[1]
|
Zang, M., Peng, Q. and Wang, C. (2024) Analysis of Foundation Pit Support Selection and Design Problems in Deep Soft Soil Area. Advances in Civil Engineering, 2024, Article 2779898. https://doi.org/10.1155/2024/2779898
|
[2]
|
Korff, M., Mair, R.J. and Van Tol, F.A.F. (2016) Pile-Soil Interaction and Settlement Effects Induced by Deep Excavations. Journal of Geotechnical and Geoenvironmental Engineering, 142. https://doi.org/10.1061/(asce)gt.1943-5606.0001434
|
[3]
|
Chen, D., Wang, Z., Jiang, K., Yu, F., Su, J. and Ai, X. (2024) Study on the Coupling Effect and Construction Deformation Control of Large Deep Foundation Pit Groups Involving Iron Considering the Coupling Effect of Seepage Stress. Thermal Science and Engineering Progress, 54, Article 102780. https://doi.org/10.1016/j.tsep.2024.102780
|
[4]
|
Zolqadr, E., Yasrobi, S.S. and Norouz Olyaei, M. (2015) Analysis of Soil Nail Walls Performance—Case Study. Geomechanics and Geoengineering, 11, 1-12. https://doi.org/10.1080/17486025.2015.1006263
|
[5]
|
Hsieh, H.S., Huang, Y.H., Hsu, W.T., et al. (2017) On the System Stiffness of Deep Excavation in Soft Clay. Journal of GeoEngineering, 12, 21-24.
|
[6]
|
Chheng, C. and Likitlersuang, S. (2018) Underground Excavation Behaviour in Bangkok Using Three-Dimensional Finite Element Method. Computers and Geotechnics, 95, 68-81. https://doi.org/10.1016/j.compgeo.2017.09.016
|
[7]
|
左伟, 叶洪东, 魏东波. 水泥土桩止水帷幕对深基坑整体稳定性的影响分析[J]. 中国煤炭地质, 2018, 30(7): 54-57.
|
[8]
|
Han, W., Li, G., Sun, Z., Luan, H., Liu, C. and Wu, X. (2020) Numerical Investigation of a Foundation Pit Supported by a Composite Soil Nailing Structure. Symmetry, 12, Article 252. https://doi.org/10.3390/sym12020252
|
[9]
|
《中国公路学报》编辑部. 中国隧道工程学术研究综述∙2015 [J]. 中国公路学报, 2015, 28(5): 1-65.
|
[10]
|
Yu, J., Chen, J., Zhou, J., Xu, J. and Gong, X. (2024) Analytical Modeling for the Behavior of Concrete-Cored Cement Mixing (CCM) Pile Composite Foundation under Embankment. Computers and Geotechnics, 167, Article 106084. https://doi.org/10.1016/j.compgeo.2024.106084
|
[11]
|
商庆坤, 裴利华, 桂跃, 等. 泥炭质土水泥土搅拌桩复合地基承载特性研究[J]. 地基处理, 2022, 4(1): 40-47.
|
[12]
|
许胜才, 张信贵, 马福荣, 等. 水泥土桩加固边坡变形破坏特性及模型试验分析[J]. 岩土力学, 2017, 38(11): 3187-3196.
|
[13]
|
Liyanapathirana, D.S. and Nishanthan, R. (2016) Influence of Deep Excavation Induced Ground Movements on Adjacent Piles. Tunnelling and Underground Space Technology, 52, 168-181. https://doi.org/10.1016/j.tust.2015.11.019
|
[14]
|
郑刚, 夏博洋, 周海祚, 等. 桩体模量对水泥土搅拌桩复合地基破坏影响研究[J]. 中国公路学报, 2020, 33(9): 146-154.
|
[15]
|
张松, 余再西, 刘克明. 某软土基坑复合土钉墙支护结构失稳分析与加固处理[J]. 建筑结构, 2022, 52(S2): 2419-2422.
|
[16]
|
赵玉军. 水泥土搅拌桩复合土钉支护稳定性分析[J]. 农业科技与信息, 2020(4): 122-123.
|
[17]
|
陈建梅, 孙庭宫, 朱凌锋, 等. 基坑支护结构设计选型、事故的原因、预防和加固处理方法及设计中的注意事项[J]. 中华建设, 2021(8): 90-91.
|
[18]
|
田坤, 朱鸿鹄, 张诚成. 土钉横向抗剪效应对边坡稳定性的影响[J]. 工程地质学报, 2022, 30(5): 1744-1752.
|
[19]
|
潘必胜. 重力式水泥土墙在连云港地区海相沉积土基坑支护中的应用[J]. 铁道标准设计, 2020, 64(6): 57-60.
|
[20]
|
Singh, V.P. and Sivakumar Babu, G.L. (2009) 2D Numerical Simulations of Soil Nail Walls. Geotechnical and Geological Engineering, 28, 299-309. https://doi.org/10.1007/s10706-009-9292-x
|
[21]
|
付佰勇, 师启龙. 深层水泥搅拌桩承载特性研究进展分析[J]. 中国港湾建设, 2021, 41(4): 29-31, 76.
|
[22]
|
Pak, A., Maleki, J., Aghakhani, N. and Yousefi, M. (2019) Numerical Investigation of Stability of Deep Excavations Supported by Soil-Nailing Method. Geomechanics and Geoengineering, 16, 434-451. https://doi.org/10.1080/17486025.2019.1680878
|
[23]
|
彭方明. 地质参数对桩身受力及变形机理的影响分析[J]. 安徽建筑, 2024, 31(9): 137-139.
|
[24]
|
穆青. 土层参数变化对深基坑变形影响规律研究[J]. 江西建材, 2023(12): 70-72.
|
[25]
|
蒋远芳. 岩土体力学参数对抗滑桩变形特性的影响研究[J]. 西部交通科技, 2023(12): 102-103, 127.
|
[26]
|
Wang, Y. (2019) Study on the Influence of Soil Parameters Change on the Stability of Foundation Pit. IOP Conference Series: Earth and Environmental Science, 304, Article 052004. https://doi.org/10.1088/1755-1315/304/5/052004
|
[27]
|
李镜培, 施曙东, 郑笠, 等. 邻近基坑开挖及渗流条件下的主动土压力模型[J]. 水资源与水工程学报, 2023, 34(1): 168-175.
|
[28]
|
Phutthananon, C., Jongpradist, P., Yensri, P. and Jamsawang, P. (2018) Dependence of Ultimate Bearing Capacity and Failure Behavior of T-Shaped Deep Cement Mixing Piles on Enlarged Cap Shape and Pile Strength. Computers and Geotechnics, 97, 27-41. https://doi.org/10.1016/j.compgeo.2017.12.013
|
[29]
|
李国庆, 马海春, 崔可锐, 等. 土钉支护边坡影响因素试验分析[J]. 水利水运工程学报, 2018(4): 54-60.
|
[30]
|
章善保, 陈琛, 高子展, 等. 搅拌桩复合土钉基坑支护技术应用效果数值模拟分析[J]. 四川水泥, 2024(8): 154-156, 159.
|
[31]
|
曹程明, 时轶磊, 龙照, 等. 考虑软弱夹层的土钉墙设计参数对基坑变形与稳定性影响分析[J]. 甘肃科学学报, 2022, 34(6): 85-90.
|
[32]
|
彭永强. 论深基坑工程影响土钉墙支护稳定性的因素及对策[J]. 科学技术创新, 2022(11): 133-136.
|
[33]
|
罗远明. 土钉墙支护基坑边坡的稳定性及影响因素分析[J]. 公路与汽运, 2021(3): 82-86.
|
[34]
|
Xu, Z., Wang, X., Guo, L. and Yu, T. (2024) Stability Evaluation of Slope Based on Global Sensitivity Analysis. Complexity, 2024, Article 2333859. https://doi.org/10.1155/2024/2333859
|
[35]
|
Deng, L., Feng, B. and Zhang, Y. (2018) An Optimization Method for Multi-Objective and Multi-Factor Designing of a Ceramic Slurry: Combining Orthogonal Experimental Design with Artificial Neural Networks. Ceramics International, 44, 15918-15923. https://doi.org/10.1016/j.ceramint.2018.06.010
|
[36]
|
Hong, B., Lin, B. and Lin, J. (2017) Quantification of Residential Design Parameters’ Effects on the Outdoor Wind Environment Using Orthogonal Experimental Design (OED) and Numerical Simulation. Procedia Engineering, 205, 137-144. https://doi.org/10.1016/j.proeng.2017.09.945
|
[37]
|
Ghadrdan, M., Shaghaghi, T. and Tolooiyan, A. (2020) Sensitivity of the Stability Assessment of a Deep Excavation to the Material Characterisations and Analysis Methods. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6, Article No. 59. https://doi.org/10.1007/s40948-020-00186-6
|
[38]
|
邓聚龙. 灰色控制系统[J]. 华中工学院学报, 1982(3): 9-18.
|
[39]
|
Xu, Z., Zhuoying, T. (2016) Slope Excavation and Parameter Sensitivity Analysis Based on Grey Correlation Method. Electronic Journal of Geotechnical Engineering, 21, 4549-4558.
|
[40]
|
闫威, 晏飞群. 基于灰色关联改进模型的深基坑支护方案优选[J]. 铁道建筑, 2014(4): 94-97.
|
[41]
|
白建光, 张雁, 李海军. 灰色-层次分析法在基坑支护方法选取教学中的应用[J]. 高教学刊, 2021, 7(23): 113-116.
|
[42]
|
黄书岭, 冯夏庭, 张传庆. 岩体力学参数的敏感性综合评价分析方法研究[J]. 岩石力学与工程学报, 2008(S1): 2624-2630.
|
[43]
|
何满潮, 乾增珍, 汪仁和. BP神经网络在深基坑工程支护方案优选的应用[J]. 矿业研究与开发, 2004(2): 22-23, 33.
|
[44]
|
刘忠会, 王军祥, 李鹏. 基于GA-ANN的岩土体变形参数敏感度分析[J]. 山西建筑, 2011, 37(7): 40-42.
|
[45]
|
Han Fen, and Li Bo, (2010) Mix Design of Wearable Cement Concrete Based on the Fuzzy Orthogonal Experiment. 2010 International Conference on Mechanic Automation and Control Engineering, Wuhan, 26-28 June 2010, 1366-1369. https://doi.org/10.1109/mace.2010.5536258
|
[46]
|
Fan, T.J. and Chen, H. (2012) Relationships between the Volumetric Parameters and the Marshall Index for Asphalt Mixtures. Applied Mechanics and Materials, 174, 947-953. https://doi.org/10.4028/www.scientific.net/amm.174-177.947
|
[47]
|
侯文萃, 辛全才. 基于改进正交设计的黄土边坡稳定影响因素敏感性分析[J]. 土工基础, 2016, 30(2): 209-213.
|
[48]
|
李英华, 张明媛, 袁永博. 基于正交设计的基坑开挖放坡稳定影响因素敏感性分析[J]. 土木工程与管理学报, 2017, 34(1): 113-116, 142.
|
[49]
|
何忠明, 王盘盘, 王利军, 等. 深基坑施工对临近地铁隧道变形影响及参数敏感性分析[J]. 长安大学学报(自然科版), 2022, 42(4): 63-72.
|
[50]
|
樊云龙. 地铁车站基坑开挖变形影响因素敏感性分析[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2021.
|
[51]
|
张恩祥, 胡涌琼, 何腊平, 等. 深基坑疏桩强锚支护结构参数敏感性分析[J]. 科学技术与工程, 2022, 22(18): 7998-8004.
|
[52]
|
王刚, 胡立强, 孙尚渠, 等. 淤泥质软土基坑搅拌桩与土钉复合支护结构受力与变形特性[J]. 科学技术与工程, 2022, 22(12): 4962-4969.
|
[53]
|
Kong, L., Zhang, Z., Yuan, Q., Liang, Q., Shi, Y. and Lin, J. (2018) Multi-Factor Sensitivity Analysis on the Stability of Submarine Hydrate-Bearing Slope. China Geology, 1, 367-373. https://doi.org/10.31035/cg2018051
|
[54]
|
Zou, G., Xu, J. and Wu, C. (2017) Evaluation of Factors That Affect Rutting Resistance of Asphalt Mixes by Orthogonal Experiment Design. International Journal of Pavement Research and Technology, 10, 282-288. https://doi.org/10.1016/j.ijprt.2017.03.008
|
[55]
|
Su, L., Zhang, J., Wang, C., Zhang, Y., Li, Z., Song, Y., et al. (2016) Identifying Main Factors of Capacity Fading in Lithium Ion Cells Using Orthogonal Design of Experiments. Applied Energy, 163, 201-210. https://doi.org/10.1016/j.apenergy.2015.11.014
|
[56]
|
Hu, C. and Zhang, X. (2019) Influence of Multiple Structural Parameters on Interior Ballistics Based on Orthogonal Test Methods. Defence Technology, 15, 690-697. https://doi.org/10.1016/j.dt.2019.06.014
|
[57]
|
白帅. 深基坑桩锚支护有限元数值模拟分析及优化设计研究[D]: [硕士学位论文]. 成都: 西华大学, 2023.
|
[58]
|
冉涛, 毛江南, 梅松华, 等. 基于正交试验法的重力锚基坑岩土参数敏感性分析[J]. 长江科学院院报, 2018, 35(1): 101-106, 111.
|
[59]
|
刘瑞江, 张业旺, 闻崇炜, 等. 正交试验设计和分析方法研究[J]. 实验技术与管理, 2010, 27(9): 52-55.
|