[1]
|
Aggarwal, N., Kitano, S., Puah, G.R.Y., Kittelmann, S., Hwang, I.Y. and Chang, M.W. (2022) Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chemical Reviews, 123, 31-72. https://doi.org/10.1021/acs.chemrev.2c00431
|
[2]
|
Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M.C., Charles, T., et al. (2020) Microbiome Definition Re-Visited: Old Concepts and New Challenges. Microbiome, 8, Article No. 103. https://doi.org/10.1186/s40168-020-00875-0
|
[3]
|
Fang, E.F., Scheibye-Knudsen, M., Jahn, H.J., Li, J., Ling, L., Guo, H., et al. (2015) A Research Agenda for Aging in China in the 21st Century. Ageing Research Reviews, 24, 197-205. https://doi.org/10.1016/j.arr.2015.08.003
|
[4]
|
Manos, J. (2022) The Human Microbiome in Disease and Pathology. APMIS, 130, 690-705. https://doi.org/10.1111/apm.13225
|
[5]
|
Bivar Xavier, K. (2018) Bacterial Interspecies Quorum Sensing in the Mammalian Gut Microbiota. Comptes Rendus. Biologies, 341, 297-299. https://doi.org/10.1016/j.crvi.2018.03.006
|
[6]
|
Cani, P.D. (2018) Human Gut Microbiome: Hopes, Threats and Promises. Gut, 67, 1716-1725. https://doi.org/10.1136/gutjnl-2018-316723
|
[7]
|
Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G.A.D., Gasbarrini, A., et al. (2019) What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7, Article No. 14. https://doi.org/10.3390/microorganisms7010014
|
[8]
|
Gill, S.R., Pop, M., DeBoy, R.T., Eckburg, P.B., Turnbaugh, P.J., Samuel, B.S., et al. (2006) Metagenomic Analysis of the Human Distal Gut Microbiome. Science, 312, 1355-1359. https://doi.org/10.1126/science.1124234
|
[9]
|
Khosravi, A. and Mazmanian, S.K. (2013) Disruption of the Gut Microbiome as a Risk Factor for Microbial Infections. Current Opinion in Microbiology, 16, 221-227. https://doi.org/10.1016/j.mib.2013.03.009
|
[10]
|
Cresci, G.A. and Bawden, E. (2015) Gut Microbiome. Nutrition in Clinical Practice, 30, 734-746. https://doi.org/10.1177/0884533615609899
|
[11]
|
Deo, P. and Deshmukh, R. (2019) Oral Microbiome: Unveiling the Fundamentals. Journal of Oral and Maxillofacial Pathology, 23, 122-128. https://doi.org/10.4103/jomfp.jomfp_304_18
|
[12]
|
Segata, N., Haake, S.K., Mannon, P., Lemon, K.P., Waldron, L., Gevers, D., et al. (2012) Composition of the Adult Digestive Tract Bacterial Microbiome Based on Seven Mouth Surfaces, Tonsils, Throat and Stool Samples. Genome Biology, 13, R42. https://doi.org/10.1186/gb-2012-13-6-r42
|
[13]
|
Nayfach, S., Páez-Espino, D., Call, L., Low, S.J., Sberro, H., Ivanova, N.N., et al. (2021) Metagenomic Compendium of 189,680 DNA Viruses from the Human Gut Microbiome. Nature Microbiology, 6, 960-970. https://doi.org/10.1038/s41564-021-00928-6
|
[14]
|
Sexton, R.E., Uddin, M.H., Bannoura, S., Khan, H.Y., Mzannar, Y., Li, Y., et al. (2022) Connecting the Human Microbiome and Pancreatic Cancer. Cancer and Metastasis Reviews, 41, 317-331. https://doi.org/10.1007/s10555-022-10022-w
|
[15]
|
Aas, J.A., Paster, B.J., Stokes, L.N., Olsen, I. and Dewhirst, F.E. (2005) Defining the Normal Bacterial Flora of the Oral Cavity. Journal of Clinical Microbiology, 43, 5721-5732. https://doi.org/10.1128/jcm.43.11.5721-5732.2005
|
[16]
|
Genco, R.J. and Borgnakke, W.S. (2013) Risk Factors for Periodontal Disease. Periodontology 2000, 62, 59-94. https://doi.org/10.1111/j.1600-0757.2012.00457.x
|
[17]
|
Grice, E.A., Kong, H.H., Conlan, S., Deming, C.B., Davis, J., Young, A.C., et al. (2009) Topographical and Temporal Diversity of the Human Skin Microbiome. Science, 324, 1190-1192. https://doi.org/10.1126/science.1171700
|
[18]
|
Luna, P.C. (2020) Skin Microbiome as Years Go by. American Journal of Clinical Dermatology, 21, 12-17. https://doi.org/10.1007/s40257-020-00549-5
|
[19]
|
Boxberger, M., Cenizo, V., Cassir, N. and La Scola, B. (2021) Challenges in Exploring and Manipulating the Human Skin Microbiome. Microbiome, 9, Article No. 125. https://doi.org/10.1186/s40168-021-01062-5
|
[20]
|
Sanchez-Rodriguez, E., Egea-Zorrilla, A., Plaza-Díaz, J., Aragón-Vela, J., Muñoz-Quezada, S., Tercedor-Sánchez, L., et al. (2020) The Gut Microbiota and Its Implication in the Development of Atherosclerosis and Related Cardiovascular Diseases. Nutrients, 12, Article No. 605. https://doi.org/10.3390/nu12030605
|
[21]
|
Hou, K., Wu, Z., Chen, X., Wang, J., Zhang, D., Xiao, C., et al. (2022) Microbiota in Health and Diseases. Signal Transduction and Targeted Therapy, 7, Article No. 135. https://doi.org/10.1038/s41392-022-00974-4
|
[22]
|
Schenkein, H.A., Papapanou, P.N., Genco, R. and Sanz, M. (2020) Mechanisms Underlying the Association between Periodontitis and Atherosclerotic Disease. Periodontology 2000, 83, 90-106. https://doi.org/10.1111/prd.12304
|
[23]
|
Roncal, C., Martínez-Aguilar, E., Orbe, J., Ravassa, S., Fernandez-Montero, A., Saenz-Pipaon, G., et al. (2019) Trimethylamine-N-Oxide (TMAO) Predicts Cardiovascular Mortality in Peripheral Artery Disease. Scientific Reports, 9, Article No. 15580. https://doi.org/10.1038/s41598-019-52082-z
|
[24]
|
Zeisel, S.H. and Warrier, M. (2017) Trimethylamine n-Oxide, the Microbiome, and Heart and Kidney Disease. Annual Review of Nutrition, 37, 157-181. https://doi.org/10.1146/annurev-nutr-071816-064732
|
[25]
|
Leiva-Gea, I., Sánchez-Alcoholado, L., Martín-Tejedor, B., Castellano-Castillo, D., Moreno-Indias, I., Urda-Cardona, A., et al. (2018) Gut Microbiota Differs in Composition and Functionality between Children with Type 1 Diabetes and MODY2 and Healthy Control Subjects: A Case-Control Study. Diabetes Care, 41, 2385-2395. https://doi.org/10.2337/dc18-0253
|
[26]
|
Hou, K., Zhang, S., Wu, Z., et al. (2022) Reconstruction of Intestinal Microecology of Type 2 Diabetes by Fecal Microbiota Transplantation: Why and How. Bosnian Journal of Basic Medical Sciences, 22, 315-325.
|
[27]
|
Larsen, N., Vogensen, F.K., van den Berg, F.W.J., Nielsen, D.S., Andreasen, A.S., Pedersen, B.K., et al. (2010) Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLOS ONE, 5, e9085. https://doi.org/10.1371/journal.pone.0009085
|
[28]
|
Almugadam, B.S., Liu, Y., Chen, S., Wang, C., Shao, C., Ren, B., et al. (2020) Alterations of Gut Microbiota in Type 2 Diabetes Individuals and the Confounding Effect of Antidiabetic Agents. Journal of Diabetes Research, 2020, Article ID: 7253978. https://doi.org/10.1155/2020/7253978
|
[29]
|
Gomes, J.M.G., Costa, J.d.A. and Alfenas, R.d.C.G. (2017) Metabolic Endotoxemia and Diabetes Mellitus: A Systematic Review. Metabolism, 68, 133-144. https://doi.org/10.1016/j.metabol.2016.12.009
|
[30]
|
Golemis, E.A., Scheet, P., Beck, T.N., Scolnick, E.M., Hunter, D.J., Hawk, E., et al. (2018) Molecular Mechanisms of the Preventable Causes of Cancer in the United States. Genes & Development, 32, 868-902. https://doi.org/10.1101/gad.314849.118
|
[31]
|
(1994) Schistosomes, Liver Flukes and Helicobacter pylori. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans No. 61, 1-241.
|
[32]
|
Li, J.J., Zhu, M., Kashyap, P.C., Chia, N., Tran, N.H., McWilliams, R.R., et al. (2021) The Role of Microbiome in Pancreatic Cancer. Cancer and Metastasis Reviews, 40, 777-789. https://doi.org/10.1007/s10555-021-09982-2
|
[33]
|
Suez, J., Zmora, N., Zilberman-Schapira, G., Mor, U., Dori-Bachash, M., Bashiardes, S., et al. (2018) Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous FMT. Cell, 174, 1406-1423.e16. https://doi.org/10.1016/j.cell.2018.08.047
|
[34]
|
Hanssen, N.M.J., de Vos, W.M. and Nieuwdorp, M. (2021) Fecal Microbiota Transplantation in Human Metabolic Diseases: From a Murky Past to a Bright Future? Cell Metabolism, 33, 1098-1110. https://doi.org/10.1016/j.cmet.2021.05.005
|
[35]
|
Sanders, M.E., Merenstein, D.J., Reid, G., Gibson, G.R. and Rastall, R.A. (2019) Probiotics and Prebiotics in Intestinal Health and Disease: From Biology to the Clinic. Nature Reviews Gastroenterology & Hepatology, 16, 605-616. https://doi.org/10.1038/s41575-019-0173-3
|
[36]
|
Hildebrandt, M.A., Hoffmann, C., Sherrill-Mix, S.A., Keilbaugh, S.A., Hamady, M., Chen, Y., et al. (2009) High-Fat Diet Determines the Composition of the Murine Gut Microbiome Independently of Obesity. Gastroenterology, 137, 1716-1724.e2. https://doi.org/10.1053/j.gastro.2009.08.042
|
[37]
|
Devkota, S., Wang, Y., Musch, M.W., Leone, V., Fehlner-Peach, H., Nadimpalli, A., et al. (2012) Dietary-Fat-Induced Taurocholic Acid Promotes Pathobiont Expansion and Colitis in Il10−/− Mice. Nature, 487, 104-108. https://doi.org/10.1038/nature11225
|
[38]
|
Karstens, A.J., Tussing-Humphreys, L., Zhan, L., Rajendran, N., Cohen, J., Dion, C., et al. (2019) Associations of the Mediterranean Diet with Cognitive and Neuroimaging Phenotypes of Dementia in Healthy Older Adults. The American Journal of Clinical Nutrition, 109, 361-368. https://doi.org/10.1093/ajcn/nqy275
|
[39]
|
Bayes, J., Schloss, J. and Sibbritt, D. (2022) The Effect of a Mediterranean Diet on the Symptoms of Depression in Young Males (the “AMMEND: A Mediterranean Diet in MEN with Depression” Study): A Randomized Controlled Trial. The American Journal of Clinical Nutrition, 116, 572-580. https://doi.org/10.1093/ajcn/nqac106
|
[40]
|
Clarke, G., Sandhu, K.V., Griffin, B.T., Dinan, T.G., Cryan, J.F., Hyland, N.P., et al. (2019) Gut Reactions: Breaking down Xenobiotic-Microbiome Interactions. Pharmacological Reviews, 71, 198-224. https://doi.org/10.1124/pr.118.015768
|
[41]
|
Lloyd-Price, J., Mahurkar, A., Rahnavard, G., Crabtree, J., Orvis, J., Hall, A.B., et al. (2017) Strains, Functions and Dynamics in the Expanded Human Microbiome Project. Nature, 550, 61-66. https://doi.org/10.1038/nature23889
|
[42]
|
Integrative HMP (IHMP) Research Network Consortium (2014) The Integrative Human Microbiome Project: Dynamic Analysis of Microbiome-Host Omics Profiles during Periods of Human Health and Disease. Cell Host & Microbe, 16, 276-289.
|