[1]
|
Ai, L., Xu, A. and Xu, J. (2020) Roles of PD-1/PD-L1 Pathway: Signaling, Cancer, and Beyond. In: Xu, J., Ed., Regulation of Cancer Immune Checkpoints, Springer, 33-59. https://doi.org/10.1007/978-981-15-3266-5_3
|
[2]
|
Ghahremanloo, A., Soltani, A., Modaresi, S.M.S. and Hashemy, S.I. (2019) Recent Advances in the Clinical Development of Immune Checkpoint Blockade Therapy. Cellular Oncology, 42, 609-626. https://doi.org/10.1007/s13402-019-00456-w
|
[3]
|
Azimi, M., Manavi, M.S., Afshinpour, M., et al. (2024) Emerging Immunologic Approaches as Cancer Anti-Angiogenic Therapies. Clinical & Translational Oncology.
|
[4]
|
Qiu, Y., Su, M., Liu, L., Tang, Y., Pan, Y. and Sun, J. (2021) Clinical Application of Cytokines in Cancer Immunotherapy. Drug Design, Development and Therapy, 15, 2269-2287. https://doi.org/10.2147/dddt.s308578
|
[5]
|
Dong, L., Chen, C., Zhang, Y., Guo, P., Wang, Z., Li, J., et al. (2021) The Loss of RNA N6-Adenosine Methyltransferase Mettl14 in Tumor-Associated Macrophages Promotes CD8+ T Cell Dysfunction and Tumor Growth. Cancer Cell, 39, 945-957.e10. https://doi.org/10.1016/j.ccell.2021.04.016
|
[6]
|
吴增波, 秘双燕, 晏燕. TNF-α在口腔鳞癌组织中的表达及临床意义[J]. 贵州医科大学学报, 2020, 45(9): 1047-1050, 1066.
|
[7]
|
李德辉, 苏伊璠. PD-1/PD-L1与PI3K/AKT交叉对话与乳腺癌变免疫微环境[J]. 中国老年学杂志, 2022, 42(1): 215-218.
|
[8]
|
吴潇. 幽门螺旋杆菌诱导的IL-8通过PI3K/AKT信号通路上调PD-L1的表达进而促进胃癌的免疫逃逸[D]: [硕士学位论文]. 合肥: 安徽医科大学, 2021.
|
[9]
|
谢晓丽, 邱雨, 王丽娟. 干扰素-γ通过PI3K/Akt/mTOR通路上调程序性死亡受体-配体1促进非霍奇金淋巴瘤细胞增殖[J]. 山东大学学报(医学版), 2023, 61(5): 11-19.
|
[10]
|
Zhao, R., Song, Y., Wang, Y., Huang, Y., Li, Z., Cui, Y., et al. (2019) PD‐1/PD‐L1 Blockade Rescue Exhausted CD8+ T Cells in Gastrointestinal Stromal Tumours via the PI3K/Akt/mTOR Signalling Pathway. Cell Proliferation, 52, e12571. https://doi.org/10.1111/cpr.12571
|
[11]
|
Villarino, A.V., Kanno, Y. and O’Shea, J.J. (2017) Mechanisms and Consequences of Jak-STAT Signaling in the Immune System. Nature Immunology, 18, 374-384. https://doi.org/10.1038/ni.3691
|
[12]
|
Villarino, A.V., Gadina, M., O’Shea, J.J. and Kanno, Y. (2020) SnapShot: Jak-STAT Signaling II. Cell, 181, 1696-1696.e1. https://doi.org/10.1016/j.cell.2020.04.052
|
[13]
|
Salmaninejad, A., Valilou, S.F., Soltani, A., Ahmadi, S., Abarghan, Y.J., Rosengren, R.J., et al. (2019) Tumor-Associated Macrophages: Role in Cancer Development and Therapeutic Implications. Cellular Oncology, 42, 591-608. https://doi.org/10.1007/s13402-019-00453-z
|
[14]
|
韩垠超. IL-4经STAT6通路对胃癌细胞增殖、侵袭和迁移的影响及机制研究[D]: [硕士学位论文]. 锦州: 锦州医科大学, 2021.
|
[15]
|
Pucci, M., Raimondo, S., Urzì, O., Moschetti, M., Di Bella, M.A., Conigliaro, A., et al. (2021) Tumor-Derived Small Extracellular Vesicles Induce Pro-Inflammatory Cytokine Expression and PD-L1 Regulation in M0 Macrophages via IL-6/STAT3 and TLR4 Signaling Pathways. International Journal of Molecular Sciences, 22, Article 12118. https://doi.org/10.3390/ijms222212118
|
[16]
|
Chan, L., Li, C., Xia, W., Hsu, J., Lee, H., Cha, J., et al. (2019) IL-6/JAK1 Pathway Drives PD-L1 Y112 Phosphorylation to Promote Cancer Immune Evasion. Journal of Clinical Investigation, 129, 3324-3338. https://doi.org/10.1172/jci126022
|
[17]
|
Chen, S., Wang, M., Lu, T., Liu, Y., Hong, W., He, X., et al. (2023) JMJD6 in Tumor-Associated Macrophage Regulates Macrophage Polarization and Cancer Progression via STAT3/IL-10 Axis. Oncogene, 42, 2737-2750. https://doi.org/10.1038/s41388-023-02781-9
|
[18]
|
Schmetterer, K.G. and Pickl, W.F. (2017) The IL-10/STAT3 Axis: Contributions to Immune Tolerance by Thymus and Peripherally Derived Regulatory T‐Cells. European Journal of Immunology, 47, 1256-1265. https://doi.org/10.1002/eji.201646710
|
[19]
|
Zhang, X., Zeng, Y., Qu, Q., Zhu, J., Liu, Z., Ning, W., et al. (2017) PD-L1 Induced by IFN-γ from Tumor-Associated Macrophages via the JAK/STAT3 and PI3K/AKT Signaling Pathways Promoted Progression of Lung Cancer. International Journal of Clinical Oncology, 22, 1026-1033. https://doi.org/10.1007/s10147-017-1161-7
|
[20]
|
陈卓. IFN-γ联合TNF-α协同上调PD-L1表达增强hUC-MSCs免疫抑制功能的分子机制研究[D]: [博士学位论文]. 重庆: 中国人民解放军陆军军医大学, 2023.
|
[21]
|
Wang, Y., Liu, S., Yang, Z., Algazi, A.P., Lomeli, S.H., Wang, Y., et al. (2021) Anti-Pd-1/l1 Lead-In before MAPK Inhibitor Combination Maximizes Antitumor Immunity and Efficacy. Cancer Cell, 39, 1375-1387.e6. https://doi.org/10.1016/j.ccell.2021.07.023
|
[22]
|
Stutvoet, T.S., Kol, A., de Vries, E.G., de Bruyn, M., Fehrmann, R.S., Terwisscha van Scheltinga, A.G., et al. (2019) MAPK Pathway Activity Plays a Key Role in PD‐L1 Expression of Lung Adenocarcinoma Cells. The Journal of Pathology, 249, 52-64. https://doi.org/10.1002/path.5280
|
[23]
|
Diab, A., Tannir, N.M., Bentebibel, S., Hwu, P., Papadimitrakopoulou, V., Haymaker, C., et al. (2020) Bempegaldesleukin (NKTR-214) plus Nivolumab in Patients with Advanced Solid Tumors: Phase I Dose-Escalation Study of Safety, Efficacy, and Immune Activation (PIVOT-02). Cancer Discovery, 10, 1158-1173. https://doi.org/10.1158/2159-8290.cd-19-1510
|
[24]
|
Zhang, G., Jiao, Q., Shen, C., Song, H., Zhang, H., Qiu, Z., et al. (2021) Interleukin 6 Regulates the Expression of Programmed Cell Death Ligand 1 in Thyroid Cancer. Cancer Science, 112, 997-1010. https://doi.org/10.1111/cas.14752
|
[25]
|
Herzog, T.J., Hays, J.L., Barlin, J.N., Buscema, J., Cloven, N.G., Kong, L.R., et al. (2023) ARTISTRY-7: Phase III Trial of Nemvaleukin Alfa plus Pembrolizumab vs Chemotherapy for Platinum-Resistant Ovarian Cancer. Future Oncology, 19, 1577-1591. https://doi.org/10.2217/fon-2023-0246
|
[26]
|
Huseni, M.A., Wang, L., Klementowicz, J.E., Yuen, K., Breart, B., Orr, C., et al. (2023) CD8+ T Cell-Intrinsic IL-6 Signaling Promotes Resistance to Anti-PD-L1 Immunotherapy. Cell Reports Medicine, 4, Article ID: 100878. https://doi.org/10.1016/j.xcrm.2022.100878
|
[27]
|
Myers, J.A. and Miller, J.S. (2020) Exploring the NK Cell Platform for Cancer Immunotherapy. Nature Reviews Clinical Oncology, 18, 85-100. https://doi.org/10.1038/s41571-020-0426-7
|