心房心肌病临床标志物的研究进展
Research Progress on Clinical Markers of Atrial Cardiomyopathy
DOI: 10.12677/acm.2025.151213, PDF, HTML, XML,   
作者: 王 琨, 肖培林*:重庆医科大学附属第二医院心血管内科,重庆
关键词: 心房心肌病心房纤维化心房颤动标志物Atrial Cardiomyopathy Atrial Fibrosis Atrial Fibrillation Biomarkers
摘要: 心房心肌病是近年提出的新概念,是一个诸多临床因素损伤心房致其结构、电生理、功能改变的综合范畴。心房心肌病是发生心房颤动和卒中的心房基质,其与心房纤维化关系密切。早期识别心房心肌病患者并及早地进行综合治疗与管理,对于预防和控制房颤、卒中的发生至关重要。本文综合最新研究文献对心房心肌病相关标志物进行简要阐述。
Abstract: Atrial cardiomyopathy is a new concept put forward in recent years. It is a comprehensive category of structure, electrophysiology and function changes caused by many clinical factors. Atrial cardiomyopathy is the atrial matrix in which atrial fibrillation and stroke occur, and it is closely related to atrial fibrosis. Early identification of patients with atrial cardiomyopathy and early comprehensive treatment and management are very important for preventing and controlling the occurrence of atrial fibrillation and stroke. In this paper, based on the latest research literature, the related markers of atrial cardiomyopathy were briefly described.
文章引用:王琨, 肖培林. 心房心肌病临床标志物的研究进展[J]. 临床医学进展, 2025, 15(1): 1588-1594. https://doi.org/10.12677/acm.2025.151213

1. 引言

2024年欧洲心律协会(EHRA)、美国心律学会(HRA)、亚太心律学会(APHRS)以及拉丁美洲心脏起搏与电生理学会(SOLAECE)更新了心房心肌病的临床共识声明[1]将心房心肌病(Atrial Cardiomyopathy, ACM)定义为任何影响心房、并可能产生临床相关表现的心脏结构、收缩功能或电生理变化的疾病。ACM是房性心律失常(房颤、房扑)、心房血栓形成和心脏重要功能–结构表现异常(如心房扩张继发的心衰、房室瓣膜功能障碍)的基础[2]。由于ACM病因复杂,致病机制多种多样,目前临床上对ACM的检测尚缺乏有效的手段。寻找可靠的临床标志物对早期识别、诊断ACM具有重要意义。

2. ACM的病理生理学

多种因素如高血压、房颤、糖尿病、高龄、心衰等均可导致或加重ACM [3] [4]。根据病理生理特点,将ACM分为四类(EHRAS分类[1]):(1) 以心肌病变为主;(2) 以纤维化病变为主;(3) 同时存在心肌病变和纤维化;(4) 以非胶原纤维浸润为主(伴或不伴心肌改变)。ACM的核心特征之一是心房结构的变化,包括心房扩张和纤维化。这些变化通常与长期的心房高压力负荷(如高血压、瓣膜病)、心房颤动和心力衰竭等疾病相关。

3. 血清标志物

3.1. 12,13-二羟基-9Z-十八烯酸(12,13-diHOME)

房颤患者队列代谢组学分析发现冠状静脉中12,13-diHOME水平与左心房重塑显著关联,房颤组冠状静脉12,13-diHOME水平明显低于非房颤对照组(84.32 ± 20.13与96.24 ± 23.56 pg/mL;P < 0.01) [5]。多变量回归分析进一步表明冠状静脉12,13-diHOME水平是房颤射频消融术后1年复发的独立预测因素[5]。12,13-DiHOME是一种棕色脂肪细胞因子(batokines),它会影响体内的信号脂质水平变化,如ω-3多不饱和脂肪酸(ω-3 PUFAs)的增加[6]。动物实验表明ω-3PUFAs可能通过预防丝裂原激活的蛋白激酶激活、减少基质金属蛋白酶活性和连接蛋白再分布逆转房颤介导的心房结构变化[7] [8]。但该房颤队列研究样本量较少且血液标本取自于冠状静脉,未来仍需在大样本临床研究及外周血样本中做进一步验证。

3.2. 基质金属蛋白酶(Matrix Metalloproteinase, MMPs)

胶原蛋白是心脏结构的主要组成部分,特别是在心脏的瓣膜和间隔中[9]。I型及III型胶原蛋白分别占心肌细胞外基质(Extracellular matrix, ECM)胶原含量的50%~80%和10%~45% [10] [11]。心肌ECM胶原蛋白的降解是左心房重塑的特征之一,这一过程受到基质金属蛋白酶(MMPs)的调控[12]。房颤患者的心房胶原沉积增加已被活检所证实[13]。MMPs参与了胶原纤维的降解途径,当心房发生多度胶原沉积时其表达水平也随之增加[14]。MMPs作为非活性酶原由多种细胞类型分泌,包括成纤维细胞、内皮细胞和心肌细胞[15]。MMP-1、MMP-2和MMP-9被认为在房颤相关心房重塑中发挥了重要作用[16] [17]。肺高压所致右房显著扩大的大鼠模型中MMP2、MMP9水平上升明显[18]。较高的MMP-2水平可以预测消融术后房颤的复发[19] [20]。然而这一标志物尚处于临床探索阶段。因为关于MMPs与心房重构的研究其结果存在异质性,一部分研究并未观察到心房重构组MMPs水平的升高,这可能与研究人群混杂因素较多有关。

3.3. 糖基化终末产物受体(Receptor for Advanced Glycation End Products, RAGE)

RAGE在高血压、动脉粥样硬化等多种心血管疾病发生发展中发挥重要作用[21]。高水平糖基化终末产物(advanced glycation end products, AGEs)与其受体相互作用,即AGEs-RAGE系统激活,能够介导炎症与氧化应激反应[22]。在动物模型中,还能引起组织纤维化、硬化及弹性蛋白消失等[22]。AGEs能够上调结缔组织生长因子(connective tissue growth factor, CTGF)的表达,而CTGF是诱导细胞外基质中纤维连接蛋白表达的关键分子,能够促进心房肌纤维化的发生[23] [24]。AGEs与其受体的相互作用一方面能够活化核因子NF-κB,引起多种促炎因子的过度表达,促进了心房重构[24]。AGEs加速了心房电重塑和细胞老化,通过激活p16/Rb通路增加了房颤的易感性[25]。AGEs还可以诱导某些结构蛋白的交联,如细胞外基质中的I型胶原蛋白和弹力素,促进心房纤维化[26]。血清可溶性RAGE (soluble form of receptor for advanced glycation end products, sRAGE)可能反映AGEs-RAGE轴的激活。Raposeiras-Roubín等人发现血清中AGEs和sRAGE的水平与左房直径(r = 0.491)和左房容积(r = 0.511)呈显著正相关[27]。在二尖瓣心脏疾病患者中,RAGE表达水平与心房纤维化程度独立相关(95%CI (4.76~14.2), P < 0.001) [28]

3.4. Galectin-3

Galectin-3是半乳糖凝集素家族中的一员。Galectin-3参与了心肌纤维化和心脏重构,其表达水平反映了心力衰竭的进展和严重程度[29]。Galectin-3的致纤维化作用是通过与基质蛋白如层粘连蛋白、纤连蛋白及胶原蛋白的结合来实现的,在这个过程中,Galectin-3被激活,并且和其他Galectin-3的残基相结合成二聚体,形成网状结构,从而使细胞外基质堆积,组织僵硬度增加[30]。阵发性房颤患者冠状静脉中的Galectin-3水平与心房低电压面积呈正相关[31]。持续性房颤患者中Galectin-3的浓度与左心房壁的大小、收缩功能和顺应性显著负相关[32]。由于Galectin-3广泛分布在组织器官中且与肿瘤增殖、迁移密切相关,其对于诊断心房重构特异性较差,临床应用仍然受限。

4. 遗传学标志物

4.1. miR-21

miR-21参与了ACM患者中心房TASK-1钾通道的表达调节,这导致了房颤易感性的增加[33]。在房颤大鼠模型中miR-21对心房纤维化重塑也起了关键作用[34]。血清miR-21水平与左心房低电压面积呈正相关并且是心房颤动患者射频消融术后复发的独立危险因素[35] [36]。然而也有研究发现合并阻塞性睡眠呼吸暂停(OSA)的患者,其血清miR-21水平越高的人群手术后发生房颤的风险反而越低[37]。长期缺氧状态会导致miR-21水平的升高[38],OSA患者缺氧程度的不同可能是影响该研究结果的重要因素之一。miR-21与ACM的关系仍需进一步研究证实。

4.2. miR29b

全转录组测序提示相较对照组,miR29b在心房纤维化大鼠模型组中下调[39]。在心房颤动患者中,血清miR-29b的表达较低,但经过射频消融治疗后,其表达较术前增加[40]。miR29b可能通过靶向调节TGFβR Ι并抑制Smad-2/3通路来减轻AF大鼠的心房纤维化[41]。miR29b同样也参与了心房TASK-1钾通道的表达调节[33]

4.3. miR133a

miR133a参与了心肌纤维化的调节[42] [43]。在房颤所致心房纤维化的大鼠中miR133a表达下调显著[44]。miR133a可通过靶向调节胶原表达和JNK途径减弱缺氧诱导的心房纤维化[45]。miR-133a抑制剂可以逆转Ang II诱导的人心房成纤维细胞增殖和迁移的抑制作用,从而促进了心房纤维化[23]。但目前miR133a与心房纤维化或心房重构的关系尚未得到临床研究的证实。

5. 电生理指标

5.1. P波参数

心房胶原沉积和结构重塑导致传导减慢和电压降低[46]。心电图P波代表了心房除极过程。P波时限、V1导联P波终末电势(PTFV1)、P波离散度等与心房事件(室上速、房颤、心房扩大)关系密切[47]。P波时限 ≥ 120 ms表明部分房间阻滞。下壁导联(II、III、aVF)中双相P波形态表明Bachmann束的完全阻滞,即高级别房间阻滞(advanced IAB) [48]。PTFV1由其持续时间和绝对振幅的乘积计算得出。PTFV1绝对值 > 4 mV·ms被认为是病理性的。该传导异常由终末左房异常激动所致,这往往提示左房应变能力的降低[49]。P波离散度是指12导联心电图上P-P最大时限与P-P最小时限之差。在隐源性卒中和植入循环记录仪的患者中,P波离散度 > 40 ms是房颤的预测指标[50]

5.2. 心房电压

心内膜双极电压振幅降低,在电解剖标测图中表现为低电压区(low voltage area, LVA),通常定义为双极电压 < 0.5 mV的区域,这被视为心房心肌病的标志之一[51]。电解剖标测研究表明,心房双极电压降低是一个弥漫过程;而LVA是与组织学纤维化相关的弥漫性电压降低的局部反映[1]。首次消融的房颤患者中LVAs的存在及其程度与死亡、心力衰竭和卒中等长期复发终点有关[52]。目前尚无评价心房心肌病严重程度的标准化方法,LVA可在一定程度上对心房心肌病进行量化指导后续治疗。但是有创、高成本等因素限制了其广泛应用。

6. 影像学标志

超声心动图、心脏磁共振(CMR)成像和心脏计算机断层扫描(CCT)是评估心房形态特征的常用手段。经食管超声心动图(TEE)和CCT可以具体地描述左房和右心耳的特征。基于CT的局部室壁变形能够更好地预测心房低电压区域。心脏磁共振特征追踪技术(cardiac magnetic resonance-feature tracking, CMR-FT)可在常规电影扫描序列中通过后处理软件探测心动周期中心肌长度随时间的变化情况,反映心肌在张力作用下发生形变的能力,从而获得反映心肌功能的应变和应变率[53]。心外膜脂肪组织EAT通过直接浸润或间接分泌细胞活性物质影响心房心肌重塑,CCT或CMR可有效评估心房周围EAT的面积及浸润深度,有助于识别早期ACM [54]

7. 未来展望

影像学标志基于较好的特异性在ACM诊疗中的应用相对较多,电学参数在临床上往往作为诊断的次要参考标准。而血清标志物及遗传标志物受限于费用、研究证据不足等问题仍未广泛应用于ACM的诊疗。ACM标志物的研究多数在特定类型患者(如房颤)或动物上进行,尤其是血清标志物及遗传标志物,由于样本的异质性仍需大规模临床研究证实标志物与ACM的关联。此外ACM病因复杂,涉及炎症、代谢紊乱、电生理重构等多种机制,单一标志物其敏感性、特异性可能较差。未来需探索多组学标志物的联合应用,以提高临床诊断准确性和预测能力。另外仍需不断结合新技术(如质谱分析、单细胞RNA测序等)发现潜在的新型标志物,为ACM的诊疗提供有力工具。

NOTES

*通讯作者。

参考文献

[1] Goette, A., Corradi, D., Dobrev, D., Aguinaga, L., Cabrera, J., Chugh, S.S., et al. (2024) Atrial Cardiomyopathy Revisited—Evolution of a Concept: A Clinical Consensus Statement of the European Heart Rhythm Association (EHRA) of the ESC, the Heart Rhythm Society (HRS), the Asian Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS). Europace, 26, euae204.
https://doi.org/10.1093/europace/euae204
[2] Schotten, U., Goette, A. and Verheule, S. (2024) Translation of Pathophysiological Mechanisms of Atrial Fibrosis into New Diagnostic and Therapeutic Approaches. Nature Reviews Cardiology.
https://doi.org/10.1038/s41569-024-01088-w
[3] McCauley, M.D., Iacobellis, G., Li, N., Nattel, S. and Goldberger, J.J. (2024) Targeting the Substrate for Atrial Fibrillation: JACC Review Topic of the Week. Journal of the American College of Cardiology, 83, 2015-2027.
https://doi.org/10.1016/j.jacc.2024.02.050
[4] 张帆, 马薇, 许静. 心房心肌病认识新进展[J]. 中国心脏起搏与心电生理杂志, 2019, 33(1): 48-50.
[5] Tang, X., Wang, J., Ouyang, X., Chen, Q., Dong, R., Luo, Y., et al. (2024) Coronary Sinus Metabolite 12,13-diHOME Is a Novel Biomarker for Left Atrial Remodeling in Patients with Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 17, e012486.
https://doi.org/10.1161/circep.123.012486
[6] Pinckard, K.M., Shettigar, V.K., Wright, K.R., Abay, E., Baer, L.A., Vidal, P., et al. (2021) A Novel Endocrine Role for the Bat-Released Lipokine 12,13-diHOME to Mediate Cardiac Function. Circulation, 143, 145-159.
https://doi.org/10.1161/circulationaha.120.049813
[7] Bae, J.H., Lim, H. and Lim, S. (2023) The Potential Cardiometabolic Effects of Long-Chain Ω-3 Polyunsaturated Fatty Acids: Recent Updates and Controversies. Advances in Nutrition, 14, 612-628.
https://doi.org/10.1016/j.advnut.2023.03.014
[8] 邹海, 贺西淦, 陈臻瑶, 等. ω-3多不饱和脂肪酸防治心律失常临床研究进展[J]. 医药导报, 2023, 42(11): 1704-1710.
[9] Neff, L.S. and Bradshaw, A.D. (2021) Cross Your Heart? Collagen Cross-Links in Cardiac Health and Disease. Cellular Signalling, 79, Article ID: 109889.
https://doi.org/10.1016/j.cellsig.2020.109889
[10] Navaee, F., Renaud, P., Kleger, A. and Braschler, T. (2023) Highly Efficient Cardiac Differentiation and Maintenance by Thrombin-Coagulated Fibrin Hydrogels Enriched with Decellularized Porcine Heart Extracellular Matrix. International Journal of Molecular Sciences, 24, Article 2842.
https://doi.org/10.3390/ijms24032842
[11] Nikolov, A. and Popovski, N. (2022) Extracellular Matrix in Heart Disease: Focus on Circulating Collagen Type I and III Derived Peptides as Biomarkers of Myocardial Fibrosis and Their Potential in the Prognosis of Heart Failure: A Concise Review. Metabolites, 12, Article 297.
https://doi.org/10.3390/metabo12040297
[12] Nagase, H., Visse, R. and Murphy, G. (2006) Structure and Function of Matrix Metalloproteinases and TIMPs. Cardiovascular Research, 69, 562-573.
https://doi.org/10.1016/j.cardiores.2005.12.002
[13] Duprez, D.A., Heckbert, S.R., Alonso, A., Gross, M.D., Ix, J.H., Kizer, J.R., et al. (2018) Collagen Biomarkers and Incidence of New Onset of Atrial Fibrillation in Subjects with No Overt Cardiovascular Disease at Baseline: The Multi-Ethnic Study of Atherosclerosis. Circulation: Arrhythmia and Electrophysiology, 11, e006557.
https://doi.org/10.1161/circep.118.006557
[14] Linssen, P.B.C., Brunner-La Rocca, H., Schalkwijk, C.G., Beulens, J.W.J., Elders, P.J.M., van der Heijden, A.A., et al. (2020) Serum Matrix Metalloproteinases and Left Atrial Remodeling—The Hoorn Study. International Journal of Molecular Sciences, 21, Article 4944.
https://doi.org/10.3390/ijms21144944
[15] Ganguly, K., Adhikary, K., Acharjee, A., Acharjee, P., Trigun, S.K., Mutlaq, A.S., et al. (2024) Biological Significance and Pathophysiological Role of Matrix Metalloproteinases in the Central Nervous System. International Journal of Biological Macromolecules, 280, Article ID: 135967.
https://doi.org/10.1016/j.ijbiomac.2024.135967
[16] Li, Y. (2000) Interplay of Matrix Metalloproteinases, Tissue Inhibitors of Metalloproteinases and Their Regulators in Cardiac Matrix Remodeling. Cardiovascular Research, 46, 214-224.
https://doi.org/10.1016/s0008-6363(00)00003-1
[17] Lijnen, P.J., Petrov, V.V. and Fagard, R.H. (2000) Induction of Cardiac Fibrosis by Transforming Growth Factor-β1. Molecular Genetics and Metabolism, 71, 418-435.
https://doi.org/10.1006/mgme.2000.3032
[18] Hiram, R., Naud, P., Xiong, F., Al-u’datt, D., Algalarrondo, V., Sirois, M.G., et al. (2019) Right Atrial Mechanisms of Atrial Fibrillation in a Rat Model of Right Heart Disease. Journal of the American College of Cardiology, 74, 1332-1347.
https://doi.org/10.1016/j.jacc.2019.06.066
[19] Kallergis, E.M., Goudis, C.A., Kanoupakis, E.M., Mavrakis, H.E., Maliaraki, N.E., Tzanakis, N., et al. (2014) Sinus Rhythm Restoration Affects Collagen Turnover in Patients with Persistent Atrial Fibrillation. Europace, 16, 1726-1730.
https://doi.org/10.1093/europace/eut401
[20] Richter, B., Gwechenberger, M., Socas, A., Zorn, G., Albinni, S., Marx, M., et al. (2011) Time Course of Markers of Tissue Repair after Ablation of Atrial Fibrillation and Their Relation to Left Atrial Structural Changes and Clinical Ablation Outcome. International Journal of Cardiology, 152, 231-236.
https://doi.org/10.1016/j.ijcard.2010.07.021
[21] Yan, S.F., Yan, S.D., Herold, K., Ramsamy, R. and Schmidt, A.M. (2006) Receptor for Advanced Glycation End Products and the Cardiovascular Complications of Diabetes and Beyond: Lessons from Ageing. Endocrinology and Metabolism Clinics of North America, 35, 511-524.
https://doi.org/10.1016/j.ecl.2006.06.003
[22] Zhu, D., Ni, Y., Chen, C., Dong, Z., Wang, L. and Zhang, W. (2024) Geniposide Ameliorates Diabetic Nephropathy in Type 2 Diabetic Mice by Targeting Ages-Rage-Dependent Inflammatory Pathway. Phytomedicine, 135, Article ID: 156046.
https://doi.org/10.1016/j.phymed.2024.156046
[23] Su, H., Su, H., Liu, C., Hu, H., Zhao, J., Zou, T., et al. (2021) H2S Inhibits Atrial Fibrillation-Induced Atrial Fibrosis through miR-133a/CTGF Axis. Cytokine, 146, Article ID: 155557.
https://doi.org/10.1016/j.cyto.2021.155557
[24] Lavall, D., Jacobs, N., Mahfoud, F., Kolkhof, P., Böhm, M. and Laufs, U. (2019) The Non-Steroidal Mineralocorticoid Receptor Antagonist Finerenone Prevents Cardiac Fibrotic Remodeling. Biochemical Pharmacology, 168, 173-183.
https://doi.org/10.1016/j.bcp.2019.07.001
[25] Zheng, D., Wu, Q., Zeng, P., Li, S., Cai, Y., Chen, S., et al. (2022) Advanced Glycation End Products Induce Senescence of Atrial Myocytes and Increase Susceptibility of Atrial Fibrillation in Diabetic Mice. Aging Cell, 21, e13734.
https://doi.org/10.1111/acel.13734
[26] Li, Y., Zheng, X., Guo, J., Samura, M., Ge, Y., Zhao, S., et al. (2023) Treatment with Small Molecule Inhibitors of Advanced Glycation End‐products Formation and Advanced Glycation End‐products‐mediated Collagen Cross‐linking Promotes Experimental Aortic Aneurysm Progression in Diabetic Mice. Journal of the American Heart Association, 12, e028081.
https://doi.org/10.1161/jaha.122.028081
[27] Raposeiras-Roubín, S., Rodiño-Janeiro, B.K., Paradela-Dobarro, B., Grigorian-Shamagian, L., García-Acuña, J.M., Aguiar-Souto, P., et al. (2013) Fluorescent Advanced Glycation End Products and Their Soluble Receptor: The Birth of New Plasmatic Biomarkers for Risk Stratification of Acute Coronary Syndrome. PLOS ONE, 8, e74302.
https://doi.org/10.1371/journal.pone.0074302
[28] Yang, P., Lee, S.H., Park, J., Kim, T., Uhm, J., Joung, B., et al. (2016) Atrial Tissue Expression of Receptor for Advanced Glycation End-Products (RAGE) and Atrial Fibrosis in Patients with Mitral Valve Disease. International Journal of Cardiology, 220, 1-6.
https://doi.org/10.1016/j.ijcard.2016.06.137
[29] Seropian, I.M., El-Diasty, M., El-Sherbini, A.H., González, G.E. and Rabinovich, G.A. (2024) Central Role of Galectin-3 at the Cross-Roads of Cardiac Inflammation and Fibrosis: Implications for Heart Failure and Transplantation. Cytokine & Growth Factor Reviews, 80, 47-58.
https://doi.org/10.1016/j.cytogfr.2024.10.002
[30] Shan, F., Ye, J., Xu, X., Liang, C., Zhao, Y., Wang, J., et al. (2024) Galectin-3 Inhibition Reduces Fibrotic Scarring and Promotes Functional Recovery after Spinal Cord Injury in Mice. Cell & Bioscience, 14, Article No. 128.
https://doi.org/10.1186/s13578-024-01310-9
[31] Aksan, G., Yanık, A., Yontar, O.C., Boyacı, F., Uçar, M., Şahin, M.K., et al. (2022) The Predictive Value of Galectin‐3 Levels on Left Atrial Low Voltage Areas Assessed by High‐Density Mapping in Patients with Paroxysmal Atrial Fibrillation. Journal of Arrhythmia, 38, 353-362.
https://doi.org/10.1002/joa3.12703
[32] Wałek, P., Grabowska, U., Cieśla, E., Sielski, J., Roskal-Wałek, J. and Wożakowska-Kapłon, B. (2021) Analysis of the Correlation of Galectin-3 Concentration with the Measurements of Echocardiographic Parameters Assessing Left Atrial Remodeling and Function in Patients with Persistent Atrial Fibrillation. Biomolecules, 11, Article 1108.
https://doi.org/10.3390/biom11081108
[33] Wiedmann, F., Kraft, M., Kallenberger, S., Büscher, A., Paasche, A., Blochberger, P.L., et al. (2022) Micrornas Regulate TASK‐1 and Are Linked to Myocardial Dilatation in Atrial Fibrillation. Journal of the American Heart Association, 11, e023472.
https://doi.org/10.1161/jaha.121.023472
[34] Cardin, S., Guasch, E., Luo, X., Naud, P., Le Quang, K., Shi, Y., et al. (2012) Role for MicroRNA-21 in Atrial Profibrillatory Fibrotic Remodeling Associated with Experimental Postinfarction Heart Failure. Circulation: Arrhythmia and Electrophysiology, 5, 1027-1035.
https://doi.org/10.1161/circep.112.973214
[35] Zhou, Q., Maleck, C., von Ungern-Sternberg, S.N.I., Neupane, B., Heinzmann, D., Marquardt, J., et al. (2018) Circulating MicroRNA-21 Correlates with Left Atrial Low-Voltage Areas and Is Associated with Procedure Outcome in Patients Undergoing Atrial Fibrillation Ablation. Circulation: Arrhythmia and Electrophysiology, 11, e006242.
https://doi.org/10.1161/circep.118.006242
[36] Pradhan, K., Niehues, P., Neupane, B., Maleck, C., Sharif-Yakan, A., Emrani, M., et al. (2023) MicroRNA-21 Mediated Cross-Talk between Cardiomyocytes and Fibroblasts in Patients with Atrial Fibrillation. Frontiers in Cardiovascular Medicine, 10, Article 1056134.
https://doi.org/10.3389/fcvm.2023.1056134
[37] López‐Gálvez, R., Rivera‐Caravaca, J.M., Mandaglio‐Collados, D., Orenes‐Piñero, E., Lahoz, Á., Hernández‐Romero, D., et al. (2023) Molecular Mechanisms of Postoperative Atrial Fibrillation in Patients with Obstructive Sleep Apnea. The FASEB Journal, 37, e22941.
https://doi.org/10.1096/fj.202201965rr
[38] Korvenlaita, N., Gómez‐Budia, M., Scoyni, F., Pistono, C., Giudice, L., Eamen, S., et al. (2023) Dynamic Release of Neuronal Extracellular Vesicles Containing miR‐21a‐5p Is Induced by Hypoxia. Journal of Extracellular Vesicles, 12, e12297.
https://doi.org/10.1002/jev2.12297
[39] Zhao, B., Wang, W., Liu, Y., Guan, S., Wang, M., Song, F., et al. (2022) Establishment of a lncRNA-miRNA-mRNA Network in a Rat Model of Atrial Fibrosis by Whole Transcriptome Sequencing. Journal of Interventional Cardiac Electrophysiology, 63, 723-736.
https://doi.org/10.1007/s10840-022-01120-4
[40] Zhan, J., Peng, C., Liu, Y., Bi, Z., Lu, G., Hao, S., et al. (2024) Predictive Value of Serum microRNA-29b-3p in Recurrence of Atrial Fibrillation after Radiofrequency Catheter Ablation. Clinical Interventions in Aging, 19, 715-725.
https://doi.org/10.2147/cia.s450292
[41] Han, X., Wang, S., Yong, Z., Zhang, X. and Wang, X. (2022) miR-29b Ameliorates Atrial Fibrosis in Rats with Atrial Fibrillation by Targeting TGFβR and Inhibiting the Activation of Smad-2/3 Pathway. Journal of Bioenergetics and Biomembranes, 54, 81-91.
https://doi.org/10.1007/s10863-022-09934-7
[42] Lee, J., Lee, H., Sherbini, A.E., Baghaie, L., Leroy, F., Abdel-Qadir, H., et al. (2024) Epigenetic MicroRNAs as Prognostic Markers of Postoperative Atrial Fibrillation: A Systematic Review. Current Problems in Cardiology, 49, Article ID: 102106.
https://doi.org/10.1016/j.cpcardiol.2023.102106
[43] Mildeberger, L., Bueto, J., Wilmes, V., Scheiper-Welling, S., Niess, C., Gradhand, E., et al. (2023) Suitable Biomarkers for Post-Mortem Differentiation of Cardiac Death Causes: Quantitative Analysis of miR-1, miR-133a and miR-26a in Heart Tissue and Whole Blood. Forensic Science International: Genetics, 65, Article ID: 102867.
https://doi.org/10.1016/j.fsigen.2023.102867
[44] Yao, L., Zhou, B., You, L., Hu, H. and Xie, R. (2020) LncRNA MIAT/miR-133a-3p Axis Regulates Atrial Fibrillation and Atrial Fibrillation-Induced Myocardial Fibrosis. Molecular Biology Reports, 47, 2605-2617.
https://doi.org/10.1007/s11033-020-05347-0
[45] Lo, C., Li, L., Yang, S., Tsai, C., Chuang, Y., Chu, H., et al. (2022) MicroRNA Let-7a,-7e and-133a Attenuate Hypoxia-Induced Atrial Fibrosis via Targeting Collagen Expression and the JNK Pathway in HL1 Cardiomyocytes. International Journal of Molecular Sciences, 23, Article 9636.
https://doi.org/10.3390/ijms23179636
[46] Dilaveris, P., Antoniou, C., Manolakou, P., Tsiamis, E., Gatzoulis, K. and Tousoulis, D. (2019) Biomarkers Associated with Atrial Fibrosis and Remodeling. Current Medicinal Chemistry, 26, 780-802.
https://doi.org/10.2174/0929867324666170918122502
[47] Chen, L.Y., Ribeiro, A.L.P., Platonov, P.G., et al. (2022) P Wave Parameters and Indices: A Critical Appraisal of Clinical Utility, Challenges, and Future Research-A Consensus Document Endorsed by the International Society of Electrocardiology and the International Society for Holter and Noninvasive Electrocardiology. Circulation: Arrhythmia and Electrophysiology, 15, e010435.
[48] Martínez-Sellés, M., Elosua, R., Ibarrola, M., de Andrés, M., Díez-Villanueva, P., Bayés-Genis, A., et al. (2020) Advanced Interatrial Block and P-Wave Duration Are Associated with Atrial Fibrillation and Stroke in Older Adults with Heart Disease: The BAYES Registry. EP Europace, 22, 1001-1008.
https://doi.org/10.1093/europace/euaa114
[49] Li, Z., Liu, Q., Liu, F., Hidru, T.H., Yang, Y., Wang, S., et al. (2022) Atrial Cardiomyopathy Markers and New-Onset Atrial Fibrillation Risk in Patients with Acute Myocardial Infarction. European Journal of Internal Medicine, 102, 72-79.
https://doi.org/10.1016/j.ejim.2022.04.019
[50] Kreimer, F., Aweimer, A., Pflaumbaum, A., Mügge, A. and Gotzmann, M. (2021) Impact of P‐wave Indices in Prediction of Atrial Fibrillation—Insight from Loop Recorder Analysis. Annals of Noninvasive Electrocardiology, 26, e12854.
https://doi.org/10.1111/anec.12854
[51] Liu, W., Li, S. and Han, B. (2022) It Is Necessary to Re-Understand the Low-Voltage Area in Atrial Fibrillation Patients. Frontiers in Cardiovascular Medicine, 9, Article 919873.
https://doi.org/10.3389/fcvm.2022.919873
[52] Masuda, M., Matsuda, Y., Uematsu, H., Sugino, A., Ooka, H., Kudo, S., et al. (2024) Prognostic Impact of Atrial Cardiomyopathy: Long-Term Follow-Up of Patients with and without Low-Voltage Areas Following Atrial Fibrillation Ablation. Heart Rhythm, 21, 378-386.
https://doi.org/10.1016/j.hrthm.2023.12.016
[53] Xiang, X., Song, Y., Zhao, K., Yu, S., Yang, S., Xu, J., et al. (2023) Incremental Prognostic Value of Left Atrial and Biventricular Feature Tracking in Dilated Cardiomyopathy: A Long-Term Study. Journal of Cardiovascular Magnetic Resonance, 25, 76.
https://doi.org/10.1186/s12968-023-00967-4
[54] van Rosendael, A.R., Smit, J.M., El’Mahdiui, M., van Rosendael, P.J., Leung, M., Delgado, V., et al. (2022) Association between Left Atrial Epicardial Fat, Left Atrial Volume, and the Severity of Atrial Fibrillation. EP Europace, 24, 1223-1228.
https://doi.org/10.1093/europace/euac031