[1]
|
Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., et al. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article 109119. https://doi.org/10.1016/j.diabres.2021.109119
|
[2]
|
Chang, M. and Nguyen, T.T. (2021) Strategy for Treatment of Infected Diabetic Foot Ulcers. Accounts of Chemical Research, 54, 1080-1093. https://doi.org/10.1021/acs.accounts.0c00864
|
[3]
|
Sharma, P., Kumar, A., Dey, A.D., Behl, T. and Chadha, S. (2021) Stem Cells and Growth Factors-Based Delivery Approaches for Chronic Wound Repair and Regeneration: A Promise to Heal from Within. Life Sciences, 268, Article 118932. https://doi.org/10.1016/j.lfs.2020.118932
|
[4]
|
Okur, M.E., Bülbül, E.Ö., Mutlu, G., Eleftherıadou, K., Karantas, I.D., Okur, N.Ü., et al. (2022) An Updated Review for the Diabetic Wound Healing Systems. Current Drug Targets, 23, 393-419. https://doi.org/10.2174/1389450122666210914104428
|
[5]
|
Chen, L., Zheng, Q., Liu, Y., Li, L., Chen, X., Wang, L., et al. (2020) Adipose-Derived Stem Cells Promote Diabetic Wound Healing via the Recruitment and Differentiation of Endothelial Progenitor Cells into Endothelial Cells Mediated by the VEGF-PLCγ-ERK Pathway. Archives of Biochemistry and Biophysics, 692, Article 108531. https://doi.org/10.1016/j.abb.2020.108531
|
[6]
|
Qiao, B., Nie, J., Shao, Y., Li, Y., Zhang, C., Hao, W., et al. (2019) Functional Nanocomplexes with Vascular Endothelial Growth Factor A/C Isoforms Improve Collateral Circulation and Cardiac Function. Small, 16, Article ID: 1905925. https://doi.org/10.1002/smll.201905925
|
[7]
|
Brunner, L.M., He, Y., Cousin, N., Scholl, J., Albin, L.K., Schmucki, B., et al. (2023) Promotion of Lymphangiogenesis by Targeted Delivery of VEGF-C Improves Diabetic Wound Healing. Cells, 12, Article 472. https://doi.org/10.3390/cells12030472
|
[8]
|
Shen, S., Wang, F., Fernandez, A. and Hu, W. (2020) Role of Platelet-Derived Growth Factor in Type II Diabetes Mellitus and Its Complications. Diabetes and Vascular Disease Research, 17. https://doi.org/10.1177/1479164120942119
|
[9]
|
Ma, C., Hernandez, M.A., Kirkpatrick, V.E., Liang, L.J., Nouvong, A.L. and Gordon, I.I. (2015) Topical Platelet-Derived Growth Factor vs Placebo Therapy of Diabetic Foot Ulcers Offloaded with Windowed Casts: A Randomized, Controlled Trial. Wounds, 27, 83-91.
|
[10]
|
Shi, R., Lian, W., Han, S., Cao, C., Jin, Y., Yuan, Y., et al. (2018) Nanosphere-Mediated Co-Delivery of VEGF-A and PDGF-B Genes for Accelerating Diabetic Foot Ulcers Healing in Rats. Gene Therapy, 25, 425-438. https://doi.org/10.1038/s41434-018-0027-6
|
[11]
|
White, M.J.V., Briquez, P.S., White, D.A.V. and Hubbell, J.A. (2021) VEGF-A, PDGF-BB and HB-EGF Engineered for Promiscuous Super Affinity to the Extracellular Matrix Improve Wound Healing in a Model of Type 1 Diabetes. NPJ Regenerative Medicine, 6, Article No. 76. https://doi.org/10.1038/s41536-021-00189-1
|
[12]
|
Tian, Y., Zhan, Y., Jiang, Q., Lu, W. and Li, X. (2021) Expression and Function of PDGF-C in Development and Stem Cells. Open Biology, 11, Article 210268. https://doi.org/10.1098/rsob.210268
|
[13]
|
Chu, G., Chen, Y., Chen, H., Chan, M., Gau, C. and Weng, S. (2018) Stem Cell Therapy on Skin: Mechanisms, Recent Advances and Drug Reviewing Issues. Journal of Food and Drug Analysis, 26, 14-20. https://doi.org/10.1016/j.jfda.2017.10.004
|
[14]
|
Berry-Kilgour, C., Cabral, J. and Wise, L. (2021) Advancements in the Delivery of Growth Factors and Cytokines for the Treatment of Cutaneous Wound Indications. Advances in Wound Care, 10, 596-622. https://doi.org/10.1089/wound.2020.1183
|
[15]
|
Wei, Y., Li, J., Huang, Y., Lei, X., Zhang, L., Yin, M., et al. (2022) The Clinical Effectiveness and Safety of Using Epidermal Growth Factor, Fibroblast Growth Factor and Granulocyte-Macrophage Colony Stimulating Factor as Therapeutics in Acute Skin Wound Healing: A Systematic Review and Meta-Analysis. Burns & Trauma, 10, tkac002. https://doi.org/10.1093/burnst/tkac002
|
[16]
|
Hong, J.P., Jung, H.D. and Kim, Y.W. (2006) Recombinant Human Epidermal Growth Factor (EGF) to Enhance Healing for Diabetic Foot Ulcers. Annals of Plastic Surgery, 56, 394-398. https://doi.org/10.1097/01.sap.0000198731.12407.0c
|
[17]
|
Johnson, N.R. and Wang, Y. (2015) Coacervate Delivery of HB‐EGF Accelerates Healing of Type 2 Diabetic Wounds. Wound Repair and Regeneration, 23, 591-600. https://doi.org/10.1111/wrr.12319
|
[18]
|
Zhang, W., Luo, P., Liu, X., Cheng, R., Zhang, S., Qian, X., et al. (2023) Roles of Fibroblast Growth Factors in the Axon Guidance. International Journal of Molecular Sciences, 24, Article 10292. https://doi.org/10.3390/ijms241210292
|
[19]
|
Powers, C.J., McLeskey, S.W. and Wellstein, A. (2000) Fibroblast Growth Factors, Their Receptors and Signaling. Endocrine-Related Cancer, 7, 165-197. https://doi.org/10.1677/erc.0.0070165
|
[20]
|
Sogabe, Y., Abe, M., Yokoyama, Y. and Ishikawa, O. (2006) Basic Fibroblast Growth Factor Stimulates Human Keratinocyte Motility by Rac Activation. Wound Repair and Regeneration, 14, 457-462. https://doi.org/10.1111/j.1743-6109.2006.00143.x
|
[21]
|
Zhang, W., Chen, L., Xiong, Y., Panayi, A.C., Abududilibaier, A., Hu, Y., et al. (2021) Antioxidant Therapy and Antioxidant-Related Bionanomaterials in Diabetic Wound Healing. Frontiers in Bioengineering and Biotechnology, 9, Article 707479. https://doi.org/10.3389/fbioe.2021.707479
|
[22]
|
Geng, K., Ma, X., Jiang, Z., Gu, J., Huang, W., Wang, W., et al. (2022) WDR74 Facilitates TGF-β/Smad Pathway Activation to Promote M2 Macrophage Polarization and Diabetic Foot Ulcer Wound Healing in Mice. Cell Biology and Toxicology, 39, 1577-1591. https://doi.org/10.1007/s10565-022-09748-8
|
[23]
|
Zambruno, G., Marchisio, P.C., Marconi, A., Vaschieri, C., Melchiori, A., Giannetti, A., et al. (1995) Transforming Growth Factor-Beta 1 Modulates Beta 1 and Beta 5 Integrin Receptors and Induces the de novo Expression of the Alpha V Beta 6 Heterodimer in Normal Human Keratinocytes: Implications for Wound Healing. The Journal of Cell Biology, 129, 853-865. https://doi.org/10.1083/jcb.129.3.853
|
[24]
|
Matsumoto, K., Funakoshi, H., Takahashi, H. and Sakai, K. (2014) HGF-Met Pathway in Regeneration and Drug Discovery. Biomedicines, 2, 275-300. https://doi.org/10.3390/biomedicines2040275
|
[25]
|
Barć, P., Antkiewicz, M., Frączkowska-Sioma, K., Kupczyńska, D., Lubieniecki, P., Witkiewicz, W., et al. (2022) Two-Stage Gene Therapy (VEGF, HGF and ANG1 Plasmids) as Adjunctive Therapy in the Treatment of Critical Lower Limb Ischemia in Diabetic Foot Syndrome. International Journal of Environmental Research and Public Health, 19, Article 12818. https://doi.org/10.3390/ijerph191912818
|
[26]
|
Wise, B.L., Seidel, M.F. and Lane, N.E. (2020) The Evolution of Nerve Growth Factor Inhibition in Clinical Medicine. Nature Reviews Rheumatology, 17, 34-46. https://doi.org/10.1038/s41584-020-00528-4
|
[27]
|
Liu, Z., Wu, H. and Huang, S. (2021) Role of NGF and Its Receptors in Wound Healing (Review). Experimental and Therapeutic Medicine, 21, Article No. 599. https://doi.org/10.3892/etm.2021.10031
|
[28]
|
Stuard, W.L., Titone, R. and Robertson, D.M. (2020) The IGF/Insulin-IGFBP Axis in Corneal Development, Wound Healing, and Disease. Frontiers in Endocrinology, 11, Article 24. https://doi.org/10.3389/fendo.2020.00024
|
[29]
|
Zubair, M. and Ahmad, J. (2019) Role of Growth Factors and Cytokines in Diabetic Foot Ulcer Healing: A Detailed Review. Reviews in Endocrine and Metabolic Disorders, 20, 207-217. https://doi.org/10.1007/s11154-019-09492-1
|
[30]
|
Henshaw, F.R., Boughton, P., Lo, L., McLennan, S.V. and Twigg, S.M. (2015) Topically Applied Connective Tissue Growth Factor/CCN2 Improves Diabetic Preclinical Cutaneous Wound Healing: Potential Role for CTGF in Human Diabetic Foot Ulcer Healing. Journal of Diabetes Research, 2015, Article ID: 236238. https://doi.org/10.1155/2015/236238
|
[31]
|
Zarei, F., Negahdari, B. and Eatemadi, A. (2017) Diabetic Ulcer Regeneration: Stem Cells, Biomaterials, Growth Factors. Artificial Cells, Nanomedicine, and Biotechnology, 46, 26-32. https://doi.org/10.1080/21691401.2017.1304407
|
[32]
|
Burgess, J.L., Wyant, W.A., Abdo Abujamra, B., Kirsner, R.S. and Jozic, I. (2021) Diabetic Wound-Healing Science. Medicina, 57, Article 1072. https://doi.org/10.3390/medicina57101072
|
[33]
|
姜丽娜. 重组人粒细胞巨噬细胞集落刺激因子治疗糖尿病足的临床疗效及安全性评价[J]. 航空航天医学杂志, 2016, 27(9): 1126-1127.
|
[34]
|
马恬, 韩岩, 张辉, 周洁松, 李倩倩, 王曙曼. 小剂量胰岛素和重组人粒细胞-巨噬细胞集落刺激因子治疗糖尿病足难愈性创面的临床疗效[J]. 山西医科大学学报, 2015, 46(12): 1235-1238.
|