线粒体microRNAs在肿瘤中的研究进展
Research Progress of Mitochondrial microRNAs in Tumorigenesi
DOI: 10.12677/acm.2025.151190, PDF, HTML, XML,   
作者: 龙 胜:赣南医科大学第一临床医学院,江西 赣州;伍耿青*:赣南医科大学第一附属医院泌尿外科,江西 赣州
关键词: 线粒体microRNAs肿瘤分子机制Mitochondrial microRNA Tumor Molecular Control
摘要: microRNAs (miRNAs)是一类通常存在于细胞质中的短链非编码RNAs,通过与信使RNA (mRNA)的3'非翻译区(3'untranslated region, 3'UTR)结合,发挥调节转录后基因表达的功能。miRNAs在调控多种代谢过程和信号转导途径方面起着重要作用。线粒体是真核细胞中进行氧化代谢和ATP合成的关键场所,负责糖类、脂质和氨基酸等大分子的代谢。那些特异性定位于线粒体的miRNAs,以及在细胞质中直接或间接调节线粒体特定功能的miRNAs,被称为线粒体miRNAs (mitochondrial miRNAs, mitomiRs)。这些miRNAs能调控相关基因表达,并在关键线粒体代谢途径中发挥独特作用,从而促进肿瘤的发生与发展。本文重点探讨mitomiR在线粒体中的作用以及在肿瘤中的调控机制,旨在进一步阐明肿瘤发生发展的分子机制,开发潜在的癌症新疗法。
Abstract: microRNAs (miRNAs) are a class of short non-coding RNAs typically found in the cytoplasm. They function to regulate post-transcriptional gene expression by binding to the 3' untranslated region (3'UTR) of messenger RNA (mRNA). miRNAs play a crucial role in modulating various metabolic processes and signal transduction pathways. Mitochondria serve as the primary sites for oxidative metabolism and ATP synthesis in eukaryotic cells, and they are responsible for the metabolism of macromolecules, including sugars, lipids, and amino acids. Mitochondrial miRNAs (mitomiRs) are a subset of miRNAs localized specifically within mitochondria and modulate mitochondrial-specific functions, either directly or indirectly, within the cytoplasm. These mitomiRs can modulate gene expression and have a distinct role in pivotal mitochondrial metabolic pathways, thereby influencing the initiation and progression of tumors. This article concentrates on the role of mitomiRs in mitochondria and their regulatory mechanisms in tumorigenesis, with the goal of further elucidating the molecular underpinnings of tumorigenesis and development, and of identifying potential novel therapeutic targets for cancer.
文章引用:龙胜, 伍耿青. 线粒体microRNAs在肿瘤中的研究进展[J]. 临床医学进展, 2025, 15(1): 1420-1428. https://doi.org/10.12677/acm.2025.151190

1. 引言

恶性肿瘤是一种由多种因素共同作用而引发的全身性疾病,其最显著的特征是细胞的异常增殖以及向远处的迅速扩散[1]。这种细胞的无序增殖和侵袭性扩散,主要由基因组内的广泛变异驱动,包括致癌基因的突变以及环境和生理因素引起的基因组固有和新发生的改变[2]。为了满足癌细胞生存、增殖和转移所需的增加能量,肿瘤细胞代谢途径通过多种内在和外在分子机制发生相应的改变。线粒体是维持代谢平衡的关键因素,在三羧酸循环和电子传递链等关键代谢途径中扮演着核心角色。线粒体不仅产生三磷酸腺苷(Adenosine triphosphate, ATP)、活性氧(Reactive oxygen species, ROS)和生物合成中间体等促进信号传导和代谢的活性物质,而且还参与调节血红素和类固醇激素的合成、钙离子信号传导以及细胞凋亡等重要生物过程[3]。尽管已有研究阐明了线粒体在癌细胞代谢和生长中的关键作用,线粒体与肿瘤进展之间的复杂关系和分子机制仍需进一步探究。miRNAs是一类长度约为18到25个核苷酸的短链非编码RNA (Non-coding RNA, ncRNAs),它们普遍存在于所有真核细胞中,并在几乎所有生物信号通路中扮演着重要的角色[4]。自从在秀丽隐杆线虫中首次发现了miRNAs (lin-4)以来,至今在人体基因组中已识别出大约2000种miRNAs。大多数这些miRNAs在进化过程中高度保守,能够通过与信使RNA的3’非翻译区(Untranslated region, UTR)结合,从而在转录后阶段调节基因的表达。miRNAs通过一个特定的miRNA对多个mRNAs进行调控,同时也表现出多个miRNAs可以共同作用于单一mRNAs。这种双向调控机制揭示了miRNAs在调控多种关键生物过程中的复杂角色和重要性[4]。研究发现,miRNAs表达失控能够通过影响多个关键生物途径,导致肿瘤的转移、凋亡、增殖以及复发[5]。miRNAs通过其表达量的增加或减少可以促进或者抑制肿瘤的发生、发展[6],另一方面,某些miRNAs通过调节细胞代谢途径,如糖酵解和氧化磷酸化,可能导致肿瘤的耐药性出现。这种耐药性的发展,进一步促使肿瘤的生成和恶化。miRNAs通常位于细胞核和细胞质中,定位于线粒体中的miRNAs以及在细胞质中直接或间接调节线粒体特定功能的miRNAs被称为线粒体miRNAs (Mitochondrial miRNAs, mitomiRs)。许多研究表明,MitomiRs可以通过调控基因表达能力以及调节多种线粒体代谢相关途径导致线粒体功能障碍,而线粒体功能障碍可通过包括调节氧化磷酸化、加强Warburg效应以及调节活性氧的信号传导及细胞凋亡等多种途径参与包括癌症在内的多种疾病的发病机制[7]。因此,本文重点阐述了microRNAs在线粒体代谢中的作用及其在肿瘤中的调控机制,旨在进一步阐明肿瘤发生发展的分子机制,开发潜在的癌症新疗法。

2. MitomiRs在线粒体中的作用

2.1. 影响新陈代谢

存在于真核细胞内的线粒体是一种具有半自主特性的细胞器。线粒体不仅拥有独立的DNA,还能够合成特定的生物大分子,具体来说,它们能够编码13种信使RNA (mRNA)、2种核糖体RNA (rRNA)以及22种转运RNA (tRNA) [8]。线粒体不仅负责产生细胞能量,还调控关键的细胞内信号通路以维持细胞稳态,并参与脂肪酸β-氧化、三羧酸循环、氧化磷酸化、尿素循环、钙离子信号传导和铁代谢、血红素合成及类固醇激素代谢等多种代谢过程[9]。线粒体在细胞凋亡中扮演着关键角色,尤其是在高级别恶性肿瘤中。其功能异常会导致细胞凋亡抑制,以及治疗抵抗性的增强[10] [11]。研究发现线粒体基因组在癌细胞中的变异及其对mitomiRs的影响,对癌症治疗至关重要。mitomiRs通过直接调控蛋白翻译或间接影响转运体和调节蛋白的表达,参与三羧酸循环、电子传递链以及核苷酸、氨基酸和脂类代谢等关键途径[12]。研究表明,miR-101-3p这一肿瘤抑制因子能够通过影响复合物Ⅱ的组装来调控线粒体代谢,进而干预氧化磷酸化、丙酮酸代谢、三羧酸循环以及磷脂代谢的过程[13] [14]。作为线粒体氧化磷酸化途径的关键组成部分,线粒体H(+)-ATP合酶的催化亚基β-F1-ATP酶的表达受到转录后水平的精细调控。研究表明,miR-127-5p通过靶向β-F1-ATP酶mRNA的3’-UTR区域,抑制了其翻译过程[15]。Carrer等人的研究表明,miR-378缺失的小鼠表现出线粒体脂肪酸代谢的显著增强,同时胰岛素靶向组织的氧化能力也得到了提升。这一现象与miR-378对线粒体酶肉碱O-乙酰转移酶的抑制作用有关,该酶在脂肪酸代谢途径中扮演着关键角色[16]。miR-494通过调控柠檬酸合成酶影响三羧酸循环的起始阶段,同时miR-494和miR-513也涉及ATP合成与电子传递的耦联[17]。另有研究表明,miR-181c抑制线粒体细胞色素c氧化酶亚基1 (Mitochondrial cytochrome coxidase subunit 1, mt-COX1)的翻译,导致复合体IV结构重组,进而加速活性氧的生成[18]。抑制miR-33a/b的表达可以通过靶向胆固醇转运蛋白ABCA1,提高血浆中高密度脂蛋白(High density lipoprotein, HDL)水平,并降低极低密度脂蛋白(Very low density lipoprotein, VLDL)中的甘油三酯[19]。miR-183和miR-743a分别通过作用于异柠檬酸脱氢酶与苹果酸脱氢酶的3’-UTR区域,进而调节糖酵解途径[3]。在前列腺癌中,miR-17和miR-17-3p已被证实能够抑制包括锰超氧化物歧化酶(manganese superoxide dismutase, Mn-SOD2)、谷胱甘肽过氧化物酶2 (gGlutathione peroxidase-2, GPX2)和硫氧还蛋白还原酶2 (Thioredoxin reductase-2, TRXR2)在内的线粒体抗氧化酶的活性[20]。miR-181c过表达在体外模型中导致mt-COX1减少和复合体IV结构改变,在体内模型中引起复合体IV功能障碍[18]。miR-210和miR-141均被证实能靶向电子传递链中的复合物III和复合物V,从而调控线粒体功能[3]

2.2. 影响氧化应激和细胞凋亡

缺氧条件下,细胞应激反应激活,进而触发细胞凋亡等相关信号通路。miR-210作为细胞缺氧反应的重要调节因子,具有减轻缺氧导致的细胞死亡的作用。最近的研究表明,抑制丝氨酸/苏氨酸激酶糖原合成酶激酶3β (serine/threonine kinase Glycogen Synthase Kinase 3 beta, GSK3β)的表达能够激活miR-210在凋亡途径中的特定功能,从而对缺氧环境下的细胞行为产生影响[21]。miR-378作为一种mitomiR,已被证实能够抑制细胞凋亡。在一项使用大鼠心肌缺血模型的研究中发现,miR-378通过调节凋亡关键酶钙蛋白酶I (caspase-3)来控制缺血诱导的心肌细胞凋亡和细胞损伤[22]。miR-1通过靶向肝X受体α (Liver X receptorα, LXRα)抑制心肌细胞凋亡,并且这一过程涉及活性氧介导的线粒体相关途径[23]。此外,相关实验表明,miR-15b过表达增强了缺氧/复氧引起的心肌细胞凋亡,而miR-15b抑制则减少了线粒体细胞色素向细胞质释放,并降低了caspase-3及caspase-9的活性[24]

铁代谢紊乱引发的氧化应激与癌症进展等多种病理状态相关。铁硫(Fe-S)簇在线粒体中对Fe-S蛋白(如(顺)乌头酸酶和铁氧化还原蛋白)的组装至关重要[25]。miR-210通过降低线粒体铁硫簇支架蛋白(iron-sulfur cluster scaffold protein, ISCU)的表达,抑制线粒体呼吸链和三羧酸循环,导致缺氧条件和铁缺乏[26]。此外,铁代谢失调和缺氧可以上调miR-210的表达,而缺氧诱导因子-1α (hypoxia-inducible factor-1α, HIF-1α)能够与miR-210转录起始位点上游的低氧反应元件结合,进而激活miR-210的转录[27]。Argonaute 2 (AGO2)的脯氨酸羟基化作为分子开关,控制miR-210的释放和细胞内活性,调节其在源细胞和受体细胞中的功能。缺氧条件下,HIF-1α的羟基化受阻,促使其积累并激活miR-210的表达,进而影响细胞间的信号传递[28]

3. MitomiRs在肿瘤中的调控机制

miRNA通过调节线粒体基因表达,影响线粒体的多个功能,包括形态、代谢、氧化还原平衡、自噬和凋亡[29]。miRNA的异常表达与众多疾病密切相关,包括代谢性疾病、心血管疾病、神经退行性疾病以及癌症等。研究表明,针对miRNA的治疗策略在多种疾病的治疗,特别是在癌症方面,展现出了显著的潜力[30]

3.1. 塑造缺氧的肿瘤微环境

缺氧是肿瘤微环境的一个显著特征,能够诱导miRNA的产生。作为缺氧诱导的线粒体miRNA,miR-210在肿瘤研究中备受关注,它不仅是HIF-1α信号通路的下游效应分子,还参与维持HIF-1α的蛋白稳定性,对肿瘤细胞适应缺氧环境和促进肿瘤发展具有重要作用[31]。miR-210直接靶向ISCU1/2,抑制了铁硫蛋白的活性,而这些铁硫蛋白控制着线粒体酶,例如复合物I和顺乌头酸酶,进而导致氧化磷酸化过程受损[32]。这些研究结果表明,miR-210能够显著降低线粒体的功能,同时上调糖酵解的过程,从而导致肿瘤细胞对糖酵解抑制剂的敏感性增强。因此,具有高miR-210水平的肿瘤可能对靶向糖酵解途径的药物特别敏感。Chen等的研究显示,miR-210高表达的细胞对3-溴丙酮酸、2-脱氧葡萄糖和二氯乙酸等抑制剂更敏感,这些化合物可能成为抗癌药物。尽管这些化合物已被确定为潜在的治疗药物,但截至目前,它们尚未在临床试验中进行广泛测试[33]

miR-18a通过降低HIF1α的表达水平,抑制了乳腺癌细胞系MDA-MB-231的转移能力[34]。与此同时,miR-199a作为另一种靶向HIF1α的mitomiR,在多种恶性肿瘤中显示出抑制肿瘤细胞增殖并诱导细胞凋亡的作用[35]。HIF1α的miR-199结合位点突变与肿瘤细胞增殖及不良预后相关联[36]。Sun等人的研究揭示,缺氧条件下miR-181a-5p在软骨肉瘤中过表达,并激活血管内皮生长因子(vascular endothelial growth factor, VEGF)表达,此过程可被anti-miR-181a-5p阻断[37]。同时,另一项研究显示miR-181a-5p通过调节电子传递链改变葡萄糖代谢途径促进肝癌细胞增殖及肺转移[38]。miR-199、miR-181a-5p和miR-210是肿瘤微环境和代谢的关键调节因子,它们通过调控HIF1α来影响线粒体功能,进而参与肿瘤的生长、存活和转移,为开发新的肿瘤治疗策略提供了潜在的靶点。

3.2. 调控葡萄糖代谢

肿瘤细胞即使在非缺氧条件下也会转向有氧糖酵解,即Warburg效应,导致乳酸增多。这一现象最初被归因于线粒体功能障碍,但后来发现它更多是由抑癌基因缺失、癌基因激活和线粒体DNA突变等因素引起的。尽管糖酵解过程产生的ATP数量低于氧化磷酸化的产量,但其反应速度较快,能够为肿瘤细胞提供所需的代谢中间体。这些中间体在合成生物大分子和维持细胞的氧化还原平衡方面发挥着至关重要的作用[39]。Qu等研究表明,miR-128-3p能够通过靶向胶质瘤中的丙酮酸脱氢酶激酶1 (pyruvate dehydrogenase kinase 1, PDK1)来干扰Warburg效应,从而发挥抑制肿瘤细胞增殖的作用[40]。己糖激酶2 (hexokinase 2, HK2)作为糖酵解途径中的一个重要酶,其主要功能在于催化葡萄糖转化为6-磷酸葡萄糖。这一催化反应在代谢过程中具有至关重要的作用,同时也促进了Warburg效应的发生。而miR-155可能通过两种不同的调节机制上调HK2来影响乳腺癌细胞的能量代谢[41]。另一方面,Sharma和Kumar的研究表明,二甲双胍可以通过调节miR-155的表达水平诱导细胞凋亡,从而抑制乳腺癌细胞增殖[42]。另一项研究表明,通过使用核酸适配体技术抑制乳腺癌细胞系MCF-7中的miR-155,成功抑制了肿瘤细胞增殖并诱导了细胞凋亡[43]。此外,异常表达的let-7 miRNA通过调控PDK1水平,促进肿瘤细胞的有氧糖酵解和Warburg效应[44]

3.3. 在肿瘤中的促癌和抑癌作用

异常表达的miRNA能够通过靶向蛋白编码基因的方式,促使癌症干细胞的生成。此类miRNA的表达变化还可能引发上皮间质转化(Epithelial-mesenchymal transition, EMT)过程的发生,进而促进肿瘤细胞的侵袭性、转移能力和对治疗的耐受性[45]。肿瘤干细胞是一类具备干细胞特征的特定肿瘤细胞亚群,它们在肿瘤的形成和进展中发挥着重要的促进作用。相关研究表明,miR-1在黑色素瘤和乳腺癌干细胞中表现出下调现象,这一过程可能促进肿瘤的发生和发展。同时,miR-1的过表达通过直接靶向线粒体内膜组织系统1 (mitochondrial inner membrane organizing system 1, MINOS1)和甘油-3-磷酸脱氢酶2 (glycerol-3-phosphate dehydrogenase 2, GPD2)基因的3’UTR,借助与富含亮氨酸的五肽重复序列(Leucine-rich pentatricopeptide-repeat, LRPPRC)蛋白的相互作用,导致癌症干细胞的线粒体功能受到损害[46]。miR-21、miR-24、miR-181、miR-210和miR-378在结直肠腺瘤性息肉中的表达水平表现出显著的差异,表明它们在这一过程中扮演着重要的角色。此外,这些miRNA还参与了结直肠腺瘤性息肉向腺癌的恶性转变,揭示了它们在肿瘤发生发展中的潜在影响[47]。而多项研究的结果表明,miR-378在结直肠癌中展现出显著的抗癌特性。这些特性体现在多个方面:首先,miR-378能够抑制聚胺的合成;其次,它能够靶向特定的癌基因;另外,miR-378还与包括MALAT1和NEAT1在内的长链非编码RNA产生相互作用。这些机制共同作用,显著降低肿瘤细胞的侵袭能力[48]

3.4. 与免疫系统相互作用

肿瘤的发展受到先天免疫细胞和适应性免疫细胞的显著影响。mitomiR也被发现与免疫细胞存在相互作用,并能够影响免疫细胞的功能。mitomiR可能通过调节线粒体基因组转录和翻译过程,影响巨噬细胞的功能状态[49] [50]。线粒体代谢在巨噬细胞极化中扮演着关键角色。当巨噬细胞转向M1表型时,有氧糖酵解和一氧化氮产生增加;相反,在转变为M2表型时,氧化磷酸化过程变得更加显著[51]。在巨噬细胞分化过程中,miR-17-5p、miR-18a-8p、miR-23a-3p、miR-29b-3p、miR-124-3p、miR-132、miR-186-5p、miR-192-5p和miR-331-5p等miRNA表达水平上升,而miR-16-5p、miR-154-5p、miR-214-3p和miR-494-3p等miRNA表达水平下降[52]。miR-494经过广泛研究,被确认为脂多糖(Lipopolysaccharide,LPS)激活的巨噬细胞中的关键调节因子。通过观察miR-494-3p过表达的转染实验,发现LPS诱导下的促炎细胞因子,如白细胞介素-1β (Interleukin-1β, IL-1β)和肿瘤坏死因子-κB (Tumor necrosis factor-κB, TNF-κB)的产生得到了显著抑制。而当miR-494-3p的表达受到抑制时,这些促炎因子的产生则相应得到促进。与此同时,miR-494-3p还可抑制蛋白激酶B (protein kinase B, PKB)和磷酸酶紧张素同源物(Phosphatase and tensin homolog, PTEN)的活性,并阻止了p65的核转位,从而抑制炎症反应[53]。相关研究表明,miR-494-3p的过表达通过直接作用于PTEN,激活了下游的磷酸肌醇3激酶/蛋白激酶B (Phosphoinositide 3‑kinase/protein kinase B, PI3K/AKT)信号通路,进而促进了子宫内膜癌的肿瘤生长[54]。线粒体释放的线粒体转录因子(Mitochondrial transcription factor A, ATFAM)作为一种损伤相关分子模式(Damage-associated molecular patterns, DAMP),在凋亡细胞中激活免疫监视,对免疫介导的细胞反应至关重要[55]。因此,抑制TFAM可能是mitomiRls与免疫系统相互作用的潜在机制之一。miR-200a和miR-199a-3p通过下调乳腺癌细胞内的TFAM表达,进而促进了肿瘤细胞对顺铂的耐药性,并提高了它们的免疫逃逸能力[56] [57]。以上展示了mitomiRs对多种免疫细胞的影响,以及它们之间紧密地相互作用。未来的研究将进一步揭示mitomiRs与免疫系统复杂相互作用的机制。

4. 总结

mitomiRs的复杂性和多功能性使其成为科研的新焦点。研究表明,这些mitomiRs在调控线粒体代谢平衡和维持稳态中起着核心作用,并且在癌变和转移的复杂过程中扮演着多种功能角色。mitomiRs的表达与肿瘤的发生、发展和治疗密切相关,因此可以将其视为疾病诊断和预后评估的潜在生物标志物。本文通过探讨线粒体microRNAs在线粒体中的调控作用以及对肿瘤细胞的影响,阐明了mitomiRs能够通过多种途径影响肿瘤的发生与发展。这为后续mitomiRs靶向药物的开发提供了新视角。

NOTES

*通讯作者。

参考文献

[1] Yuan, Z., Li, Y., Zhang, S., Wang, X., Dou, H., Yu, X., et al. (2023) Extracellular Matrix Remodeling in Tumor Progression and Immune Escape: From Mechanisms to Treatments. Molecular Cancer, 22, Article No. 48.
https://doi.org/10.1186/s12943-023-01744-8
[2] Wang, L., Wu, C., Rajasekaran, N. and Shin, Y.K. (2018) Loss of Tumor Suppressor Gene Function in Human Cancer: An Overview. Cellular Physiology and Biochemistry, 51, 2647-2693.
https://doi.org/10.1159/000495956
[3] Bienertova-Vasku, J., Sana, J. and Slaby, O. (2013) The Role of MicroRNAs in Mitochondria in Cancer. Cancer Letters, 336, 1-7.
https://doi.org/10.1016/j.canlet.2013.05.001
[4] Rencelj, A., Gvozdenovic, N. and Cemazar, M. (2021) MitomiRs: Their Roles in Mitochondria and Importance in Cancer Cell Metabolism. Radiology and Oncology, 55, 379-392.
https://doi.org/10.2478/raon-2021-0042
[5] Loh, H., Norman, B.P., Lai, K., Rahman, N.M.A.N.A., Alitheen, N.B.M. and Osman, M.A. (2019) The Regulatory Role of Micrornas in Breast Cancer. International Journal of Molecular Sciences, 20, Article 4940.
https://doi.org/10.3390/ijms20194940
[6] Petrovic, N., Davidovic, R., Bajic, V., Obradovic, M. and Isenovic, R.E. (2017) MicroRNA in Breast Cancer: The Association with BRCA1/2. Cancer Biomarkers, 19, 119-128.
https://doi.org/10.3233/cbm-160319
[7] Zong, W., Rabinowitz, J.D. and White, E. (2016) Mitochondria and Cancer. Molecular Cell, 61, 667-676.
https://doi.org/10.1016/j.molcel.2016.02.011
[8] Mercer, T.R., Neph, S., Dinger, M.E., Crawford, J., Smith, M.A., Shearwood, A.J., et al. (2011) The Human Mitochondrial Transcriptome. Cell, 146, 645-658.
https://doi.org/10.1016/j.cell.2011.06.051
[9] Nunnari, J. and Suomalainen, A. (2012) Mitochondria: In Sickness and in Health. Cell, 148, 1145-1159.
https://doi.org/10.1016/j.cell.2012.02.035
[10] Jeong, S. and Seol, D. (2008) The Role of Mitochondria in Apoptosis. BMB Reports, 41, 11-22.
https://doi.org/10.5483/bmbrep.2008.41.1.011
[11] Adams, J.M. and Cory, S. (2007) The Bcl-2 Apoptotic Switch in Cancer Development and Therapy. Oncogene, 26, 1324-1337.
https://doi.org/10.1038/sj.onc.1210220
[12] Geiger, J. and Dalgaard, L.T. (2016) Interplay of Mitochondrial Metabolism and MicroRNAs. Cellular and Molecular Life Sciences, 74, 631-646.
https://doi.org/10.1007/s00018-016-2342-7
[13] Ziemann, M., Lim, S.C., Kang, Y., Samuel, S., Sanchez, I.L., Gantier, M., et al. (2022) MicroRNA-101-3p Modulates Mitochondrial Metabolism via the Regulation of Complex II Assembly. Journal of Molecular Biology, 434, Article 167361.
https://doi.org/10.1016/j.jmb.2021.167361
[14] Zheng, J. (2012) Energy Metabolism of Cancer: Glycolysis versus Oxidative Phosphorylation (Review). Oncology Letters, 4, 1151-1157.
https://doi.org/10.3892/ol.2012.928
[15] Willers, I.M., Martínez-Reyes, I., Martínez-Diez, M. and Cuezva, J.M. (2012) miR-127-5p Targets the 3’UTR of Human β-F1-ATPase mRNA and Inhibits Its Translation. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817, 838-848.
https://doi.org/10.1016/j.bbabio.2012.03.005
[16] Carrer, M., Liu, N., Grueter, C.E., Williams, A.H., Frisard, M.I., Hulver, M.W., et al. (2012) Control of Mitochondrial Metabolism and Systemic Energy Homeostasis by MicroRNAs 378 and 378*. Proceedings of the National Academy of Sciences, 109, 15330-15335.
https://doi.org/10.1073/pnas.1207605109
[17] Bandiera, S., Rüberg, S., Girard, M., Cagnard, N., Hanein, S., Chrétien, D., et al. (2011) Nuclear Outsourcing of RNA Interference Components to Human Mitochondria. PLOS ONE, 6, e20746.
https://doi.org/10.1371/journal.pone.0020746
[18] Das, S., Ferlito, M., Kent, O.A., Fox-Talbot, K., Wang, R., Liu, D., et al. (2012) Nuclear miRNA Regulates the Mitochondrial Genome in the Heart. Circulation Research, 110, 1596-1603.
https://doi.org/10.1161/circresaha.112.267732
[19] Rayner, K.J., Esau, C.C., Hussain, F.N., McDaniel, A.L., Marshall, S.M., van Gils, J.M., et al. (2011) Inhibition of miR-33a/b in Non-Human Primates Raises Plasma HDL and Lowers VLDL Triglycerides. Nature, 478, 404-407.
https://doi.org/10.1038/nature10486
[20] Xu, Y., Fang, F., Zhang, J., Josson, S., St. Clair, W.H. and St. Clair, D.K. (2010) miR-17* Suppresses Tumorigenicity of Prostate Cancer by Inhibiting Mitochondrial Antioxidant Enzymes. PLOS ONE, 5, e14356.
https://doi.org/10.1371/journal.pone.0014356
[21] Marwarha, G., Røsand, Ø., Slagsvold, K.H. and Høydal, M.A. (2022) GSK3β Inhibition Is the Molecular Pivot That Underlies the miR-210-Induced Attenuation of Intrinsic Apoptosis Cascade during Hypoxia. International Journal of Molecular Sciences, 23, Article 9375.
https://doi.org/10.3390/ijms23169375
[22] Fang, J., Song, X., Tian, J., Chen, H., Li, D., Wang, J., et al. (2011) Overexpression of MicroRNA-378 Attenuates Ischemia-Induced Apoptosis by Inhibiting Caspase-3 Expression in Cardiac Myocytes. Apoptosis, 17, 410-423.
https://doi.org/10.1007/s10495-011-0683-0
[23] Cheng, Y., Zhang, D., Zhu, M., Wang, Y., Guo, S., Xu, B., et al. (2018) Liver X Receptor Α Is Targeted by MicroRNA-1 to Inhibit Cardiomyocyte Apoptosis through a Ros-Mediated Mitochondrial Pathway. Biochemistry and Cell Biology, 96, 11-18.
https://doi.org/10.1139/bcb-2017-0154
[24] Liu, L., Zhang, G., Liang, Z., Liu, X., Li, T., Fan, J., et al. (2013) MicroRNA-15b Enhances Hypoxia/Reoxygenation-Induced Apoptosis of Cardiomyocytes via a Mitochondrial Apoptotic Pathway. Apoptosis, 19, 19-29.
https://doi.org/10.1007/s10495-013-0899-2
[25] Pandey, A., Pain, J., Ghosh, A.K., Dancis, A. and Pain, D. (2015) Fe-S Cluster Biogenesis in Isolated Mammalian Mitochondria: Coordinated Use of Persulfide Sulfur and Iron and Requirements for GTP, NADH, and ATP. Journal of Biological Chemistry, 290, 640-657.
https://doi.org/10.1074/jbc.m114.610402
[26] Gee, H.E., Ivan, C., Calin, G.A. and Ivan, M. (2014) HypoxamiRs and Cancer: From Biology to Targeted Therapy. Antioxidants & Redox Signaling, 21, 1220-1238.
https://doi.org/10.1089/ars.2013.5639
[27] Yoshioka, Y., Kosaka, N., Ochiya, T. and Kato, T. (2012) Micromanaging Iron Homeostasis: Hypoxia-Inducible Micro-RNA-210 Suppresses Iron Homeostasis-Related Proteins. Journal of Biological Chemistry, 287, 34110-34119.
https://doi.org/10.1074/jbc.m112.356717
[28] Hale, A., Lee, C., Annis, S., Min, P., Pande, R., Creager, M.A., et al. (2014) An Argonaute 2 Switch Regulates Circulating miR-210 to Coordinate Hypoxic Adaptation across Cells. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1843, 2528-2542.
https://doi.org/10.1016/j.bbamcr.2014.06.012
[29] Komatsu, S., Kitai, H. and Suzuki, H.I. (2023) Network Regulation of MicroRNA Biogenesis and Target Interaction. Cells, 12, Article 306.
https://doi.org/10.3390/cells12020306
[30] Bandiera, S., Matégot, R., Girard, M., Demongeot, J. and Henrion-Caude, A. (2013) MitomiRs Delineating the Intracellular Localization of MicroRNAs at Mitochondria. Free Radical Biology and Medicine, 64, 12-19.
https://doi.org/10.1016/j.freeradbiomed.2013.06.013
[31] Kelly, T.J., Souza, A.L., Clish, C.B. and Puigserver, P. (2011) A Hypoxia-Induced Positive Feedback Loop Promotes Hypoxia-Inducible Factor 1α Stability through miR-210 Suppression of Glycerol-3-Phosphate Dehydrogenase 1-Like. Molecular and Cellular Biology, 31, 2696-2706.
https://doi.org/10.1128/mcb.01242-10
[32] Chan, S.Y., Zhang, Y., Hemann, C., Mahoney, C.E., Zweier, J.L. and Loscalzo, J. (2009) MicroRNA-210 Controls Mitochondrial Metabolism during Hypoxia by Repressing the Iron-Sulfur Cluster Assembly Proteins ISCU1/2. Cell Metabolism, 10, 273-284.
https://doi.org/10.1016/j.cmet.2009.08.015
[33] Chen, Z., Li, Y., Zhang, H., Huang, P. and Luthra, R. (2010) Hypoxia-Regulated MicroRNA-210 Modulates Mitochondrial Function and Decreases ISCU and COX10 Expression. Oncogene, 29, 4362-4368.
https://doi.org/10.1038/onc.2010.193
[34] Krutilina, R., Sun, W., Sethuraman, A., Brown, M., Seagroves, T.N., Pfeffer, L.M., et al. (2014) MicroRNA-18a Inhibits Hypoxia-Inducible Factor 1α Activity and Lung Metastasis in Basal Breast Cancers. Breast Cancer Research, 16, Article No. R78.
https://doi.org/10.1186/bcr3693
[35] Wang, Y., Dai, Y., Wang, S., Qiu, M., Quan, Z., Liu, Y., et al. (2017) MiR-199a-5p Inhibits Proliferation and Induces Apoptosis in Hemangioma Cells through Targeting HIF1A. International Journal of Immunopathology and Pharmacology, 31.
https://doi.org/10.1177/0394632017749357
[36] Wang, X., Ren, H., Zhao, T., Ma, W., Dong, J., Zhang, S., et al. (2016) Single Nucleotide Polymorphism in the MicroRNA-199a Binding Site of HIF1A Gene Is Associated with Pancreatic Ductal Adenocarcinoma Risk and Worse Clinical Outcomes. Oncotarget, 7, 13717-13729.
https://doi.org/10.18632/oncotarget.7263
[37] Sun, X., Charbonneau, C., Wei, L., Chen, Q. and Terek, R.M. (2015) MiR-181a Targets RGS16 to Promote Chondrosarcoma Growth, Angiogenesis, and Metastasis. Molecular Cancer Research, 13, 1347-1357.
https://doi.org/10.1158/1541-7786.mcr-14-0697
[38] Zhuang, X., Chen, Y., Wu, Z., Xu, Q., Chen, M., Shao, M., et al. (2019) Mitochondrial MiR-181a-5p Promotes Glucose Metabolism Reprogramming in Liver Cancer by Regulating the Electron Transport Chain. Carcinogenesis, 41, 972-983.
https://doi.org/10.1093/carcin/bgz174
[39] Liberti, M.V. and Locasale, J.W. (2016) The Warburg Effect: How Does It Benefit Cancer Cells? Trends in Biochemical Sciences, 41, 211-218.
https://doi.org/10.1016/j.tibs.2015.12.001
[40] Qu, C., Yan, C., Cao, W., Li, F., Qu, Y., Guan, K., et al. (2019) MiR‐128‐3p Contributes to Mitochondrial Dysfunction and Induces Apoptosis in Glioma Cells via Targeting Pyruvate Dehydrogenase Kinase 1. IUBMB Life, 72, 465-475.
https://doi.org/10.1002/iub.2212
[41] Jiang, S., Zhang, L., Zhang, H., Hu, S., Lu, M., Liang, S., et al. (2012) A Novel miR-155/miR-143 Cascade Controls Glycolysis by Regulating Hexokinase 2 in Breast Cancer Cells. The EMBO Journal, 31, 1985-1998.
https://doi.org/10.1038/emboj.2012.45
[42] Sharma, P. and Kumar, S. (2018) Metformin Inhibits Human Breast Cancer Cell Growth by Promoting Apoptosis via a ROS-Independent Pathway Involving Mitochondrial Dysfunction: Pivotal Role of Superoxide Dismutase (SOD). Cellular Oncology, 41, 637-650.
https://doi.org/10.1007/s13402-018-0398-0
[43] Kardani, A., Yaghoobi, H., Alibakhshi, A. and Khatami, M. (2020) Inhibition of miR‐155 in MCF‐7 Breast Cancer Cell Line by Gold Nanoparticles Functionalized with Antagomir and AS1411 Aptamer. Journal of Cellular Physiology, 235, 6887-6895.
https://doi.org/10.1002/jcp.29584
[44] Ma, X., Li, C., Sun, L., Huang, D., Li, T., He, X., et al. (2014) Lin28/Let-7 Axis Regulates Aerobic Glycolysis and Cancer Progression via PDK1. Nature Communications, 5, Article No. 5212.
https://doi.org/10.1038/ncomms6212
[45] Zhao, L., Chen, X. and Cao, Y. (2011) New Role of MicroRNA: Carcinogenesis and Clinical Application in Cancer. Acta Biochimica et Biophysica Sinica, 43, 831-839.
https://doi.org/10.1093/abbs/gmr080
[46] Zhang, S., Liu, C. and Zhang, X. (2019) Mitochondrial Damage Mediated by miR-1 Overexpression in Cancer Stem Cells. Molecular Therapy-Nucleic Acids, 18, 938-953.
https://doi.org/10.1016/j.omtn.2019.10.016
[47] Wallace, L., Aikhionbare, K., Banerjee, S., Peagler, K., Pitts, M., Yao, X., et al. (2021) Differential Expression Profiles of Mitogenome Associated MicroRNAs among Colorectal Adenomatous Polyps. Cancer Research Journal, 9, 23-33.
https://doi.org/10.11648/j.crj.20210901.14
[48] Castellani, G., Buccarelli, M., Lulli, V., Ilari, R., De Luca, G., Pedini, F., et al. (2022) MiR-378a-3p Acts as a Tumor Suppressor in Colorectal Cancer Stem-Like Cells and Affects the Expression of MALAT1 and NEAT1 LncRNAs. Frontiers in Oncology, 12, Article 867886.
https://doi.org/10.3389/fonc.2022.867886
[49] Fan, S., Tian, T., Chen, W., Lv, X., Lei, X., Zhang, H., et al. (2019) Mitochondrial MiRNA Determines Chemoresistance by Reprogramming Metabolism and Regulating Mitochondrial Transcription. Cancer Research, 79, 1069-1084.
https://doi.org/10.1158/0008-5472.can-18-2505
[50] Mehla, K. and Singh, P.K. (2019) Metabolic Regulation of Macrophage Polarization in Cancer. Trends in Cancer, 5, 822-834.
https://doi.org/10.1016/j.trecan.2019.10.007
[51] Qing, J., Zhang, Z., Novák, P., Zhao, G. and Yin, K. (2020) Mitochondrial Metabolism in Regulating Macrophage Polarization: An Emerging Regulator of Metabolic Inflammatory Diseases. Acta Biochimica et Biophysica Sinica, 52, 917-926.
https://doi.org/10.1093/abbs/gmaa081
[52] Duroux-Richard, I., Apparailly, F. and Khoury, M. (2021) Mitochondrial MicroRNAs Contribute to Macrophage Immune Functions Including Differentiation, Polarization, and Activation. Frontiers in Physiology, 12, Article 738140.
https://doi.org/10.3389/fphys.2021.738140
[53] Zhang, S., He, K., Zhou, W., Cao, J. and Jin, Z. (2019) MiR-494-3p Regulates Lipopolysaccharide-Induced Inflammatory Responses in RAW264.7 Cells by Targeting PTEN. Molecular Medicine Reports, 19, 4288-4296.
https://doi.org/10.3892/mmr.2019.10083
[54] Zhu, L., Wang, X., Wang, T., Zhu, W. and Zhou, X. (2018) MiR-494-3p Promotes the Progression of Endometrial Cancer by Regulating the PTEN/PI3K/AKT Pathway. Molecular Medicine Reports, 19, 581-588.
https://doi.org/10.3892/mmr.2018.9649
[55] Yang, M., Li, C., Zhu, S., Cao, L., Kroemer, G., Zeh, H., et al. (2018) TFAM Is a Novel Mediator of Immunogenic Cancer Cell Death. OncoImmunology, 7, e1431086.
https://doi.org/10.1080/2162402x.2018.1431086
[56] Yao, J., Zhou, E., Wang, Y., Xu, F., Zhang, D. and Zhong, D. (2014) MicroRNA-200a Inhibits Cell Proliferation by Targeting Mitochondrial Transcription Factor a in Breast Cancer. DNA and Cell Biology, 33, 291-300.
https://doi.org/10.1089/dna.2013.2132
[57] Fan, X., Zhou, S., Zheng, M., Deng, X., Yi, Y. and Huang, T. (2017) MiR-199a-3p Enhances Breast Cancer Cell Sensitivity to Cisplatin by Downregulating TFAM (TFAM). Biomedicine & Pharmacotherapy, 88, 507-514.
https://doi.org/10.1016/j.biopha.2017.01.058