[1]
|
Kim, J., Cho, H., Lim, D., Joo, M.K. and Kim, K. (2023) Perspectives for Improving the Tumor Targeting of Nanomedicine via the EPR Effect in Clinical Tumors. International Journal of Molecular Sciences, 24, Article No. 10082. https://doi.org/10.3390/ijms241210082
|
[2]
|
Lahooti, B., Akwii, R.G., Zahra, F.T., Sajib, M.S., Lamprou, M., Alobaida, A., et al. (2023) Targeting Endothelial Permeability in the EPR Effect. Journal of Controlled Release, 361, 212-235. https://doi.org/10.1016/j.jconrel.2023.07.039
|
[3]
|
Ma, Z., Zhang, Y., Zhu, Y., Cui, M., Liu, Y., Duan, Y., et al. (2024) Construction of a Tumor-Targeting Nanobubble with Multiple Scattering Interfaces and Its Enhancement of Ultrasound Imaging. International Journal of Nanomedicine, 19, 4651-4665. https://doi.org/10.2147/ijn.s462917
|
[4]
|
Perera, R.H., de Leon, A., Wang, X., Wang, Y., Ramamurthy, G., Peiris, P., et al. (2020) Real Time Ultrasound Molecular Imaging of Prostate Cancer with PSMA-Targeted Nanobubbles. Nanomedicine: Nanotechnology, Biology and Medicine, 28, Article ID: 102213. https://doi.org/10.1016/j.nano.2020.102213
|
[5]
|
Unga, J., Kageyama, S., Suzuki, R., Omata, D. and Maruyama, K. (2019) Scale-Up Production, Characterization and Toxicity of a Freeze-Dried Lipid-Stabilized Microbubble Formulation for Ultrasound Imaging and Therapy. Journal of Liposome Research, 30, 297-304. https://doi.org/10.1080/08982104.2019.1649282
|
[6]
|
Yu, Z., Wang, Y., Xu, D., Zhu, L., Hu, M., Liu, Q., et al. (2020) G250 Antigen-Targeting Drug-Loaded Nanobubbles Combined with Ultrasound Targeted Nanobubble Destruction: A Potential Novel Treatment for Renal Cell Carcinoma. International Journal of Nanomedicine, 15, 81-95. https://doi.org/10.2147/ijn.s230879
|
[7]
|
辛莹, 周厚妊, 张月. 纳米级靶向超声造影剂在癌症诊疗中的研究进展[J]. 医学影像学杂志, 2021, 31(6): 1067-1070.
|
[8]
|
姜一弘, 吕苇, 杨佳琪, 等. 双模态纳米级肿瘤靶向超声造影剂的制备及对比研究[J]. 中国超声医学杂志, 2020, 36(10): 950-953.
|
[9]
|
张月, 周厚妊, 罗语岑, 等. HER2靶向载HSV-TK基因并具有核定位效应的纳米超声造影剂制备[J]. 山东医药, 2021, 61(16): 20-23.
|
[10]
|
张姗. 纳米级AMH靶向超声造影剂的制备及其对大鼠移植卵巢靶向显影的初步研究[D]: [博士学位论文]. 乌鲁木齐: 新疆医科大学, 2020.
|
[11]
|
Li, H., Zhang, Y., Shu, H., Lv, W., Su, C. and Nie, F. (2022) Highlights in Ultrasound-Targeted Microbubble Destruction-Mediated Gene/Drug Delivery Strategy for Treatment of Malignancies. International Journal of Pharmaceutics, 613, Article ID: 121412. https://doi.org/10.1016/j.ijpharm.2021.121412
|
[12]
|
Li, Y., Du, M., Fang, J., Zhou, J. and Chen, Z. (2021) UTMD Promoted Local Delivery of miR-34a-Mimic for Ovarian Cancer Therapy. Drug Delivery, 28, 1616-1625. https://doi.org/10.1080/10717544.2021.1955041
|
[13]
|
Qiu, Y., Wu, Z., Chen, Y., Liao, J., Zhang, Q., Wang, Q., et al. (2023) Nano Ultrasound Contrast Agent for Synergistic Chemo‐Photothermal Therapy and Enhanced Immunotherapy against Liver Cancer and Metastasis. Advanced Science, 10, Article ID: 2300878. https://doi.org/10.1002/advs.202300878
|
[14]
|
Dong, T., Jiang, J., Zhang, H., Liu, H., Zou, X., Niu, J., et al. (2021) PFP@PLGA/Cu12Sb4S13-Mediated PTT Ablates Hepatocellular Carcinoma by Inhibiting the RAS/MAPK/MT-CO1 Signaling Pathway. Nano Convergence, 8, Article No. 29. https://doi.org/10.1186/s40580-021-00279-2
|
[15]
|
Guo, M., Du, W., Lyu, N., Chen, X., Du, Y., Wang, H., et al. (2019) Ultra‐Early Diagnosis of Acute Myocardial Infarction in Rats Using Ultrasound Imaging of Hollow Double‐Layer Silica Nanospheres. Advanced Healthcare Materials, 9, Article ID: 1901155. https://doi.org/10.1002/adhm.201901155
|
[16]
|
Yang, X., Zhao, M., Wu, Z., Chen, C., Zhang, Y., Wang, L., et al. (2022) Nano-Ultrasonic Contrast Agent for Chemoimmunotherapy of Breast Cancer by Immune Metabolism Reprogramming and Tumor Autophagy. ACS Nano, 16, 3417-3431. https://doi.org/10.1021/acsnano.2c00462
|
[17]
|
Li, X., Sui, Z., Li, X., Xu, W., Guo, Q., Sun, J., et al. (2018) Perfluorooctylbromide Nanoparticles for Ultrasound Imaging and Drug Delivery. International Journal of Nanomedicine, 13, 3053-3067. https://doi.org/10.2147/ijn.s164905
|
[18]
|
Hallam, K.A., Nikolai, R.J., Jhunjhunwala, A. and Emelianov, S.Y. (2024) Laser-Activated Perfluorocarbon Nanodroplets for Intracerebral Delivery and Imaging via Blood-Brain Barrier Opening and Contrast-Enhanced Imaging. Journal of Nanobiotechnology, 22, Article No. 356. https://doi.org/10.1186/s12951-024-02601-6
|
[19]
|
Spatarelu, C., Jandhyala, S. and Luke, G.P. (2023) Dual-Drug Loaded Ultrasound-Responsive Nanodroplets for On-Demand Combination Chemotherapy. Ultrasonics, 133, Article ID: 107056. https://doi.org/10.1016/j.ultras.2023.107056
|
[20]
|
Vezeridis, A.M., de Gracia Lux, C., Barnhill, S.A., Kim, S., Wu, Z., Jin, S., et al. (2019) Fluorous-Phase Iron Oxide Nanoparticles as Enhancers of Acoustic Droplet Vaporization of Perfluorocarbons with Supra-Physiologic Boiling Point. Journal of Controlled Release, 302, 54-62. https://doi.org/10.1016/j.jconrel.2019.03.013
|
[21]
|
Ai, C., Sun, X., Xiao, S., Guo, L., Shang, M., Shi, D., et al. (2023) CAFs Targeted Ultrasound-Responsive Nanodroplets Loaded V9302 and GLULsiRNA to Inhibit Melanoma Growth via Glutamine Metabolic Reprogramming and Tumor Microenvironment Remodeling. Journal of Nanobiotechnology, 21, Article No. 214. https://doi.org/10.1186/s12951-023-01979-z
|
[22]
|
Lea-Banks, H., Meng, Y., Wu, S., Belhadjhamida, R., Hamani, C. and Hynynen, K. (2021) Ultrasound-Sensitive Nanodroplets Achieve Targeted Neuromodulation. Journal of Controlled Release, 332, 30-39. https://doi.org/10.1016/j.jconrel.2021.02.010
|
[23]
|
Pan, Y., Li, Y., Li, Y., Zheng, X., Zou, C., Li, J., et al. (2022) Nanodroplet‐Coated Microbubbles Used in Sonothrombolysis with Two‐Step Cavitation Strategy. Advanced Healthcare Materials, 12, Article ID: 2202281. https://doi.org/10.1002/adhm.202202281
|
[24]
|
Xiao, S., Guo, L., Ai, C., Shang, M., Shi, D., Meng, D., et al. (2023) Ph-/Redox-Responsive Nanodroplet Combined with Ultrasound-Targeted Microbubble Destruction for the Targeted Treatment of Drug-Resistant Triple Negative Breast Cancer. ACS Applied Materials & Interfaces, 15, 8958-8973. https://doi.org/10.1021/acsami.2c20478
|
[25]
|
Xu, Y., Lu, Q., Sun, L., Feng, S., Nie, Y., Ning, X., et al. (2020) Nanosized Phase‐Changeable “Sonocyte” for Promoting Ultrasound Assessment. Small, 16, Article ID: 2002950. https://doi.org/10.1002/smll.202002950
|
[26]
|
Jang, Y., Park, J., Kim, P., Park, E., Sun, H., Baek, Y., et al. (2023) Development of Exosome Membrane Materials-Fused Microbubbles for Enhanced Stability and Efficient Drug Delivery of Ultrasound Contrast Agent. Acta Pharmaceutica Sinica B, 13, 4983-4998. https://doi.org/10.1016/j.apsb.2023.08.022
|
[27]
|
Deng, Q., Mi, J., Dong, J., Chen, Y., Chen, L., He, J., et al. (2022) Superiorly Stable Three-Layer Air Microbubbles Generated by Versatile Ethanol-Water Exchange for Contrast-Enhanced Ultrasound Theranostics. ACS Nano, 17, 263-274. https://doi.org/10.1021/acsnano.2c07300
|
[28]
|
Tang, H., Zheng, Y. and Chen, Y. (2016) Materials Chemistry of Nanoultrasonic Biomedicine. Advanced Materials, 29, Article ID: 1604105. https://doi.org/10.1002/adma.201604105
|
[29]
|
Deng, Y., Zhang, X., Yang, X., Huang, Z., Wei, X., Yang, X., et al. (2021) Subacute Toxicity of Mesoporous Silica Nanoparticles to the Intestinal Tract and the Underlying Mechanism. Journal of Hazardous Materials, 409, Article ID: 124502. https://doi.org/10.1016/j.jhazmat.2020.124502
|
[30]
|
Chalouni, C. and Doll, S. (2018) Fate of Antibody-Drug Conjugates in Cancer Cells. Journal of Experimental & Clinical Cancer Research, 37, Article No. 20. https://doi.org/10.1186/s13046-017-0667-1
|
[31]
|
Missaoui, W.N., Arnold, R.D. and Cummings, B.S. (2018) Toxicological Status of Nanoparticles: What We Know and What We Don’t Know. Chemico-Biological Interactions, 295, 1-12. https://doi.org/10.1016/j.cbi.2018.07.015
|
[32]
|
Lucas, A.T., Price, L.S., Schorzman, A. and Zamboni, W.C. (2017) Complex Effects of Tumor Microenvironment on the Tumor Disposition of Carrier-Mediated Agents. Nanomedicine, 12, 2021-2042. https://doi.org/10.2217/nnm-2017-0101
|
[33]
|
Ragelle, H., Danhier, F., Préat, V., Langer, R. and Anderson, D.G. (2016) Nanoparticle-Based Drug Delivery Systems: A Commercial and Regulatory Outlook as the Field Matures. Expert Opinion on Drug Delivery, 14, 851-864. https://doi.org/10.1080/17425247.2016.1244187
|