
|
[30]
|
Bandiera, S., Matégot, R., Girard, M., Demongeot, J. and Henrion-Caude, A. (2013) MitomiRs Delineating the Intracellular Localization of MicroRNAs at Mitochondria. Free Radical Biology and Medicine, 64, 12-19. https://doi.org/10.1016/j.freeradbiomed.2013.06.013
|
[31]
|
Kelly, T.J., Souza, A.L., Clish, C.B. and Puigserver, P. (2011) A Hypoxia-Induced Positive Feedback Loop Promotes Hypoxia-Inducible Factor 1α Stability through miR-210 Suppression of Glycerol-3-Phosphate Dehydrogenase 1-Like. Molecular and Cellular Biology, 31, 2696-2706. https://doi.org/10.1128/mcb.01242-10
|
[32]
|
Chan, S.Y., Zhang, Y., Hemann, C., Mahoney, C.E., Zweier, J.L. and Loscalzo, J. (2009) MicroRNA-210 Controls Mitochondrial Metabolism during Hypoxia by Repressing the Iron-Sulfur Cluster Assembly Proteins ISCU1/2. Cell Metabolism, 10, 273-284. https://doi.org/10.1016/j.cmet.2009.08.015
|
[33]
|
Chen, Z., Li, Y., Zhang, H., Huang, P. and Luthra, R. (2010) Hypoxia-Regulated MicroRNA-210 Modulates Mitochondrial Function and Decreases ISCU and COX10 Expression. Oncogene, 29, 4362-4368. https://doi.org/10.1038/onc.2010.193
|
[34]
|
Krutilina, R., Sun, W., Sethuraman, A., Brown, M., Seagroves, T.N., Pfeffer, L.M., et al. (2014) MicroRNA-18a Inhibits Hypoxia-Inducible Factor 1α Activity and Lung Metastasis in Basal Breast Cancers. Breast Cancer Research, 16, Article No. R78. https://doi.org/10.1186/bcr3693
|
[35]
|
Wang, Y., Dai, Y., Wang, S., Qiu, M., Quan, Z., Liu, Y., et al. (2017) MiR-199a-5p Inhibits Proliferation and Induces Apoptosis in Hemangioma Cells through Targeting HIF1A. International Journal of Immunopathology and Pharmacology, 31. https://doi.org/10.1177/0394632017749357
|
[36]
|
Wang, X., Ren, H., Zhao, T., Ma, W., Dong, J., Zhang, S., et al. (2016) Single Nucleotide Polymorphism in the MicroRNA-199a Binding Site of HIF1A Gene Is Associated with Pancreatic Ductal Adenocarcinoma Risk and Worse Clinical Outcomes. Oncotarget, 7, 13717-13729. https://doi.org/10.18632/oncotarget.7263
|
[37]
|
Sun, X., Charbonneau, C., Wei, L., Chen, Q. and Terek, R.M. (2015) MiR-181a Targets RGS16 to Promote Chondrosarcoma Growth, Angiogenesis, and Metastasis. Molecular Cancer Research, 13, 1347-1357. https://doi.org/10.1158/1541-7786.mcr-14-0697
|
[38]
|
Zhuang, X., Chen, Y., Wu, Z., Xu, Q., Chen, M., Shao, M., et al. (2019) Mitochondrial MiR-181a-5p Promotes Glucose Metabolism Reprogramming in Liver Cancer by Regulating the Electron Transport Chain. Carcinogenesis, 41, 972-983. https://doi.org/10.1093/carcin/bgz174
|
[39]
|
Liberti, M.V. and Locasale, J.W. (2016) The Warburg Effect: How Does It Benefit Cancer Cells? Trends in Biochemical Sciences, 41, 211-218. https://doi.org/10.1016/j.tibs.2015.12.001
|
[40]
|
Qu, C., Yan, C., Cao, W., Li, F., Qu, Y., Guan, K., et al. (2019) MiR‐128‐3p Contributes to Mitochondrial Dysfunction and Induces Apoptosis in Glioma Cells via Targeting Pyruvate Dehydrogenase Kinase 1. IUBMB Life, 72, 465-475. https://doi.org/10.1002/iub.2212
|
[41]
|
Jiang, S., Zhang, L., Zhang, H., Hu, S., Lu, M., Liang, S., et al. (2012) A Novel miR-155/miR-143 Cascade Controls Glycolysis by Regulating Hexokinase 2 in Breast Cancer Cells. The EMBO Journal, 31, 1985-1998. https://doi.org/10.1038/emboj.2012.45
|
[42]
|
Sharma, P. and Kumar, S. (2018) Metformin Inhibits Human Breast Cancer Cell Growth by Promoting Apoptosis via a ROS-Independent Pathway Involving Mitochondrial Dysfunction: Pivotal Role of Superoxide Dismutase (SOD). Cellular Oncology, 41, 637-650. https://doi.org/10.1007/s13402-018-0398-0
|
[43]
|
Kardani, A., Yaghoobi, H., Alibakhshi, A. and Khatami, M. (2020) Inhibition of miR‐155 in MCF‐7 Breast Cancer Cell Line by Gold Nanoparticles Functionalized with Antagomir and AS1411 Aptamer. Journal of Cellular Physiology, 235, 6887-6895. https://doi.org/10.1002/jcp.29584
|
[44]
|
Ma, X., Li, C., Sun, L., Huang, D., Li, T., He, X., et al. (2014) Lin28/Let-7 Axis Regulates Aerobic Glycolysis and Cancer Progression via PDK1. Nature Communications, 5, Article No. 5212. https://doi.org/10.1038/ncomms6212
|
[45]
|
Zhao, L., Chen, X. and Cao, Y. (2011) New Role of MicroRNA: Carcinogenesis and Clinical Application in Cancer. Acta Biochimica et Biophysica Sinica, 43, 831-839. https://doi.org/10.1093/abbs/gmr080
|
[46]
|
Zhang, S., Liu, C. and Zhang, X. (2019) Mitochondrial Damage Mediated by miR-1 Overexpression in Cancer Stem Cells. Molecular Therapy-Nucleic Acids, 18, 938-953. https://doi.org/10.1016/j.omtn.2019.10.016
|
[47]
|
Wallace, L., Aikhionbare, K., Banerjee, S., Peagler, K., Pitts, M., Yao, X., et al. (2021) Differential Expression Profiles of Mitogenome Associated MicroRNAs among Colorectal Adenomatous Polyps. Cancer Research Journal, 9, 23-33. https://doi.org/10.11648/j.crj.20210901.14
|
[48]
|
Castellani, G., Buccarelli, M., Lulli, V., Ilari, R., De Luca, G., Pedini, F., et al. (2022) MiR-378a-3p Acts as a Tumor Suppressor in Colorectal Cancer Stem-Like Cells and Affects the Expression of MALAT1 and NEAT1 LncRNAs. Frontiers in Oncology, 12, Article 867886. https://doi.org/10.3389/fonc.2022.867886
|
[49]
|
Fan, S., Tian, T., Chen, W., Lv, X., Lei, X., Zhang, H., et al. (2019) Mitochondrial MiRNA Determines Chemoresistance by Reprogramming Metabolism and Regulating Mitochondrial Transcription. Cancer Research, 79, 1069-1084. https://doi.org/10.1158/0008-5472.can-18-2505
|
[50]
|
Mehla, K. and Singh, P.K. (2019) Metabolic Regulation of Macrophage Polarization in Cancer. Trends in Cancer, 5, 822-834. https://doi.org/10.1016/j.trecan.2019.10.007
|
[51]
|
Qing, J., Zhang, Z., Novák, P., Zhao, G. and Yin, K. (2020) Mitochondrial Metabolism in Regulating Macrophage Polarization: An Emerging Regulator of Metabolic Inflammatory Diseases. Acta Biochimica et Biophysica Sinica, 52, 917-926. https://doi.org/10.1093/abbs/gmaa081
|
[52]
|
Duroux-Richard, I., Apparailly, F. and Khoury, M. (2021) Mitochondrial MicroRNAs Contribute to Macrophage Immune Functions Including Differentiation, Polarization, and Activation. Frontiers in Physiology, 12, Article 738140. https://doi.org/10.3389/fphys.2021.738140
|
[53]
|
Zhang, S., He, K., Zhou, W., Cao, J. and Jin, Z. (2019) MiR-494-3p Regulates Lipopolysaccharide-Induced Inflammatory Responses in RAW264.7 Cells by Targeting PTEN. Molecular Medicine Reports, 19, 4288-4296. https://doi.org/10.3892/mmr.2019.10083
|
[54]
|
Zhu, L., Wang, X., Wang, T., Zhu, W. and Zhou, X. (2018) MiR-494-3p Promotes the Progression of Endometrial Cancer by Regulating the PTEN/PI3K/AKT Pathway. Molecular Medicine Reports, 19, 581-588. https://doi.org/10.3892/mmr.2018.9649
|
[55]
|
Yang, M., Li, C., Zhu, S., Cao, L., Kroemer, G., Zeh, H., et al. (2018) TFAM Is a Novel Mediator of Immunogenic Cancer Cell Death. OncoImmunology, 7, e1431086. https://doi.org/10.1080/2162402x.2018.1431086
|
[56]
|
Yao, J., Zhou, E., Wang, Y., Xu, F., Zhang, D. and Zhong, D. (2014) MicroRNA-200a Inhibits Cell Proliferation by Targeting Mitochondrial Transcription Factor a in Breast Cancer. DNA and Cell Biology, 33, 291-300. https://doi.org/10.1089/dna.2013.2132
|
[57]
|
Fan, X., Zhou, S., Zheng, M., Deng, X., Yi, Y. and Huang, T. (2017) MiR-199a-3p Enhances Breast Cancer Cell Sensitivity to Cisplatin by Downregulating TFAM (TFAM). Biomedicine & Pharmacotherapy, 88, 507-514. https://doi.org/10.1016/j.biopha.2017.01.058
|