[1]
|
Chen, J. (2024) A Summary of UNSCEAR Evaluation on Medical Exposure to Ionizing Radiation and Call for More Representative Data. Radiation Medicine and Protection, 5, 7-10. https://doi.org/10.1016/j.radmp.2023.12.001
|
[2]
|
Miglioretti, D.L., Johnson, E., Williams, A., Greenlee, R.T., Weinmann, S., Solberg, L.I., et al. (2013) The Use of Computed Tomography in Pediatrics and the Associated Radiation Exposure and Estimated Cancer Risk. JAMA Pediatrics, 167, 700-707. https://doi.org/10.1001/jamapediatrics.2013.311
|
[3]
|
Meulepas, J.M., Smets, A.M.J.B., Nievelstein, R.A.J., Gradowska, P., Verbeke, J., Holscher, H.C., et al. (2016) Trends and Patterns of Computed Tomography Scan Use among Children in the Netherlands: 1990-2012. European Radiology, 27, 2426-2433. https://doi.org/10.1007/s00330-016-4566-1
|
[4]
|
Vaughan, C.L. and Mayosi, B.M. (2007) Origins of Computed Tomography. The Lancet, 369, 1168. https://doi.org/10.1016/s0140-6736(07)60562-5
|
[5]
|
Mathews, J.D., Forsythe, A.V., Brady, Z., Butler, M.W., Goergen, S.K., Byrnes, G.B., et al. (2013) Cancer Risk in 680,000 People Exposed to Computed Tomography Scans in Childhood or Adolescence: Data Linkage Study of 11 Million Australians. BMJ, 346, f2360-f2360. https://doi.org/10.1136/bmj.f2360
|
[6]
|
Pearce, M.S., Salotti, J.A., Little, M.P., McHugh, K., Lee, C., Kim, K.P., et al. (2012) Radiation Exposure from CT Scans in Childhood and Subsequent Risk of Leukaemia and Brain Tumours: A Retrospective Cohort Study. The Lancet, 380, 499-505. https://doi.org/10.1016/s0140-6736(12)60815-0
|
[7]
|
Li, I., Yang, Y., Li, Y. and Tsai, Y. (2020) Paediatric Computed Tomography and Subsequent Risk of Leukaemia, Intracranial Malignancy and Lymphoma: A Nationwide Population-Based Cohort Study. Scientific Reports, 10, Article No. 7759. https://doi.org/10.1038/s41598-020-64805-8
|
[8]
|
Liu, D., Wu, J., Chen, S., Liu, Y., Zhang, G., Ping, H., et al. (2019) Ultrasonography Can Replace CT Scans as the Initial Imaging Examination of Ureteral Calculi. Urologia Internationalis, 103, 68-73. https://doi.org/10.1159/000500099
|
[9]
|
De Luca, F., Kits, A., Martin Muñoz, D., Aspelin, Å., Kvist, O., Österman, Y., et al. (2024) Elective One-Minute Full Brain Multi-Contrast MRI versus Brain CT in Pediatric Patients: A Prospective Feasibility Study. BMC Medical Imaging, 24, Article No. 23. https://doi.org/10.1186/s12880-024-01196-6
|
[10]
|
Cicogna, A., Minca, G., Posocco, F., Corno, F., Basile, C., Da Dalt, L., et al. (2022) Non-Ionizing Imaging for the Emergency Department Assessment of Pediatric Minor Head Trauma. Frontiers in Pediatrics, 10, Article 881461. https://doi.org/10.3389/fped.2022.881461
|
[11]
|
Kim, D., Jeon, P., Lee, C. and Chung, M. (2023) Effect of Tube Voltage and Radiation Dose on Image Quality in Pediatric Abdominal CT Using Deep Learning Reconstruction: A Phantom Study. Symmetry, 15, Article 501. https://doi.org/10.3390/sym15020501
|
[12]
|
Yoshida, K., Nagayama, Y., Funama, Y., Ishiuchi, S., Motohara, T., Masuda, T., et al. (2024) Low Tube Voltage and Deep-Learning Reconstruction for Reducing Radiation and Contrast Medium Doses in Thin-Slice Abdominal CT: A Prospective Clinical Trial. European Radiology, 34, 7386-7396. https://doi.org/10.1007/s00330-024-10793-6
|
[13]
|
Papadakis, A.E. and Damilakis, J. (2019) Automatic Tube Current Modulation and Tube Voltage Selection in Pediatric Computed Tomography: A Phantom Study on Radiation Dose and Image Quality. Investigative Radiology, 54, 265-272. https://doi.org/10.1097/rli.0000000000000537
|
[14]
|
Leyendecker, P., Faucher, V., Labani, A., Noblet, V., Lefebvre, F., Magotteaux, P., et al. (2018) Prospective Evaluation of Ultra-Low-Dose Contrast-Enhanced 100-Kv Abdominal Computed Tomography with Tin Filter: Effect on Radiation Dose Reduction and Image Quality with a Third-Generation Dual-Source CT System. European Radiology, 29, 2107-2116. https://doi.org/10.1007/s00330-018-5750-2
|
[15]
|
Weis, M., Henzler, T., Nance, J.W., Haubenreisser, H., Meyer, M., Sudarski, S., et al. (2017) Radiation Dose Comparison between 70 kVp and 100 kVp with Spectral Beam Shaping for Non-Contrast-Enhanced Pediatric Chest Computed Tomography: A Prospective Randomized Controlled Study. Investigative Radiology, 52, 155-162. https://doi.org/10.1097/rli.0000000000000325
|
[16]
|
Mozaffary, A., Trabzonlu, T.A., Kim, D. and Yaghmai, V. (2019) Comparison of Tin Filter-Based Spectral Shaping CT and Low-Dose Protocol for Detection of Urinary Calculi. American Journal of Roentgenology, 212, 808-814. https://doi.org/10.2214/ajr.18.20154
|
[17]
|
Steidel, J., Maier, J., Sawall, S. and Kachelrieß, M. (2021) Dose Reduction Potential in Diagnostic Single Energy CT through Patient‐Specific Prefilters and a Wider Range of Tube Voltages. Medical Physics, 49, 93-106. https://doi.org/10.1002/mp.15355
|
[18]
|
Greffier, J., Pereira, F., Hamard, A., Addala, T., Beregi, J.P. and Frandon, J. (2020) Effect of Tin Filter-Based Spectral Shaping CT on Image Quality and Radiation Dose for Routine Use on Ultralow-Dose CT Protocols: A Phantom Study. Diagnostic and Interventional Imaging, 101, 373-381. https://doi.org/10.1016/j.diii.2020.01.002
|
[19]
|
高通, 王小山, 马娅, 等. 儿童CT检查诊断参考水平研究进展[J]. 中国辐射卫生, 2024, 33(2): 215-220.
|
[20]
|
Satharasinghe, D., Jeyasugiththan, J., Wanninayake, W.M.N.M.B., Pallewatte, A.S. and Samarasinghe, R.A.N.K.K. (2022) Patient Size as a Parameter for Determining Diagnostic Reference Levels for Paediatric Computed Tomography (CT) Procedures. Physica Medica, 102, 55-65. https://doi.org/10.1016/j.ejmp.2022.09.004
|
[21]
|
Muhammad, N.A., Abdul Karim, M.K., Abu Hassan, H., Ahmad Kamarudin, M., Ding Wong, J.H. and Ng, K.H. (2020) Diagnostic Reference Level of Radiation Dose and Image Quality among Paediatric CT Examinations in a Tertiary Hospital in Malaysia. Diagnostics, 10, Article 591. https://doi.org/10.3390/diagnostics10080591
|
[22]
|
中华医学会儿科学分会影像学组, 中华医学会放射学分会儿科学组, 彭芸, 等. 儿童CT检查辐射剂量标准中国专家共识[J]. 中华放射学杂志, 2024, 58(2): 158-164.
|
[23]
|
Sun, J., Yang, L., Zhou, Z., Zhang, D., Han, W., Zhang, Q., et al. (2020) Performance Evaluation of Two Iterative Reconstruction Algorithms, MBIR and ASIR, in Low Radiation Dose and Low Contrast Dose Abdominal CT in Children. La Radiologia Medica, 125, 918-925. https://doi.org/10.1007/s11547-020-01191-1
|
[24]
|
Zhang, K., Shi, X., Xie, S., Sun, J., Liu, Z., Zhang, S., et al. (2022) Deep Learning Image Reconstruction in Pediatric Abdominal and Chest Computed Tomography: A Comparison of Image Quality and Radiation Dose. Quantitative Imaging in Medicine and Surgery, 12, 3238-3250. https://doi.org/10.21037/qims-21-936
|
[25]
|
Brady, S.L., Trout, A.T., Somasundaram, E., Anton, C.G., Li, Y. and Dillman, J.R. (2021) Improving Image Quality and Reducing Radiation Dose for Pediatric CT by Using Deep Learning Reconstruction. Radiology, 298, 180-188. https://doi.org/10.1148/radiol.2020202317
|
[26]
|
Nagayama, Y., Sakabe, D., Goto, M., Emoto, T., Oda, S., Nakaura, T., et al. (2021) Deep Learning-Based Reconstruction for Lower-Dose Pediatric CT: Technical Principles, Image Characteristics, and Clinical Implementations. RadioGraphics, 41, 1936-1953. https://doi.org/10.1148/rg.2021210105
|
[27]
|
Zhang, Z. and Seeram, E. (2020) The Use of Artificial Intelligence in Computed Tomography Image Reconstruction—A Literature Review. Journal of Medical Imaging and Radiation Sciences, 51, 671-677. https://doi.org/10.1016/j.jmir.2020.09.001
|
[28]
|
El-Ali, A.M., Strubel, N., Pinkney, L., Xue, C., Dane, B. and Lala, S.V. (2024) Pediatric Contrast-Enhanced Chest CT on a Photon-Counting Detector CT: Radiation Dose and Image Quality Compared to Energy-Integrated Detector CT. Pediatric Radiology, 54, 1984-1995. https://doi.org/10.1007/s00247-024-06078-1
|
[29]
|
Lee, J.S., Kim, J., Bapuraj, J.R. and Srinivasan, A. (2024) Comparison of Image Quality and Radiation Dose in Pediatric Temporal Bone CT Using Photon-Counting Detector CT and Energy-Integrating Detector CT. American Journal of Neuroradiology, 45, 1322-1326. https://doi.org/10.3174/ajnr.a8276
|
[30]
|
Mese, I., Altintas Mese, C., Demirsoy, U. and Anik, Y. (2023) Innovative Advances in Pediatric Radiology: Computed Tomography Reconstruction Techniques, Photon-Counting Detector Computed Tomography, and Beyond. Pediatric Radiology, 54, 1-11. https://doi.org/10.1007/s00247-023-05823-2
|
[31]
|
Higashigaito, K., Mergen, V., Eberhard, M., Jungblut, L., Hebeisen, M., Rätzer, S., et al. (2023) CT Angiography of the Aorta Using Photon-Counting Detector CT with Reduced Contrast Media Volume. Radiology: Cardiothoracic Imaging, 5, e220140. https://doi.org/10.1148/ryct.220140
|