[1]
|
Goette, A., Corradi, D., Dobrev, D., Aguinaga, L., Cabrera, J., Chugh, S.S., et al. (2024) Atrial Cardiomyopathy Revisited—Evolution of a Concept: A Clinical Consensus Statement of the European Heart Rhythm Association (EHRA) of the ESC, the Heart Rhythm Society (HRS), the Asian Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS). Europace, 26, euae204. https://doi.org/10.1093/europace/euae204
|
[2]
|
Schotten, U., Goette, A. and Verheule, S. (2024) Translation of Pathophysiological Mechanisms of Atrial Fibrosis into New Diagnostic and Therapeutic Approaches. Nature Reviews Cardiology. https://doi.org/10.1038/s41569-024-01088-w
|
[3]
|
McCauley, M.D., Iacobellis, G., Li, N., Nattel, S. and Goldberger, J.J. (2024) Targeting the Substrate for Atrial Fibrillation: JACC Review Topic of the Week. Journal of the American College of Cardiology, 83, 2015-2027. https://doi.org/10.1016/j.jacc.2024.02.050
|
[4]
|
张帆, 马薇, 许静. 心房心肌病认识新进展[J]. 中国心脏起搏与心电生理杂志, 2019, 33(1): 48-50.
|
[5]
|
Tang, X., Wang, J., Ouyang, X., Chen, Q., Dong, R., Luo, Y., et al. (2024) Coronary Sinus Metabolite 12,13-diHOME Is a Novel Biomarker for Left Atrial Remodeling in Patients with Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 17, e012486. https://doi.org/10.1161/circep.123.012486
|
[6]
|
Pinckard, K.M., Shettigar, V.K., Wright, K.R., Abay, E., Baer, L.A., Vidal, P., et al. (2021) A Novel Endocrine Role for the Bat-Released Lipokine 12,13-diHOME to Mediate Cardiac Function. Circulation, 143, 145-159. https://doi.org/10.1161/circulationaha.120.049813
|
[7]
|
Bae, J.H., Lim, H. and Lim, S. (2023) The Potential Cardiometabolic Effects of Long-Chain Ω-3 Polyunsaturated Fatty Acids: Recent Updates and Controversies. Advances in Nutrition, 14, 612-628. https://doi.org/10.1016/j.advnut.2023.03.014
|
[8]
|
邹海, 贺西淦, 陈臻瑶, 等. ω-3多不饱和脂肪酸防治心律失常临床研究进展[J]. 医药导报, 2023, 42(11): 1704-1710.
|
[9]
|
Neff, L.S. and Bradshaw, A.D. (2021) Cross Your Heart? Collagen Cross-Links in Cardiac Health and Disease. Cellular Signalling, 79, Article ID: 109889. https://doi.org/10.1016/j.cellsig.2020.109889
|
[10]
|
Navaee, F., Renaud, P., Kleger, A. and Braschler, T. (2023) Highly Efficient Cardiac Differentiation and Maintenance by Thrombin-Coagulated Fibrin Hydrogels Enriched with Decellularized Porcine Heart Extracellular Matrix. International Journal of Molecular Sciences, 24, Article 2842. https://doi.org/10.3390/ijms24032842
|
[11]
|
Nikolov, A. and Popovski, N. (2022) Extracellular Matrix in Heart Disease: Focus on Circulating Collagen Type I and III Derived Peptides as Biomarkers of Myocardial Fibrosis and Their Potential in the Prognosis of Heart Failure: A Concise Review. Metabolites, 12, Article 297. https://doi.org/10.3390/metabo12040297
|
[12]
|
Nagase, H., Visse, R. and Murphy, G. (2006) Structure and Function of Matrix Metalloproteinases and TIMPs. Cardiovascular Research, 69, 562-573. https://doi.org/10.1016/j.cardiores.2005.12.002
|
[13]
|
Duprez, D.A., Heckbert, S.R., Alonso, A., Gross, M.D., Ix, J.H., Kizer, J.R., et al. (2018) Collagen Biomarkers and Incidence of New Onset of Atrial Fibrillation in Subjects with No Overt Cardiovascular Disease at Baseline: The Multi-Ethnic Study of Atherosclerosis. Circulation: Arrhythmia and Electrophysiology, 11, e006557. https://doi.org/10.1161/circep.118.006557
|
[14]
|
Linssen, P.B.C., Brunner-La Rocca, H., Schalkwijk, C.G., Beulens, J.W.J., Elders, P.J.M., van der Heijden, A.A., et al. (2020) Serum Matrix Metalloproteinases and Left Atrial Remodeling—The Hoorn Study. International Journal of Molecular Sciences, 21, Article 4944. https://doi.org/10.3390/ijms21144944
|
[15]
|
Ganguly, K., Adhikary, K., Acharjee, A., Acharjee, P., Trigun, S.K., Mutlaq, A.S., et al. (2024) Biological Significance and Pathophysiological Role of Matrix Metalloproteinases in the Central Nervous System. International Journal of Biological Macromolecules, 280, Article ID: 135967. https://doi.org/10.1016/j.ijbiomac.2024.135967
|
[16]
|
Li, Y. (2000) Interplay of Matrix Metalloproteinases, Tissue Inhibitors of Metalloproteinases and Their Regulators in Cardiac Matrix Remodeling. Cardiovascular Research, 46, 214-224. https://doi.org/10.1016/s0008-6363(00)00003-1
|
[17]
|
Lijnen, P.J., Petrov, V.V. and Fagard, R.H. (2000) Induction of Cardiac Fibrosis by Transforming Growth Factor-β1. Molecular Genetics and Metabolism, 71, 418-435. https://doi.org/10.1006/mgme.2000.3032
|
[18]
|
Hiram, R., Naud, P., Xiong, F., Al-u’datt, D., Algalarrondo, V., Sirois, M.G., et al. (2019) Right Atrial Mechanisms of Atrial Fibrillation in a Rat Model of Right Heart Disease. Journal of the American College of Cardiology, 74, 1332-1347. https://doi.org/10.1016/j.jacc.2019.06.066
|
[19]
|
Kallergis, E.M., Goudis, C.A., Kanoupakis, E.M., Mavrakis, H.E., Maliaraki, N.E., Tzanakis, N., et al. (2014) Sinus Rhythm Restoration Affects Collagen Turnover in Patients with Persistent Atrial Fibrillation. Europace, 16, 1726-1730. https://doi.org/10.1093/europace/eut401
|
[20]
|
Richter, B., Gwechenberger, M., Socas, A., Zorn, G., Albinni, S., Marx, M., et al. (2011) Time Course of Markers of Tissue Repair after Ablation of Atrial Fibrillation and Their Relation to Left Atrial Structural Changes and Clinical Ablation Outcome. International Journal of Cardiology, 152, 231-236. https://doi.org/10.1016/j.ijcard.2010.07.021
|
[21]
|
Yan, S.F., Yan, S.D., Herold, K., Ramsamy, R. and Schmidt, A.M. (2006) Receptor for Advanced Glycation End Products and the Cardiovascular Complications of Diabetes and Beyond: Lessons from Ageing. Endocrinology and Metabolism Clinics of North America, 35, 511-524. https://doi.org/10.1016/j.ecl.2006.06.003
|
[22]
|
Zhu, D., Ni, Y., Chen, C., Dong, Z., Wang, L. and Zhang, W. (2024) Geniposide Ameliorates Diabetic Nephropathy in Type 2 Diabetic Mice by Targeting Ages-Rage-Dependent Inflammatory Pathway. Phytomedicine, 135, Article ID: 156046. https://doi.org/10.1016/j.phymed.2024.156046
|
[23]
|
Su, H., Su, H., Liu, C., Hu, H., Zhao, J., Zou, T., et al. (2021) H2S Inhibits Atrial Fibrillation-Induced Atrial Fibrosis through miR-133a/CTGF Axis. Cytokine, 146, Article ID: 155557. https://doi.org/10.1016/j.cyto.2021.155557
|
[24]
|
Lavall, D., Jacobs, N., Mahfoud, F., Kolkhof, P., Böhm, M. and Laufs, U. (2019) The Non-Steroidal Mineralocorticoid Receptor Antagonist Finerenone Prevents Cardiac Fibrotic Remodeling. Biochemical Pharmacology, 168, 173-183. https://doi.org/10.1016/j.bcp.2019.07.001
|
[25]
|
Zheng, D., Wu, Q., Zeng, P., Li, S., Cai, Y., Chen, S., et al. (2022) Advanced Glycation End Products Induce Senescence of Atrial Myocytes and Increase Susceptibility of Atrial Fibrillation in Diabetic Mice. Aging Cell, 21, e13734. https://doi.org/10.1111/acel.13734
|
[26]
|
Li, Y., Zheng, X., Guo, J., Samura, M., Ge, Y., Zhao, S., et al. (2023) Treatment with Small Molecule Inhibitors of Advanced Glycation End‐products Formation and Advanced Glycation End‐products‐mediated Collagen Cross‐linking Promotes Experimental Aortic Aneurysm Progression in Diabetic Mice. Journal of the American Heart Association, 12, e028081. https://doi.org/10.1161/jaha.122.028081
|
[27]
|
Raposeiras-Roubín, S., Rodiño-Janeiro, B.K., Paradela-Dobarro, B., Grigorian-Shamagian, L., García-Acuña, J.M., Aguiar-Souto, P., et al. (2013) Fluorescent Advanced Glycation End Products and Their Soluble Receptor: The Birth of New Plasmatic Biomarkers for Risk Stratification of Acute Coronary Syndrome. PLOS ONE, 8, e74302. https://doi.org/10.1371/journal.pone.0074302
|
[28]
|
Yang, P., Lee, S.H., Park, J., Kim, T., Uhm, J., Joung, B., et al. (2016) Atrial Tissue Expression of Receptor for Advanced Glycation End-Products (RAGE) and Atrial Fibrosis in Patients with Mitral Valve Disease. International Journal of Cardiology, 220, 1-6. https://doi.org/10.1016/j.ijcard.2016.06.137
|
[29]
|
Seropian, I.M., El-Diasty, M., El-Sherbini, A.H., González, G.E. and Rabinovich, G.A. (2024) Central Role of Galectin-3 at the Cross-Roads of Cardiac Inflammation and Fibrosis: Implications for Heart Failure and Transplantation. Cytokine & Growth Factor Reviews, 80, 47-58. https://doi.org/10.1016/j.cytogfr.2024.10.002
|
[30]
|
Shan, F., Ye, J., Xu, X., Liang, C., Zhao, Y., Wang, J., et al. (2024) Galectin-3 Inhibition Reduces Fibrotic Scarring and Promotes Functional Recovery after Spinal Cord Injury in Mice. Cell & Bioscience, 14, Article No. 128. https://doi.org/10.1186/s13578-024-01310-9
|
[31]
|
Aksan, G., Yanık, A., Yontar, O.C., Boyacı, F., Uçar, M., Şahin, M.K., et al. (2022) The Predictive Value of Galectin‐3 Levels on Left Atrial Low Voltage Areas Assessed by High‐Density Mapping in Patients with Paroxysmal Atrial Fibrillation. Journal of Arrhythmia, 38, 353-362. https://doi.org/10.1002/joa3.12703
|
[32]
|
Wałek, P., Grabowska, U., Cieśla, E., Sielski, J., Roskal-Wałek, J. and Wożakowska-Kapłon, B. (2021) Analysis of the Correlation of Galectin-3 Concentration with the Measurements of Echocardiographic Parameters Assessing Left Atrial Remodeling and Function in Patients with Persistent Atrial Fibrillation. Biomolecules, 11, Article 1108. https://doi.org/10.3390/biom11081108
|
[33]
|
Wiedmann, F., Kraft, M., Kallenberger, S., Büscher, A., Paasche, A., Blochberger, P.L., et al. (2022) Micrornas Regulate TASK‐1 and Are Linked to Myocardial Dilatation in Atrial Fibrillation. Journal of the American Heart Association, 11, e023472. https://doi.org/10.1161/jaha.121.023472
|
[34]
|
Cardin, S., Guasch, E., Luo, X., Naud, P., Le Quang, K., Shi, Y., et al. (2012) Role for MicroRNA-21 in Atrial Profibrillatory Fibrotic Remodeling Associated with Experimental Postinfarction Heart Failure. Circulation: Arrhythmia and Electrophysiology, 5, 1027-1035. https://doi.org/10.1161/circep.112.973214
|
[35]
|
Zhou, Q., Maleck, C., von Ungern-Sternberg, S.N.I., Neupane, B., Heinzmann, D., Marquardt, J., et al. (2018) Circulating MicroRNA-21 Correlates with Left Atrial Low-Voltage Areas and Is Associated with Procedure Outcome in Patients Undergoing Atrial Fibrillation Ablation. Circulation: Arrhythmia and Electrophysiology, 11, e006242. https://doi.org/10.1161/circep.118.006242
|
[36]
|
Pradhan, K., Niehues, P., Neupane, B., Maleck, C., Sharif-Yakan, A., Emrani, M., et al. (2023) MicroRNA-21 Mediated Cross-Talk between Cardiomyocytes and Fibroblasts in Patients with Atrial Fibrillation. Frontiers in Cardiovascular Medicine, 10, Article 1056134. https://doi.org/10.3389/fcvm.2023.1056134
|
[37]
|
López‐Gálvez, R., Rivera‐Caravaca, J.M., Mandaglio‐Collados, D., Orenes‐Piñero, E., Lahoz, Á., Hernández‐Romero, D., et al. (2023) Molecular Mechanisms of Postoperative Atrial Fibrillation in Patients with Obstructive Sleep Apnea. The FASEB Journal, 37, e22941. https://doi.org/10.1096/fj.202201965rr
|
[38]
|
Korvenlaita, N., Gómez‐Budia, M., Scoyni, F., Pistono, C., Giudice, L., Eamen, S., et al. (2023) Dynamic Release of Neuronal Extracellular Vesicles Containing miR‐21a‐5p Is Induced by Hypoxia. Journal of Extracellular Vesicles, 12, e12297. https://doi.org/10.1002/jev2.12297
|
[39]
|
Zhao, B., Wang, W., Liu, Y., Guan, S., Wang, M., Song, F., et al. (2022) Establishment of a lncRNA-miRNA-mRNA Network in a Rat Model of Atrial Fibrosis by Whole Transcriptome Sequencing. Journal of Interventional Cardiac Electrophysiology, 63, 723-736. https://doi.org/10.1007/s10840-022-01120-4
|
[40]
|
Zhan, J., Peng, C., Liu, Y., Bi, Z., Lu, G., Hao, S., et al. (2024) Predictive Value of Serum microRNA-29b-3p in Recurrence of Atrial Fibrillation after Radiofrequency Catheter Ablation. Clinical Interventions in Aging, 19, 715-725. https://doi.org/10.2147/cia.s450292
|
[41]
|
Han, X., Wang, S., Yong, Z., Zhang, X. and Wang, X. (2022) miR-29b Ameliorates Atrial Fibrosis in Rats with Atrial Fibrillation by Targeting TGFβR and Inhibiting the Activation of Smad-2/3 Pathway. Journal of Bioenergetics and Biomembranes, 54, 81-91. https://doi.org/10.1007/s10863-022-09934-7
|
[42]
|
Lee, J., Lee, H., Sherbini, A.E., Baghaie, L., Leroy, F., Abdel-Qadir, H., et al. (2024) Epigenetic MicroRNAs as Prognostic Markers of Postoperative Atrial Fibrillation: A Systematic Review. Current Problems in Cardiology, 49, Article ID: 102106. https://doi.org/10.1016/j.cpcardiol.2023.102106
|
[43]
|
Mildeberger, L., Bueto, J., Wilmes, V., Scheiper-Welling, S., Niess, C., Gradhand, E., et al. (2023) Suitable Biomarkers for Post-Mortem Differentiation of Cardiac Death Causes: Quantitative Analysis of miR-1, miR-133a and miR-26a in Heart Tissue and Whole Blood. Forensic Science International: Genetics, 65, Article ID: 102867. https://doi.org/10.1016/j.fsigen.2023.102867
|
[44]
|
Yao, L., Zhou, B., You, L., Hu, H. and Xie, R. (2020) LncRNA MIAT/miR-133a-3p Axis Regulates Atrial Fibrillation and Atrial Fibrillation-Induced Myocardial Fibrosis. Molecular Biology Reports, 47, 2605-2617. https://doi.org/10.1007/s11033-020-05347-0
|
[45]
|
Lo, C., Li, L., Yang, S., Tsai, C., Chuang, Y., Chu, H., et al. (2022) MicroRNA Let-7a,-7e and-133a Attenuate Hypoxia-Induced Atrial Fibrosis via Targeting Collagen Expression and the JNK Pathway in HL1 Cardiomyocytes. International Journal of Molecular Sciences, 23, Article 9636. https://doi.org/10.3390/ijms23179636
|
[46]
|
Dilaveris, P., Antoniou, C., Manolakou, P., Tsiamis, E., Gatzoulis, K. and Tousoulis, D. (2019) Biomarkers Associated with Atrial Fibrosis and Remodeling. Current Medicinal Chemistry, 26, 780-802. https://doi.org/10.2174/0929867324666170918122502
|
[47]
|
Chen, L.Y., Ribeiro, A.L.P., Platonov, P.G., et al. (2022) P Wave Parameters and Indices: A Critical Appraisal of Clinical Utility, Challenges, and Future Research-A Consensus Document Endorsed by the International Society of Electrocardiology and the International Society for Holter and Noninvasive Electrocardiology. Circulation: Arrhythmia and Electrophysiology, 15, e010435.
|
[48]
|
Martínez-Sellés, M., Elosua, R., Ibarrola, M., de Andrés, M., Díez-Villanueva, P., Bayés-Genis, A., et al. (2020) Advanced Interatrial Block and P-Wave Duration Are Associated with Atrial Fibrillation and Stroke in Older Adults with Heart Disease: The BAYES Registry. EP Europace, 22, 1001-1008. https://doi.org/10.1093/europace/euaa114
|
[49]
|
Li, Z., Liu, Q., Liu, F., Hidru, T.H., Yang, Y., Wang, S., et al. (2022) Atrial Cardiomyopathy Markers and New-Onset Atrial Fibrillation Risk in Patients with Acute Myocardial Infarction. European Journal of Internal Medicine, 102, 72-79. https://doi.org/10.1016/j.ejim.2022.04.019
|
[50]
|
Kreimer, F., Aweimer, A., Pflaumbaum, A., Mügge, A. and Gotzmann, M. (2021) Impact of P‐wave Indices in Prediction of Atrial Fibrillation—Insight from Loop Recorder Analysis. Annals of Noninvasive Electrocardiology, 26, e12854. https://doi.org/10.1111/anec.12854
|
[51]
|
Liu, W., Li, S. and Han, B. (2022) It Is Necessary to Re-Understand the Low-Voltage Area in Atrial Fibrillation Patients. Frontiers in Cardiovascular Medicine, 9, Article 919873. https://doi.org/10.3389/fcvm.2022.919873
|
[52]
|
Masuda, M., Matsuda, Y., Uematsu, H., Sugino, A., Ooka, H., Kudo, S., et al. (2024) Prognostic Impact of Atrial Cardiomyopathy: Long-Term Follow-Up of Patients with and without Low-Voltage Areas Following Atrial Fibrillation Ablation. Heart Rhythm, 21, 378-386. https://doi.org/10.1016/j.hrthm.2023.12.016
|
[53]
|
Xiang, X., Song, Y., Zhao, K., Yu, S., Yang, S., Xu, J., et al. (2023) Incremental Prognostic Value of Left Atrial and Biventricular Feature Tracking in Dilated Cardiomyopathy: A Long-Term Study. Journal of Cardiovascular Magnetic Resonance, 25, 76. https://doi.org/10.1186/s12968-023-00967-4
|
[54]
|
van Rosendael, A.R., Smit, J.M., El’Mahdiui, M., van Rosendael, P.J., Leung, M., Delgado, V., et al. (2022) Association between Left Atrial Epicardial Fat, Left Atrial Volume, and the Severity of Atrial Fibrillation. EP Europace, 24, 1223-1228. https://doi.org/10.1093/europace/euac031
|