[1]
|
Townsend, N., Kazakiewicz, D., Lucy Wright, F., Timmis, A., Huculeci, R., Torbica, A., et al. (2021) Epidemiology of Cardiovascular Disease in Europe. Nature Reviews Cardiology, 19, 133-143. https://doi.org/10.1038/s41569-021-00607-3
|
[2]
|
Bays, H.E., Agarwala, A., German, C., Satish, P., Iluyomade, A., Dudum, R., et al. (2022) Ten Things to Know about Ten Cardiovascular Disease Risk Factors—2022. American Journal of Preventive Cardiology, 10, Article ID: 100342. https://doi.org/10.1016/j.ajpc.2022.100342
|
[3]
|
Levey, A.S. and Coresh, J. (2012) Chronic Kidney Disease. The Lancet, 379, 165-180. https://doi.org/10.1016/s0140-6736(11)60178-5
|
[4]
|
Heldal, K., et al. (2022) Estimated Glomerular Filtration Rate as a Measurement of Kidney Function. Tidsskr Nor Laegeforen, 141, 115-128.
|
[5]
|
Cusumano, A.M., Tzanno-Martins, C. and Rosa-Diez, G.J. (2021) The Glomerular Filtration Rate: From the Diagnosis of Kidney Function to a Public Health Tool. Frontiers in Medicine (Lausanne), 8, Article ID: 769335. https://doi.org/10.3389/fmed.2021.769335
|
[6]
|
Hill, N.R., Fatoba, S.T., Oke, J.L., Hirst, J.A., O’Callaghan, C.A., Lasserson, D.S., et al. (2016) Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLOS ONE, 11, e0158765. https://doi.org/10.1371/journal.pone.0158765
|
[7]
|
Visseren, F.L.J., Mach, F., Smulders, Y.M., Carballo, D., Koskinas, K.C., Bäck, M., et al. (2021) 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. European Heart Journal, 42, 3227-3337. https://doi.org/10.1093/eurheartj/ehab484
|
[8]
|
Aimo, A., Januzzi, J.L., Vergaro, G., Ripoli, A., Latini, R., Masson, S., et al. (2019) High-Sensitivity Troponin T, NT-proBNP and Glomerular Filtration Rate: A Multimarker Strategy for Risk Stratification in Chronic Heart Failure. International Journal of Cardiology, 277, 166-172. https://doi.org/10.1016/j.ijcard.2018.10.079
|
[9]
|
Wyld, M. and Webster, A.C. (2021) Chronic Kidney Disease Is a Risk Factor for Stroke. Journal of Stroke and Cerebrovascular Diseases, 30, Article ID: 105730. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105730
|
[10]
|
Verduijn, M., Siegerink, B., Jager, K.J., Zoccali, C. and Dekker, F.W. (2010) Mendelian Randomization: Use of Genetics to Enable Causal Inference in Observational Studies. Nephrology Dialysis Transplantation, 25, 1394-1398. https://doi.org/10.1093/ndt/gfq098
|
[11]
|
Burgess, S., Davey Smith, G., Davies, N.M., Dudbridge, F., Gill, D., Glymour, M.M., et al. (2019) Guidelines for Performing Mendelian Randomization Investigations. Wellcome Open Research, 4, 186. https://doi.org/10.12688/wellcomeopenres.15555.1
|
[12]
|
Staley, J.R., Blackshaw, J., Kamat, M.A., Ellis, S., Surendran, P., Sun, B.B., et al. (2016) PhenoScanner: A Database of Human Genotype-Phenotype Associations. Bioinformatics, 32, 3207-3209. https://doi.org/10.1093/bioinformatics/btw373
|
[13]
|
Francula-Zaninovic, S. and Nola, I.A. (2018) Management of Measurable Variable Cardiovascular Disease’ Risk Factors. Current Cardiology Reviews, 14, 153-163. https://doi.org/10.2174/1573403x14666180222102312
|
[14]
|
Lee‐Lane, E., Torabi, F., Lacey, A., Fonferko‐Shadrach, B., Harris, D., Akbari, A., et al. (2021) Epilepsy, Antiepileptic Drugs, and the Risk of Major Cardiovascular Events. Epilepsia, 62, 1604-1616. https://doi.org/10.1111/epi.16930
|
[15]
|
Spiga, F., et al. (2022) Tools for Assessing Quality and Risk of Bias in Mendelian Randomization Studies: A Systematic Review. International Journal of Epidemiology, 52, 227-249.
|
[16]
|
Lawlor, D.A., Harbord, R.M., Sterne, J.A.C., Timpson, N. and Davey Smith, G. (2008) Mendelian Randomization: Using Genes as Instruments for Making Causal Inferences in Epidemiology. Statistics in Medicine, 27, 1133-1163. https://doi.org/10.1002/sim.3034
|
[17]
|
Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. International Journal of Epidemiology, 44, 512-525. https://doi.org/10.1093/ije/dyv080
|
[18]
|
Zhang, W. and Ghosh, D. (2020) A General Approach to Sensitivity Analysis for Mendelian Randomization. Statistics in Biosciences, 13, 34-55. https://doi.org/10.1007/s12561-020-09280-5
|
[19]
|
Burgess, S. and Thompson, S.G. (2017) Interpreting Findings from Mendelian Randomization Using the MR-Egger Method. European Journal of Epidemiology, 32, 377-389. https://doi.org/10.1007/s10654-017-0255-x
|
[20]
|
Verbanck, M., Chen, C., Neale, B. and Do, R. (2018) Detection of Widespread Horizontal Pleiotropy in Causal Relationships Inferred from Mendelian Randomization between Complex Traits and Diseases. Nature Genetics, 50, 693-698. https://doi.org/10.1038/s41588-018-0099-7
|
[21]
|
Bowden, J. and Holmes, M.V. (2019) Meta‐Analysis and Mendelian Randomization: A Review. Research Synthesis Methods, 10, 486-496. https://doi.org/10.1002/jrsm.1346
|
[22]
|
Afsar, B., Turkmen, K., Covic, A. and Kanbay, M. (2014) An Update on Coronary Artery Disease and Chronic Kidney Disease. International Journal of Nephrology, 2014, Article ID: 767424. https://doi.org/10.1155/2014/767424
|
[23]
|
Popolo, A., Autore, G., Pinto, A. and Marzocco, S. (2013) Oxidative Stress in Patients with Cardiovascular Disease and Chronic Renal Failure. Free Radical Research, 47, 346-356. https://doi.org/10.3109/10715762.2013.779373
|
[24]
|
Nanayakkara, P.W.B. and Gaillard, C.A.J.M. (2010) Vascular Disease and Chronic Renal Failure: New Insights. Netherlands Journal of Medicine, 68, 5-14.
|
[25]
|
Skalsky, K., Shiyovich, A., Steinmetz, T. and Kornowski, R. (2022) Chronic Renal Failure and Cardiovascular Disease: A Comprehensive Appraisal. Journal of Clinical Medicine, 11, Article No. 1335. https://doi.org/10.3390/jcm11051335
|
[26]
|
Schefold, J.C., Filippatos, G., Hasenfuss, G., Anker, S.D. and von Haehling, S. (2016) Heart Failure and Kidney Dysfunction: Epidemiology, Mechanisms and Management. Nature Reviews Nephrology, 12, 610-623. https://doi.org/10.1038/nrneph.2016.113
|
[27]
|
Kelly, D. and Rothwell, P.M. (2019) Disentangling the Multiple Links between Renal Dysfunction and Cerebrovascular Disease. Journal of Neurology, Neurosurgery & Psychiatry, 91, 88-97. https://doi.org/10.1136/jnnp-2019-320526
|
[28]
|
Oh, C., Park, S.K., Jung, J.Y., Choi, J., Ha, E., Lee, E., et al. (2021) Reduced Glomerular Filtration Rate and Risk of Stroke: A Nationwide Cohort Study in South Korea. Journal of Atherosclerosis and Thrombosis, 28, 928-941. https://doi.org/10.5551/jat.56143
|
[29]
|
Bos, M.J., Koudstaal, P.J., Hofman, A. and Breteler, M.M.B. (2007) Decreased Glomerular Filtration Rate Is a Risk Factor for Hemorrhagic but Not for Ischemic Stroke. Stroke, 38, 3127-3132. https://doi.org/10.1161/strokeaha.107.489807
|
[30]
|
Ding, W.Y., Gupta, D., Wong, C.F. and Lip, G.Y.H. (2020) Pathophysiology of Atrial Fibrillation and Chronic Kidney Disease. Cardiovascular Research, 117, 1046-1059. https://doi.org/10.1093/cvr/cvaa258
|
[31]
|
Eisen, A., Haim, M., Hoshen, M., Balicer, R.D., Reges, O., Leibowitz, M., et al. (2016) Estimated Glomerular Filtration Rate within the Normal or Mildly Impaired Range and Incident Non-Valvular Atrial Fibrillation: Results from a Population-Based Cohort Study. European Journal of Preventive Cardiology, 24, 213-222. https://doi.org/10.1177/2047487316676132
|
[32]
|
Deo, R., Katz, R., Kestenbaum, B., Fried, L., Sarnak, M.J., Psaty, B.M., et al. (2010) Impaired Kidney Function and Atrial Fibrillation in Elderly Subjects. Journal of Cardiac Failure, 16, 55-60. https://doi.org/10.1016/j.cardfail.2009.07.002
|