神经重症多模态脑监测
Multimodal Brain Monitoring in Neurocritical Care
摘要: 神经重症患者常面临急性脑损伤、颅内压升高及脑血流障碍等复杂病理生理问题,这些问题需要精准的监测手段以支持诊断和干预。传统神经监测方法以临床检查为主,但发现的变化往往是晚期体征,不足以发现和预防继发性脑损伤。近年来,多模态脑监测(MMM)技术的发展为神经重症监测提供了新的可能。MMM涵盖脑组织氧监测、脑血流监测、颅内压监测、脑电监测及脑代谢监测等多种手段,从多维度动态评估脑功能和病理状态。本文详细探讨了上述监测方法的原理、技术特点、临床应用及其在神经重症管理中的优势与局限性。没有一种单一的监测手段是适合所有患者,MMM是当前的趋势。随着该技术的进一步推广和应用,可为神经重症患者提供更为及时和个性化的治疗。
Abstract: Patients with severe neurological diseases in the neuroscience intensive care unit often face complex pathophysiological problems such as acute brain injury, increased intracranial pressure, and cerebral blood flow obstruction, which require precise monitoring techniques to support diagnosis and intervention. Traditional neurological monitoring methods are mainly based on clinical examination, but changes found during the examination are often late signs and insufficient to detect and prevent secondary brain injury. In recent years, the development of multimodal brain monitoring (MMM) technology has provided new possibilities for neurocritical care monitoring. MMM covers oxygen monitoring of brain tissue, cerebral blood flow monitoring, intracranial pressure monitoring, electroencephalography (EEG) monitoring, and cerebral metabolism monitoring, which evaluate brain function and pathological states from multiple dimensions and in a dynamic manner. This article discusses the principles, technical features, clinical applications, and advantages and limitations of the monitoring methods in detail. No single monitoring method is suitable for all patients, and MMM is the current trend. With the further promotion and application of this technology, it can provide more timely and personalized treatment for neurosurgical intensive care patients.
文章引用:张书玮, 曹云星. 神经重症多模态脑监测[J]. 临床医学进展, 2025, 15(1): 1450-1457. https://doi.org/10.12677/acm.2025.151194

1. 引言

神经重症患者常常面临急性脑损伤、颅内压升高、脑血流障碍等复杂病理生理问题,与此同时,神经功能评价及治疗手段有限,因此监测及管理神经系统重症患者的脑功能至关重要[1]。传统的神经监测方法依赖于临床神经检查,然而,这些检查往往仅能反映较晚期的病理变化,难以及早发现潜在的二次脑损伤[2]。为了克服这一局限,近年来多模态脑监测(brain multimodality monitoring, MMM)技术逐渐兴起,并应用于神经危重症监护领域。

MMM采用脑组织氧监测、脑血流监测、颅内压监测、脑电监测脑代谢监测的手段,从不同角度评价脑功能,将数据进一步整合分析,系统而全面地评估脑生理功能/病理改变,从而实现患者个体化管理,还能帮助医生设计和实施优化的管理方案,以改善患者的预后和生存质量[3]。本文回顾了目前常用的神经重症监测工具。

2. 脑组织氧监测

神经重症患者存在脑灌注减少及血流动力学改变引发的低氧血症,可导致血脑屏障受损、脑微循环障碍、炎症因子活化,可诱发脑水肿和癫痫发作[4]。因此,脑组织氧监测可以在神经系统受到永久性损伤之前及时发现并给予适当的干预[5]。目前,常用的脑组织氧监测工具有三种:颈静脉球氧饱和度监测、近红外光谱以及脑组织氧分压监测。

2.1. 颈静脉球氧饱和度(Jugular Bulb Oximetry, SjvO2)

颈静脉球是位于颈静脉在颅外的膨大部分,由乙状窦延续而成,是从大脑半球、小脑和脑干流出静脉血的最后共同通道。SivO2可用于脑组织耗氧量的间接评价,反映了全脑供氧与耗氧之间的动态平衡。因此,SjvO2被认为是全脑血流量与脑代谢之间关系的有用指标[5]。其测量可直接穿刺颈静脉球,或经颈内静脉逆行置入静脉内导管至颈静脉球[6]。SjvO2正常范围在55%~75%之间[7]。低于55%提示脑耗氧量大于供氧量(例如在缺血状态下),而高于75%提示大脑相对充血[8]。既往研究发现影响SjvO2的因素有脑血流量、脑氧代谢率、动脉血氧含量和血红蛋白浓度[9]

SjvO2监测方法广泛应用临床,在神经重症患者中,SjvO2常用于外伤性脑损伤(Traumatic Brain Injury, TBI)和蛛网膜下腔出血(Subarachnoid Hemorrhage, SAH)患者脑灌注受损的监测,以维持正常脑灌注压[9]。一项对50名TBI患者的回顾性分析显示,SjvO2下降的程度是唯一与预后显著相关的因素[10]。Sharf [11]等人的研究也证明了SjvO2监测在TBI患者中的重要性。监测SjvO2有利于早期识别脑缺血和缺氧,与患者预后密切相关[12]

SjvO2的优势在于其能监测全脑血氧饱和度,并在脑缺血期间实时监测变化趋势。然而,这是一种侵入性方法,监测时间越长,出现感染和静脉血栓的风险越高。此外,由于SjvO2评估的是全脑血氧水平,对局部脑缺血和缺氧的敏感性较低。因此,正常的SjvO2值并不一定表示没有局部脑缺血[5]。随着NIRS等非侵入性监测方法的改进,SjvO2监测的使用可能会减少。

2.2. 近红外光谱(Near-Infrared Spectroscopy, NIRS)

NIRS是一种监测大脑血氧饱和度的新兴光学技术,基于生物组织对特定波长红外光的透射性及血红蛋白等对光谱的不同吸收率,计算得出局部血红蛋白氧饱和度[13]。NIRS是一种有前景且可靠的方法,通常应用于脑部疾病的诊断和检查[14]-[16]。通过在头皮放置的传感器能够无创地获取大脑的信息,是目前唯一的无创床边脑血氧饱和度监测技术,近年来得到越来越多的应用[17]

脑血氧饱和度通常用rSO2表示,理论上是脑动脉、毛细血管和静脉氧饱和度的加权平均值[18],实际监测中是监测部位血红蛋白的携氧量,其结果通常以0%~100%来表示。近年来,关于NIRS监测脑血氧饱和度的研究较多。Parnia [19]等人对183例院内心脏骤停患者使用了NIRS监测,结果表明,rSO2可用于评估心肺复苏期间的脑氧合,较好的rSO2患者与更好的生存率和自发循环恢复率相关。在脑损伤研究中,Dunham [20]等对18例TBI患者进行了观察性研究,发现rSO2 < 60%与死亡率、颅内压升高、脑灌注压降低相关。Yokose [21]等人对14例SAH患者的研究发现rSO2降低3.9%~6.4%是识别缺血的最佳阈值。

基于NIRS的rSO2监测具有独特的优势:rSO2的变化可以直观地反映疾病的恶化和好转,rSO2监测有助于及时发现脑氧合下降,减少长期低脑氧合引起的并发症的发生率。与现有技术(如CT、功能磁共振成像和脑电图)相比,NIRS监测具有更高的时间分辨率,是一种无创的实时连续测量方法[22]。然而,NIRS的信噪比和空间分辨率较低,在实际应用中,监测部位的选择对结果有很大影响。不同设备的算法不同导致结果难以比较且无标准,存在广泛的个体内和个体间变异性[23]。此外,关于rSO2值的正常范围或缺血和缺氧的临界阈值尚无共识。因此NIRS监测设备一般仅用于趋势分析。

2.3. 脑组织氧分压(Brain Tissue Oxygen, PbtO2)

PbtO2监测也是近年来发展起来的一种新兴的脑血氧饱和度监测技术。PbtO2可以在细胞水平上反映脑组织的氧合情况,以及脑组织的灌注和循环状况[24]。该方法将微导管插入目标脑组织,直接测量局部PbtO2值的动态变化。通过这种方式,可以监测脑组织的区域能量代谢和物质循环,从而实现氧供和氧耗之间的更好平衡[25]。此外,PbtO2监测可以检测脑组织是否因缺血和缺氧而发生不可逆损伤。

PbtO2监测最早应用于重症TBI患者的管理,现已广泛应用于ICU床边监测和围手术期麻醉管理。PbtO2的降低被认为是由缺氧或脑氧代谢增加引起的。PbtO2过高通常是由脑血流和脑氧代谢之间的不平衡或自动氧调节机制[26]的失效引起的。已有多项研究[27] [28]表明PbtO2值与重型颅脑外伤患者的预后显著相关。与SjvO2相比,PbtO2数据质量更高,更适合长期监测。Pierre [29]等人的研究表明,PbtO2监测作为标准颅内压监测的补充,有助于控制脑灌注压和预防继发性脑缺血。

与其他监测方式相比,PbtO2监测具有独特的优势:(1) 操作简单,数据可靠无需频繁校正;(2) 能较好地反映脑组织供氧和耗氧情况,及时发现缺血、缺氧对脑组织造成的不可逆损伤,灵敏度高于其他脑血氧饱和度监测方法;(3) PbtO2在脑死亡早期迅速降至0,是一个更有用的脑死亡指标。然而,PbtO2监测也存在缺点:(1) 其监测的是局部脑组织氧饱和度,如探头放置位置不当,可能掩盖全脑氧代谢真实情况致错误估计;(2) 它是一种侵入性技术易致局部损伤和增加颅内感染风险。目前关于PbtO2正常值范围和缺血阈值也尚未形成共识。一般认为PbtO2值 < 15 mmHg提示脑缺血缺氧[7]

3. 脑血流监测

脑血流量(Cerebral Blood Flow, CBF)调节机制是一个复杂的系统,涉及脑血管自身调节、化学调节和神经源调节多个方面。这些机制相互作用,共同维持着脑部正常的血液供应和代谢需求。CBF改变是继发性脑损伤的常见原因[1],因此,脑血流量监测至关重要。局部CBF可通过两种有创方法测量:热扩散血流法和激光多普勒血流法[30]。热扩散血流法通过计算血流中散失的热量来估计血流,而激光多普勒血流法直接测量红细胞通量[30]。这两种方法都有局限性,例如对结果会受环境中光和温度影响。目前在临床应用并不广泛。

至于CBF的无创监测,传统的影像学方法有CT、MRI和PET。然而,这些监测手段需要搬运患者,并且不能进行连续监测[31]。经颅多普勒超声(transcranial doppler, TCD)是一种无创测量CBF的工具,由于其可在床旁进行连续监测,已广泛用于神经重症患者的CBF监测。

TCD通过超声探头,可获取脑血流速度(Cerebral Blood Flow Velocity, CBFV),如收缩期峰值流速(Peak Systolic CBFV, PSV)、舒张期末流速(End-Diastolic CBFV, EDV)及平均流速(Mean CBFV, MV)等参数,并可计算出搏动指数(Pulsatility Index, PI)、阻力指数(Resistance Index,RI)等反映血管阻力和顺应性的指标。当ICP 高于20 mm Hg时,PI可作为ICP的替代指标[32]-[34]。同样,RI也与ICP升高有一定相关性,但其敏感性不如PI [33]。其测量结果受年龄、血细胞比容、血管直径、性别、发热、代谢因素、运动等影响,不同年龄组的正常CBF和PI值有差异[35] [36]

动脉瘤破裂后的症状性脑血管痉挛(Cerebral Vasospasm, VSP)与永久性残疾和死亡相关[37]。TCD检查在出现神经功能缺陷症状之前发现VSP,从而早期干预,改善患者预后[38]。TCD还广泛用于评估脑自动调节功能、筛查卵圆孔未闭、监测微栓子、以及诊断和监测颅内高压和脑死亡等[39]。TCD的局限性在于数据的获取及解读高度依赖于操作人员。TCD对于脑血流监测没有标准参考值[40],不同患者变异性较大[41],需要结合其他检查手段综合判断,也有部分患者超声无法透过颅骨,不能顺利完成TCD检查。目前,还没有发表的研究报告表明,仅由CBF监测指导的治疗策略可以改善结果,但它是与其他参数结合使用的可靠工具。

4. 颅内压监测

正常成年人颅内压(Intracranial Pressure, ICP)为10~15 mmHg,ICP升高会导致脑灌注压改变,可能引起脑缺血。严重时,ICP升高还可导致脑疝的形成,引发严重神经后果甚至死亡。当ICP增高持续大于20 mmHg时,病死率明显增高[42]。因此,ICP的监测显得尤为重要。临床上常用的有创ICP监测方法,根据传感器放置位置的不同,可为脑室内、脑实质内、硬膜下和硬膜外测压。其中,脑室内测压目前测量ICP的金标准[43]。其操作方法较为简单,结果较为准确,在监测ICP同时还可引流脑脊液,如在蛛网膜下腔出血患者中还可以起到引流血性脑脊液,减少红细胞分解产物对脑组织的毒性作用[44]。侵入性监测方法虽然可靠,但也面临着出血和感染的风险,因此仅建议对格拉斯哥昏迷评分(Glasgow Coma Scale, GCS)小于8分的患者进行监测[45]

无创ICP监测方法主要包括视神经鞘直径(optic nerve sheath Diameter, ONSD)和TCD。这些非侵入性ICP监测工具不如侵入性方法[3]准确。然而,非侵入性ICP传感器有可能减少对一系列患者侵入性干预的需求,因此迅速发展。视神经鞘是硬脑膜的延伸,鞘内空间与颅内内容物相连续。随着ICP的升高,视神经鞘内的压力也会升高。这种压力升高导致ONSD扩张,从而使ONSD能够作为ICP的替代指标[46]。有研究表明,使用床旁超声测量ONSD与ICP升高的临床和影像学表现高度相关[47]。当ICP大于15 mmHg时,ONSD开始扩张。超过这一水平,视神经鞘扩大与ICP升高之间呈线性相关。ONSD大于5 mm与ICP大于20 mmHg相关性较高[47] [48]。在无法及时进行侵入性监测的情况下,ONSD测量可能是ICP的有用筛查工具[49]

过去5年发表的数据表明,颅内压监测可以在患者管理中可以提供有价值的信息。然而,支持颅内压监测和管理的证据很少。适应症和治疗方法往往基于专家共识,而不是基于高质量的试验。需要进行更多的研究,不仅是为了更好地证明目前的做法是合理的,而且是为了开发预防和治疗颅内高压的新的有效治疗方法[43]

5. 脑电监测

脑电图(electroencephalography, EEG)记录了大脑电活动情况。EEG对于脑组织缺血、缺氧变化较敏感,可无创、早期反映患者脑功能的改变及评估患者的预后[50]。然而,原始EEG资料需要脑电生理专业人员的解读,限制了该技术在重症医学科的应用。近年来定量脑电图(quantitative EEG, QEEG)得以发展,QEEG是利用计算机将脑电信号经数学处理以图形或数值形式表现,易于为非脑电生理专业人员掌握,因而得以普及应用[51]

脑电双频谱指数(Bispectral index, BIS)是一种量化的脑电监测方法。BIS监测仪通过放置在额头上的凝胶电极记录脑电信号。BIS监测最初用于监测麻醉深度,如今也被应用于神经重症患者的多模态监测中。BIS数值范围为0~100,数值越小则提示大脑皮质受抑制越严重,数值大于60提示ICP控制良好[52]。BIS监测的优势在于,可为连续输注镇静剂和神经肌肉阻滞剂的神经重症患者提供了客观、可量化的指导。从而减少可能由过度镇静引起的一系列并发症。近年一些研究也显示了BIS 监测在急性脑损伤、心肺复苏后患者预后判断中有着积极的作用[53] [54]。BIS监测的局限主要表现在[55]:(1) 患者个体差异如生理状态和药物代谢能力不同,会影响其准确性;(2) 电干扰和肌肉活动等干扰因素可致结果不稳定;(3) 无法区分意识状态变化原因,受脑功能障碍及其他代谢紊乱等因素影响。与所有监测方式一样,BIS不应作为临床决策的唯一依据,而应与其他监测手段一通综合评估临床情况。

6. 脑代谢监测

神经重症患者常面临大脑结构和功能受损,进而引起脑代谢紊乱,从而出现葡萄糖利用异常、氧代谢失衡以及神经递质代谢紊乱等情况。脑代谢监测可以评估脑内局部病理生理状态,为精准治疗提供依据。最常用的手段是脑微透析(cerebral micro dialysis, CMD)监测,可检测的代谢物包括葡萄糖、乳酸、丙酮酸、甘油和谷氨酸等[30]。颅内血糖水平降低与脑组织损伤增加和预后不良相关;颅内丙酮酸及乳酸水平较高时,通常伴随颅内压增高、脑组织氧饱和度降低[56];当谷氨酸含量持续升高,提示癫痫的风险增高,预后较差[57]。CMD可对脑内微循环进行准确检测,临床价值较高,但由于实际操作技术较为复杂,仅推荐与其他监测方式联合使用,以预测预后[58]

7. 总结

综上所述,对于神经重症患者来说,没有任何单一的监测工具是足够和完美的,因此MMM是神经重症未来发展的趋势。MMM通过侵入性和非侵入性工具能够从多维度、动态地评估患者的脑功能状态和病理生理变化。然而,更多的监测和治疗可能不一定转化为更好的结果[59]。使用MMM是否能改善患者预后有待于未来进一步的临床研究。尽管如此,MMM为医生提供了一个综合大脑各项生理指标的机会,从而为神经重症患者提供及时和个性化的治疗。

NOTES

*通讯作者。

参考文献

[1] Smith, M. (2018) Multimodality Neuromonitoring in Adult Traumatic Brain Injury: A Narrative Review. Anesthesiology, 128, 401-415.
https://doi.org/10.1097/aln.0000000000001885
[2] Peacock, S.H. and Tomlinson, A.D. (2018) Multimodal Neuromonitoring in Neurocritical Care. AACN Advanced Critical Care, 29, 183-194.
https://doi.org/10.4037/aacnacc2018632
[3] Wartenberg, K.E., Schmidt, J.M. and Mayer, S.A. (2007) Multimodality Monitoring in Neurocritical Care. Critical Care Clinics, 23, 507-538.
https://doi.org/10.1016/j.ccc.2007.06.002
[4] Yang, Z., Lin, P., Chen, B., Zhang, X., Xiao, W., Wu, S., et al. (2020) Autophagy Alleviates Hypoxia-Induced Blood-Brain Barrier Injury via Regulation of CLDN5 (Claudin 5). Autophagy, 17, 3048-3067.
https://doi.org/10.1080/15548627.2020.1851897
[5] Schell, R.M. and Cole, D.J. (2000) Cerebral Monitoring: Jugular Venous Oximetry. Anesthesia & Analgesia, 90, 559-566.
https://doi.org/10.1097/00000539-200003000-00012
[6] Richter, J., Sklienka, P., Setra, A.E., Zahorec, R., Das, S. and Chatterjee, N. (2020) Is Jugular Bulb Oximetry Monitoring Associated with Outcome in out of Hospital Cardiac Arrest Patients? Journal of Clinical Monitoring and Computing, 35, 741-748.
https://doi.org/10.1007/s10877-020-00530-x
[7] Zhong, W., Ji, Z. and Sun, C. (2021) A Review of Monitoring Methods for Cerebral Blood Oxygen Saturation. Healthcare, 9, Article No. 1104.
https://doi.org/10.3390/healthcare9091104
[8] Hiraki, T. and Ushijima, K. (2015) Role of Jugular Venous Oxygen Saturation in Neuroanesthesia. In: Uchino, H., Ushijima, K. and Ikeda, Y., Eds., Neuroanesthesia and Cerebrospinal Protection, Springer Japan, 163-171.
https://doi.org/10.1007/978-4-431-54490-6_16
[9] Sharma, D. and Lele, A. (2017) Monitoring of Jugular Venous Oxygen Saturation. In: Koht, A., Sloan, T.B. and Toleikis, J.R., Eds., Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals, Springer International Publishing, 229-242.
https://doi.org/10.1007/978-3-319-46542-5_14
[10] Fandino, J., Stocker, R., Prokop, S., Trentz, O. and Imhof, H. (2000) Cerebral Oxygenation and Systemic Trauma Related Factors Determining Neurological Outcome after Brain Injury. Journal of Clinical Neuroscience, 7, 226-233.
https://doi.org/10.1054/jocn.1999.0202
[11] Sharf, M.S. and El-Gebali, M.A. (2013) Correlation between Glasgow Coma Scale and Jugular Venous Oxygen Saturation in Severe Traumatic Brain Injury. Egyptian Journal of Anaesthesia, 29, 267-272.
https://doi.org/10.1016/j.egja.2013.02.008
[12] De Deyne, C., Decruyenaere, J., Calle, P., Vandekerckhove, T., Vaganee, B., Garcia, R.B., et al. (1996) Analysis of Very Early Jugular Bulb Oximetry Data after Severe Head Injury: Implications for the Emergency Management? European Journal of Emergency Medicine, 3, 69-72.
https://doi.org/10.1097/00063110-199606000-00002
[13] Zarei, M., Ansari, M.A. and Zare, K. (2019) The Temporal Confounding Effects of Extra-Cerebral Contamination Factors on the Hemodynamic Signal Measured by Functional Near-Infrared Spectroscopy. Journal of Lasers in Medical Sciences, 10, S73-S81.
https://doi.org/10.15171/jlms.2019.s14
[14] Shaaban-Ali, M., Momeni, M. and Denault, A. (2021) Clinical and Technical Limitations of Cerebral and Somatic Near-Infrared Spectroscopy as an Oxygenation Monitor. Journal of Cardiothoracic and Vascular Anesthesia, 35, 763-779.
https://doi.org/10.1053/j.jvca.2020.04.054
[15] Beć, K.B., Grabska, J. and Huck, C.W. (2020) Near-Infrared Spectroscopy in Bio-Applications. Molecules, 25, Article No. 2948.
https://doi.org/10.3390/molecules25122948
[16] Roldán, M. and Kyriacou, P.A. (2021) Near-Infrared Spectroscopy (NIRS) in Traumatic Brain Injury (TBI). Sensors, 21, Article No. 1586.
https://doi.org/10.3390/s21051586
[17] Yeung, M.K. and Chan, A.S. (2020) A Systematic Review of the Application of Functional Near-Infrared Spectroscopy to the Study of Cerebral Hemodynamics in Healthy Aging. Neuropsychology Review, 31, 139-166.
https://doi.org/10.1007/s11065-020-09455-3
[18] Hornberger, C. and Wabnitz, H. (2018) Approaches for Calibration and Validation of Near-Infrared Optical Methods for Oxygenation Monitoring. Biomedical Engineering, 63, 537-546.
https://doi.org/10.1515/bmt-2017-0116
[19] Parnia, S., Yang, J., Nguyen, R., Ahn, A., Zhu, J., Inigo-Santiago, L., et al. (2016) Cerebral Oximetry during Cardiac Arrest: A Multicenter Study of Neurologic Outcomes and Survival. Critical Care Medicine, 44, 1663-1674.
https://doi.org/10.1097/ccm.0000000000001723
[20] Dunham, C.M., Ransom, K.J., Flowers, L.L., Siegal, J.D. and Kohli, C.M. (2004) Cerebral Hypoxia in Severely Brain-Injured Patients Is Associated with Admission Glasgow Coma Scale Score, Computed Tomographic Severity, Cerebral Perfusion Pressure, and Survival. The Journal of Trauma: Injury, Infection, and Critical Care, 56, 482-491.
https://doi.org/10.1097/01.ta.0000114537.52540.95
[21] Yokose, N., Sakatani, K., Murata, Y., Awano, T., Igarashi, T., Nakamura, S., et al. (2010) Bedside Monitoring of Cerebral Blood Oxygenation and Hemodynamics after Aneurysmal Subarachnoid Hemorrhage by Quantitative Time-Resolved Near-Infrared Spectroscopy. World Neurosurgery, 73, 508-513.
https://doi.org/10.1016/j.wneu.2010.02.061
[22] Strangman, G., Boas, D.A. and Sutton, J.P. (2002) Non-Invasive Neuroimaging Using Near-Infrared Light. Biological Psychiatry, 52, 679-693.
https://doi.org/10.1016/s0006-3223(02)01550-0
[23] Kobayashi, K., Kitamura, T., Kohira, S., et al. (2018) Cerebral Oximetry for Cardiac Surgery: A Preoperative Comparison of Device Characteristics and Pitfalls in Interpretation. Journal of Artificial Organs, 21, 412-418.
https://pubmed.ncbi.nlm.nih.gov/29926240/
[24] Nortje, J. and Gupta, A.K. (2006) The Role of Tissue Oxygen Monitoring in Patients with Acute Brain Injury. British Journal of Anaesthesia, 97, 95-106.
https://doi.org/10.1093/bja/ael137
[25] Lang, E.W., Mulvey, J.M., Mudaliar, Y. and Dorsch, N.W.C. (2007) Direct Cerebral Oxygenation Monitoring—A Systematic Review of Recent Publications. Neurosurgical Review, 30, 99-107.
https://doi.org/10.1007/s10143-006-0062-4
[26] Erecińska, M. and Silver, I.A. (2001) Tissue Oxygen Tension and Brain Sensitivity to Hypoxia. Respiration Physiology, 128, 263-276.
https://doi.org/10.1016/s0034-5687(01)00306-1
[27] Kiening, K.L., Unterberg, A.W., Bardt, T.F., Schneider, G. and Lanksch, W.R. (1996) Monitoring of Cerebral Oxygenation in Patients with Severe Head Injuries: Brain Tissue PO2 versus Jugular Vein Oxygen Saturation. Journal of Neurosurgery, 85, 751-757.
https://doi.org/10.3171/jns.1996.85.5.0751
[28] Zauner, A., Doppenberg, E.M.R., Woodward, J.J., Choi, S.C., Young, H.F. and Bullock, R. (1997) Continuous Monitoring of Cerebral Substrate Delivery and Clearance: Initial Experience in 24 Patients with Severe Acute Brain Injuries. Neurosurgery, 41, 1082-1093.
https://doi.org/10.1097/00006123-199711000-00011
[29] Bouzat, P., Sala, N., Payen, J. and Oddo, M. (2013) Beyond Intracranial Pressure: Optimization of Cerebral Blood Flow, Oxygen, and Substrate Delivery after Traumatic Brain Injury. Annals of Intensive Care, 3, Article No. 23.
https://doi.org/10.1186/2110-5820-3-23
[30] Lara, L.R. and Püttgen, H.A. (2018) Multimodality Monitoring in the Neurocritical Care Unit. CONTINUUM: Lifelong Learning in Neurology, 24, 1776-1788.
https://doi.org/10.1212/con.0000000000000671
[31] Korbakis, G. and Vespa, P.M. (2017) Multimodal Neurologic Monitoring. In: Wijdicks, E.F.M. and Kramer, A.H., Eds, Handbook of Clinical Neurology, Elsevier, 91-105.
https://doi.org/10.1016/b978-0-444-63600-3.00006-4
[32] Bellner, J., Romner, B., Reinstrup, P., Kristiansson, K., Ryding, E. and Brandt, L. (2004) Transcranial Doppler Sonography Pulsatility Index (PI) Reflects Intracranial Pressure (ICP). Surgical Neurology, 62, 45-51.
https://doi.org/10.1016/j.surneu.2003.12.007
[33] Ursino, M., Giulioni, M. and Lodi, C.A. (1998) Relationships among Cerebral Perfusion Pressure, Autoregulation, and Transcranial Doppler Waveform: A Modeling Study. Journal of Neurosurgery, 89, 255-266.
https://doi.org/10.3171/jns.1998.89.2.0255
[34] Zweifel, C., Czosnyka, M., Carrera, E., de Riva, N., Pickard, J.D. and Smielewski, P. (2012) Reliability of the Blood Flow Velocity Pulsatility Index for Assessment of Intracranial and Cerebral Perfusion Pressures in Head-Injured Patients. Neurosurgery, 71, 853-861.
https://doi.org/10.1227/neu.0b013e3182675b42
[35] Shahlaie, K., Keachie, K., Hutchins, I.M., Rudisill, N., Madden, L.K., Smith, K.A., et al. (2011) Risk Factors for Posttraumatic Vasospasm. Journal of Neurosurgery, 115, 602-611.
https://doi.org/10.3171/2011.5.jns101667
[36] Moppett, I.K. and Mahajan, R.P. (2004) Transcranial Doppler Ultrasonography in Anaesthesia and Intensive Care. British Journal of Anaesthesia, 93, 710-724.
https://doi.org/10.1093/bja/aeh205
[37] Dorsch, N. (2011) A Clinical Review of Cerebral Vasospasm and Delayed Ischaemia Following Aneurysm Rupture. Acta Neurochirurgica, 110, 5-6.
[38] Mayberg, M.R., Batjer, H.H., Dacey, R., Diringer, M., Haley, E.C., Heros, R.C., et al. (1994) Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage. A Statement for Healthcare Professionals from a Special Writing Group of the Stroke Council, American Heart Association. Stroke, 25, 2315-2328.
https://doi.org/10.1161/01.str.25.11.2315
[39] Kalanuria, A., Nyquist, P.A., Armonda, R.A. and Razumovsky, A. (2013) Use of Transcranial Doppler (TCD) Ultrasound in the Neurocritical Care Unit. Neurosurgery Clinics of North America, 24, 441-456.
https://doi.org/10.1016/j.nec.2013.02.005
[40] Rabut, C., Yoo, S., Hurt, R.C., Jin, Z., Li, H., Guo, H., et al. (2020) Ultrasound Technologies for Imaging and Modulating Neural Activity. Neuron, 108, 93-110.
https://doi.org/10.1016/j.neuron.2020.09.003
[41] Zhang, X., Medow, J.E., Iskandar, B.J., Wang, F., Shokoueinejad, M., Koueik, J., et al. (2017) Invasive and Noninvasive Means of Measuring Intracranial Pressure: A Review. Physiological Measurement, 38, R143-R182.
https://doi.org/10.1088/1361-6579/aa7256
[42] Changa, A.R., Czeisler, B.M. and Lord, A.S. (2019) Management of Elevated Intracranial Pressure: A Review. Current Neurology and Neuroscience Reports, 19, Article No. 99.
https://doi.org/10.1007/s11910-019-1010-3
[43] Zoerle, T., Beqiri, E., Åkerlund, C.A.I., Gao, G., Heldt, T., Hawryluk, G.W.J., et al. (2024) Intracranial Pressure Monitoring in Adult Patients with Traumatic Brain Injury: Challenges and Innovations. The Lancet Neurology, 23, 938-950.
https://doi.org/10.1016/s1474-4422(24)00235-7
[44] Pham, P., Bindra, J., Aneman, A., Chuan, A., Worthington, J.M. and Jaeger, M. (2018) Noninvasive Monitoring of Dynamic Cerebrovascular Autoregulation and “Optimal Blood Pressure” in Normal Adult Subjects. Neurocritical Care, 30, 201-206.
https://doi.org/10.1007/s12028-018-0600-2
[45] Yang, M.T. (2020) Multimodal Neurocritical Monitoring. Biomedical Journal, 43, 226-230.
https://pubmed.ncbi.nlm.nih.gov/32651135/
[46] Hansen, H.C., Helmke, K. and Kunze, K. (1994) Optic Nerve Sheath Enlargement in Acute Intracranial Hypertension. Neuro-Ophthalmology, 14, 345-354.
https://doi.org/10.3109/01658109409024061
[47] Kimberly, H.H., Shah, S., Marill, K. and Noble, V. (2008) Correlation of Optic Nerve Sheath Diameter with Direct Measurement of Intracranial Pressure. Academic Emergency Medicine, 15, 201-204.
https://doi.org/10.1111/j.1553-2712.2007.00031.x
[48] Moretti, R., Pizzi, B., Cassini, F. and Vivaldi, N. (2009) Reliability of Optic Nerve Ultrasound for the Evaluation of Patients with Spontaneous Intracranial Hemorrhage. Neurocritical Care, 11, 406-410.
https://doi.org/10.1007/s12028-009-9250-8
[49] Lin, J., Chen, A.E., Lin, E.E., Hsia, S., Chiang, M. and Lin, K. (2020) Point-of-Care Ultrasound of Optic Nerve Sheath Diameter to Detect Intracranial Pressure in Neurocritically Ill Children—A Narrative Review. Biomedical Journal, 43, 231-239.
https://doi.org/10.1016/j.bj.2020.04.006
[50] Bögli, S.Y., Cherchi, M.S., Beqiri, E. and Smielewski, P. (2024) Association between EEG Metrics and Continuous Cerebrovascular Autoregulation Assessment: A Scoping Review. British Journal of Anaesthesia, 133, 550-564.
https://doi.org/10.1016/j.bja.2024.03.021
[51] Kudenchuk, P.J., Sandroni, C., Drinhaus, H.R., Böttiger, B.W., Cariou, A., Sunde, K., et al. (2015) Breakthrough in Cardiac Arrest: Reports from the 4th Paris International Conference. Annals of Intensive Care, 5, Article No. 22.
https://doi.org/10.1186/s13613-015-0064-x
[52] Hajat, Z., Ahmad, N. and Andrzejowski, J. (2017) The Role and Limitations of EEG‐Based Depth of Anaesthesia Monitoring in Theatres and Intensive Care. Anaesthesia, 72, 38-47.
https://doi.org/10.1111/anae.13739
[53] Eertmans, W., Genbrugge, C., Vander Laenen, M., Boer, W., Mesotten, D., Dens, J., et al. (2018) The Prognostic Value of Bispectral Index and Suppression Ratio Monitoring after Out-of-Hospital Cardiac Arrest: A Prospective Observational Study. Annals of Intensive Care, 8, Article No. 34.
https://doi.org/10.1186/s13613-018-0380-z
[54] Kusken, O., Ozturk, T.C., Hunuk, A., et al. (2019) Relationship between Brain Computed Tomography Findings and Bispectral Index Score in Patients Presenting with Head Trauma. Northern Clinics of İstanbul, 6, 219-225.
https://pubmed.ncbi.nlm.nih.gov/31650107/
[55] Alkhachroum, A., Appavu, B., Egawa, S., Foreman, B., Gaspard, N., Gilmore, E.J., et al. (2022) Electroencephalogram in the Intensive Care Unit: A Focused Look at Acute Brain Injury. Intensive Care Medicine, 48, 1443-1462.
https://doi.org/10.1007/s00134-022-06854-3
[56] Thango, N.S., Rohlwink, U.K., Dlamini, L., Tshavhungwe, M.P., Banderker, E., Salie, S., et al. (2021) Brain Interstitial Glycerol Correlates with Evolving Brain Injury in Paediatric Traumatic Brain Injury. Childs Nervous System, 37, 1713-1721.
https://doi.org/10.1007/s00381-021-05058-2
[57] Soukupová, M., Falcicchia, C., Lovisari, F., Ingusci, S., Barbieri, M., Zucchini, S., et al. (2018) Microdialysis of Excitatory Amino Acids during EEG Recordings in Freely Moving Rats. Journal of Visualized Experiments, 141, e58455.
https://doi.org/10.3791/58455-v
[58] Le Roux, P., Menon, D.K., Citerio, G., Vespa, P., Bader, M.K., Brophy, G., et al. (2014) The International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: A List of Recommendations and Additional Conclusions: A Statement for Healthcare Professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocritical Care, 21, 282-296.
https://doi.org/10.1007/s12028-014-0077-6
[59] Frontera, J., Ziai, W., O’Phelan, K., et al. (2015) Regional Brain Monitoring in the Neurocritical Care Unit. Neurocritical Care, 22, 348-359.
https://pubmed.ncbi.nlm.nih.gov/25832349/